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Distinguished subsets and summability invariants

by
G. BENNETT (Bethlehem, Penna)

Abstract. Several subsets of the convergence domain of a matrix have been
studied by various authors. The purpose of this paper is to continue this study and
to answer some problems raised by Wilansky in [9] and Chang in [3].

1. Notation and preliminary ideas. We shall be coneerned with matrix
transformations y = Az, where # = {#,}2, and y = {y;}{2, are complex-
valued sequences, 4 = {a;}7;., is an infinite matrix with complex
coefficients and

Y, = Zaiy-.nj (i=1,2,...).
=1

o denotes the space of all complex-valued sequences and any vector
subspace of o is called a seguence space. A sequence space E with a locally
convex topology 7 is a K-space if the inclusion map: (&, ) - o is contin-
uous when o is endowed with the topology of coordinate-wise convergence.
If, in addition, v is complete and metrizable, (¥, 7) is an FK-space. The
basic properties of FK-spaces may be found, for example, in [10] and
[14]; in particular, we recall that a sequence space can have at most
one FK-topology. The following FK-spaces will be important in the
sequel:

m, the space of all bounded sequences;

¢, the space of all convergent sequences;

¢y, the space of all null sequences;

1, the space of all absolutely summable sequences.

¢, = {wew: Ax exists and Awec} is called the convergence domain
of A. If wec, we write

o0
‘limy2’ in place of ‘}imZaijmj.’
100 577

By Theorem 4.10 of [12‘}, ¢, can be topologized so that it becomes an
FK-space and we assume throughout that ¢, carries this topology. ¢
denotes the (continuous) dual of ¢,. A is called conservative if ¢ = ¢, and
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we deal exclusively with this type of matrix, though certain generalizationg
are possible. In particular, this means that

lima; = a; exists (j=1,2,...).

I~
Associated with A are the following ‘distinguished’ sets, which play an
important role in the theory of summability. (See [9]).

B = {»’666‘_4-' sup’ﬁ‘aiimjli< +oo}.
j=1

&Wn
. .
F = {a:ecA: ijf(e’) is convergent, for each fec",i},
i=1

where ¢ denotes the sequence (0, ..., 0,1,0,..
Jjth position.

W ={zeey: flx) = jm,.f(ef), for eachfec,}.

8 ={zecy: = S’mjej}.
. =1

.) with the ‘one’ in the

L ={meoy: (1d)z = > X ta,w; exists, for each tel}.
A ;

i=1

i=
) P ={pec,: (t4)z = 1(4), for each tel which is such that (tA)y
exists for each yec,}.

o
I ={zeay: D am; is convergent}.
j=1

On I we define the linear functional 4, given by

A@) =limo— Yoz (ael).
< 4%

7

At ={peoy: A(x) = 0}.

Letting 6 denote the sequence (1,1,...), 4 is called conull if eedt or
coregular if e¢AL. It I — ¢ 4; then 4 is said to have mazimal inset.

‘ When the dependence on A is in doubt we shall write B 4, F 4, ete.
Given any distinguished subset X of ¢ 4» We define the internal and external
partners of X respectively as follows:

Tins = N {Xpt ep = 0);
T = U {Xp: 0p = o).

I Xy =X, th{en X is said to be an imvariant subset of o,; clearly,
Xine and X, proyzde examples of such sets. If X is an invariant subset
of ¢, we try to find an invariant expression for it, that is, one in terms
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of ¢, rather than of 4. It may then be possible to associate the property
‘e X’ with an arbitrary FK-space. As Wilansky [9] remarks, F, W and §
are all defined in terms of the topology of ¢, and so are invariant subsets
— their associated properties being FAK, SAK and AK respectively
[131.

From Theorems 5.1, 5.2 and 5.4 of [9], we have the following inclusion
relationships:

s 8ScW=Bnd4at

(*) cF=Iy=LnlIcB=LgcP.
cS ey Nm

The matrix 4 is said to be multiplicative (— a) if, for some scalar a,

lim 2 = alims; (wec).
b

—00

It turns out ([9], p- 329) that A is multiplicative if and only if a; = 0,
j=1,2,..., and that the only possible value for « is A(e). If there exists
& multiplicative matrix D with ¢;, = ¢, then 4 is.said to be replaceabls.
The existence of non-replaceable matrices is not at all obvious. Zeller
gave the first example, which appears in [8]; others can be found in
[4], [6]. For replaceable matrices 4, it is clear that Iy, = ¢ 4+ and we shall
use this fact to derive a new source of non-replaceable matrices.

