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Linear operators and operational calculus, Part I
by
GREGERS KRABBE (Lafayette, Ind.)

Abstract. To any open interval @ (containing the origin) there corresponds
a linear injection of the space L1°¢({®) (of all the functions which are locally integrable
on the interval @) into a commutative algebra of linear operators; this injection is
a useful substitute for the Fourier transformation.

The present paper deals with a commutative algebra of generalized
functions on a sub-interval (&_, &,) of the real line (we suppose that
—oco < B_ <0< @, o). This algebra contains all functions which
are locally integrable on the open interval (&_, @.); in consequence,
equations such as

0o g
i’l(tH‘tfﬁj i‘/(“)d@=m

and
ot
Yy (E)+9 y(t) = see;)t (for —A<<t<<A)

can be solved by calculations entirely similar to the ones that would
arise if the Carson-Laplace transformation could be applied to these
equations (see 2.29-2.30, 2.40, and 4.9); in some ecases, the caleulations
are shorter than the ones that would arise if Mikusiniski’s caleulus (or
the Laplace transformation) were applicable: see 2.41. The unique theorem
in this paper depends neither on Titchmarsh’s theorem nor on Lerch’s
theorem.

In case (@_, @,) is the whole real line (—oo, o), our algebra yields
an operational calculus which is a definite improvement compared to
the one described in [5]; the present operational caleulus is a museful
substitute for the two-sided Laplace transformation (or the Fourier
transformation) of generalized functions: no growth conditions are needed.

Organization of the paper. The only theorem is stated in §1;
some of its consequences are sketched in §§ 2—4. In fact, § 2 deals with
algebraic consequences; § 3 concerns limits, derivatives, and the unit
impulse; § 4 is devoted to partial differential equations, and § 5 containsg
the proof of the theorem.
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§1. The theorem. Throughout, we suppose —oo< . <0< &,
< oo and denote by & the open interval (&_, &,). Let I'°(®) be the
family of all the complex-valued funetions which are Lebesgue integrable
on each interval (a,b) with &_<a<0<b<d,.If f( ) and g( ) belong
to L*°(®), we denote by f A g( ) the function defined by the equations

] i
(L1) — [f—wgwdu =F A\ g(t) = [ F(t— u)g(u)du
{ 0

for almost-all values of ¢ in
It can be proved that

(1.2)

&: the first equation is used in case ¢ < 0.

FAG(YeL(®).

1.3. DerFInNITION. Lot Wy be the linear space of all the complex-valued
Sfunctions w( ) which