2. The problems and their solutions. In connection with the foregoing
ideas Wilansky [9] poses several problems, listed here for convenience.
(I) Must L = F, if 4 is coregular ?
(IT) If P is closed, must L be?
(IIT) Is L invariant ?
(IV) Must there exist a matrix D with ¢p =6, and Ip,=F %
(V) If A has maximal inset, must 4 be replaceable 2
(VI) Is AL invariant?

(VII) Can 721 a;z; be bounded and divergent if 4 is coregular ?

(VILIT) Is P invariant ?
(IX) Must Iy =c,? .
(X) Itis conjectured that if I is invariant for a certain matrix A,
then Iy = o,. )
(XT) Must I be closed if 4 is continuous ?
(XII) Must a conull matrix be replaceable ? X
The purpose of this section is to answer all twelve of these problems,
save for (VIII), where only partial solutions are given. (XII) has already
been solved by Chang, MacPhail, Snyder and Wilansky in [4] — though
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their solution leads to further problems, raised by Chang in [3]. In order
to answer these additional questions, we present a different solution to
(XII). .
Our first result settles (II) affirmatively.
ProrOSITION 1. If either F or L is closed, then F = L and both are closed.
Proof. That L = I whenever L is closed is just Lemma 5.6 of [9].
To prove the other part suppose, if possible, that F is closed and F == L.
“Then, by (*), &, (the closure of ¢, in ¢,) = F & L. Thus ¢, is not dense
in L and Lemma 5.5 of [9] is contradicted.
The next result shows that B is invariant, thus providing an affirm-

ative solution to (III) by (*). We note here that J. J - Sember has discov- .

ered this result independently ([7], p. 442).
PROPOSITION 2. B is invariant. .
Proof. It is easy to check that z<B if and only if # has bounded
n
sections in c4; that is, the set { Y @ye: # =1,2,...} is bounded in c,.
. P :
Thus B, being defined in terms of the (unique) FK-topology on ¢, must
be invariant.
CoroLLARY 1. BN I 4 = F.
Proof. B Iy =B, 0 J {Ip: ep.= o4}
=U{Bpn Iy ¢y =c¢,}, Dby Proposition 2
=F, Dby (%).
COROLLARY 2. If Io = ¢4, then B = F. In particular, if A is replace-
able, then B = F.

Proof. Direct application of Corollary 1 and the remarks made
earlier on replaceable matrices.

The next result gives an affirmative solution to ( V).

Prorosirion 3. If A has mazimal inset, then A is replaceable.

Proof. Consider the matrix D derived from 4 as follows:

— Uy a3
Uy 0 Qp— 0y (3— 0
T1— Q& OQgg— Gy (g3 dy

Ty Qyp— Gy g3 llg

Sinece'4 has maximal inset, it iy clear that ¢p = o, and

o0
limpe = lim  z— Za@-w,- (reey).
7=1
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If zec, it follows from [9], p. 329 that

oo
2 aw;  (xec),
j=1

limyz = A 4(e) lima;+
. ket i
and so

limpe = 4 ,(e) lima;

F—>00

(zec).

Thus D is multiplicative and A replaceable.
We now give a matrix which provides solutions to (I), (VII) and

(IX).

Exavrre 1.
o —
1310 .

Let 4 _|* 3 @5 3 30 .
- ?
13 03: 00 % 0
12045 00 3 B

t'hen A is coregular. The sequence
©»=(1,—4,1,9,1, —1, —16,1, 25,1, —1, ...)

is a member of ¢, yet
ed
2 %%
R

is bounded and divergent, so that (VII) is answered affirmatively. It is
easy to check that » has bounded sections so that #<B\I. Thus, by (*)
and Corollary 2 to Proposition 2, L\F is non-empty and I, # 04, 80
that (I) and (IX) are also answered negatively. It is interesting to note
that A is not replaceable.

Next, we give a counter-example to (IV).

ExAveLE 2.

b

Let A =

= R
O - D
ol

=)
[ETE—Y
ol
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that is,
4, Hj=2{—1orj=21, .

Q= =1 o)

Y l0, otherwise (g 13 e)
Letting D be any matrix with ¢p = ¢,, we show that I p # F. Since
p Is conservative, del where d = {d,};2, denotes the sequence of column
limits of D. Thus we can choose a strictly increasing sequence, {j,1%
of odd positive integers so that -

gl < 277 whenever j>j,.

Detfine the sequence z by

n, ifj =j, for some positive integer n,

Zp=1—n, Hj=j,41 for some positive integer n, (j =1,2,...).

0, otherwise.
Then clearly zec,\B, = ¢;\By, by Proposition 2. Furthermoye, it is
easy to check that zeI;, so that mel p\Bp, which, together with (%)
gives Iy = F. ) ’
For acw, we define a, o” as follows:

oo
o = {mecu: Zaja_zj conve_rges};
i=1

n
a ={wefz): s}llp ',‘;" a,~m,-J< —]-oo}.

The next result is just Theorem 9, (i) ()= (ii) (a), of [5].
Lexwa. For a,beo, a” < b° whenever of & b,

(Xn?ur next matrix provides counter-examples to (IX), (X)), (XI) and
ExivprE 3.

Let 4 =

Ar—
H R R
o e e S
o R e
B R O
P

o O
o

Z};ii gxgsmccinu;l.'fftua; = &, ~1,2, —2,4, —4,...); then zeB\T and,
ple L, 1t Tollows that I, s ¢, and that 4 is not replaceabl
Thus (IX) and (XII) are answe_reil. i >

]
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Chearly, .
I={gew: me(l, L, 54 5 '--)ﬁ}
and, if
p(@) = S?P!E“iimils
=i

P is a continuous seminorm on ¢, ([12], Theorem 4.10). Since

oo o i
§ ‘a 2l = § Y Laj_i -t Ba; 2 Y Boy_1t Doy
thet ] 9i-1 9i~1
=1 F=1

=1
it follows that the inapping:

< sup = p (%),

i

o0
% — 2“7‘707 (wel)
=1
is continuous on I. By Theorem 4.4 (c) of [12], the mapping:
. .
z—A(z) =lim z— Za,-m,- (wel)
j=1

is also continuous on I. Now
B = {zecy: we(1, 1, 1, 1, 1 b <)}

and so, by (%), F = I. It follows from Proposition 1, (*), and the fact
that B s« F that I is not closed in ¢,. Thus (XTI) is also answered. .

Finally, we show that I is invariant. This, together with the fact
that B 5= F, contradicts the.conjecture (X). To do this, let D be any matrix.
with ¢, = ¢, and suppose, if possible, that I, % I,. Then, since I, = F,
we must have I, D I, by (*). This gives

FR0pn ¥ =I5 21, =4’

and so, using the lemma,
@’ =2 ar.

Thus I, =e¢pNdf 26, na’ =B, which contradicts Corollary 1 to
Proposition 2 sinece B % F. It follows that I, = I, so that I is invariant.
ProposITION 4. If I is imvariant, then so is AL and A+ = W.
Proof, If I is invariant, then I = F and the conclusion follows
from ().
For coregular matrices the converse result is true and this leads to
a counter-example to (VI).

Studia Mathematica XL.3 3
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PROPOSITION 5. If A is a coregular matriz, then AL is invariant if and
only if I is invariant.

Proof. A* is a hyperplane in I and so I = AL+ {¢} for coregular
matrices. Coregularity is an invariant property of ¢, ([9], p. 337) and so
therefore is the above equation.

It is easy to eonstruet a coregular matrix for which I is not invariant
(Example 2) and any such matrix provides a counter-example to (VI).

I have been unable to decide whether Proposmon holds for all conser-

vative matrices.

To answer (XII), Chang, MacPhail, Snyder and Wilansky [4] consider
two classes of matrices introduced by Yurimyae [11]. 4 is said to belong
to the dlass J if ¢ is dense in m N ¢4 in the subspace topology inherited
from c,. A belongs to the class 0 if, for every matrix D with ¢y 2 m Nne 4
and imp = lim, on ¢, we have lim, = lim, on m Ne¢,. It is shown in
[4] that J\0 is non-empty and that, if 4 eJ\0, then 4 is not replaceable.
On the other hand, Chang [3] points out that if 4 ¢J, then A is automati-
cally replaceable by Theorem 9.1 of [9] and (*). Chang goes on to ask
what can be said about the replaceability of 4 when 4.¢0. We point out
that the zero matrix and, by Theorem 3 of [4], the matrix of Example 3
both belong to 0. The former is replaceable, whereas the latter is not.

The only remaining question from Wilansky’s list is (VIIL), and we
close this section by presenting some pairtial solutions. First we observe,
using Theorem 6.3 of [9], that if A is coregular, then P is invariant and
has the invariant expression P = &. Also, by Theorem 9.1 of [9], if 4 is
not replaceable, then P is again invariant and has the invariant expression
P =7¢,. Thus, to answer (VIII), we néed only consider multiplicative-0
matrices. The next result enables us to restrict this class even further.

ProrosirIOoN 6. If At 3 B, then B = P:

Proof. Theorem 6.3 of [9] and (*) show that B < P for any matrix.
To establish the converse we let fec’, with f vanishing on B. By (4), p. 330
of [9], fhas a i'epresentamon of the form:

(weey),

f(2) = ahmda;—l—t(Am)— Z’ (aaj—f— Zt aw) 2;

=
for some sealar a and some ¢el. By Lemma 4.1 of [9] and (*),
f(@) = ad(z) (zeB).
Since A B, « = 0 and so
fle) = t(4da)— (A)z (zecy).

It follows that f = 0 on P and then, by. the Hahn-Banach theorem, that
B=pP

=] © .
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CoROLLARY 1. If B = W, then P is invariant.

Proof. This follows from Propositions 2 and 6 since, by (%¥), B=W
it and only if B = A*.

COROLLARY 2. If ¢, is not dense in B, then P is invariant. .

Proof. This follows from Lemma 5.5 of [9], Corollary 1 and (*).

Asa special case of Corollary 2, we note that, if A ¢J, then P is inva-
riant. Though the invariance of P is left in doubt, the seb Py, is certainly
invariant and is closed by Theorem 6.3 of [9]. It would be interesting
to have an invariant expression for Pyy.

3. Some new summability invariants. The following result is establish-

ed in [1]. .
TEEOREM. A subset K of ¢, is relatively compact if and only if the
following conditions hold:
) sup joy] < 40 - (=1,2,..0;

(ii) sup sup 1 y%m 1< + o0

2K n

100 LK

(ii) lm sup | 2 ai,-os,-] =0
f=n

(iv) suil sup ]ja,-,—m,—{< + oo
zeK 1 j=1

o
(v) lim sup 12 aﬁxi—]imdmlz 0.
isoo xeK 1Ty
It follows that a subset K of ¢, with properties (i)-(v) must also
have (i)-(v) in terms of any matrix D with ¢p = ¢4.

In [2] it is shown that

lim sup |ay;] = O

joo0 4

is an invariant property of ¢, and this leads us. to study the socalled
wedge spaces.
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Every Segal algebra satisfies Ditkin's condition

by
LEONARD Y. H. YAP (Singapore)

Abstract. The purpose of this note is to prove the assertion stated in the fitle.
As an easy corollary we obtain the Shilov—Wiener Tauberian theorem for all Segal
algebras. Warner [5] and the author [6] have obtained special cases of these
theorems. .

Let @ be a locally compact Abelian group with dual group G. Follow-
ing Reiter ([3],p. 126), a subalgebra S(@) of L'(&) is called a Segal algebra
if:

(i) s (@) is dense in L'(@) m the I'-norm topology and if feS(6)
then f;e8(@), where f,(#) = f(a™'%

(ii) 8(@) is a Banach algebra under some norm ||+[g which also
satisties [|flly = |Ifuls for all feS(@), a@ (multiplication in S(@) is the
usual convolution);

(iiiy it feS(@), then for any e >0 there exists a neighborhood U
of the identity element of @ such that ||f,—fllg < & for all y e U.

Throughout the rest of this note, S(@) will denote an arbitrary Segal
algebra. The following facts, which are needed in the sequel, can be found
in Reiter ([3], p. 128):

(I) There exists @ constant ¢ such that ||f1 Clifllg for all -
fe8(@) )

(IT) §(6) is anidealin IN@) and |fb * flls < [l [fls for all feS(&),
he}(@). ’

_- (1II) If f eL}(@) and the Fourier transform f has compact support,
then feS(G

(IV) G1ven any feS(G) and s >0, there is a veS(G) such that 4 has
compact support and |o* f—flls<e.

LeMMA. The mazimal ideal space A of S(G) can be zdentszd with the

dual group G.
Proof. (II) implies that hm If™E™ < Ifll, for each feS(@). Now

if yed, then we have |y(f)|" = |y(f™ < if"ls and hence y is L*-norm
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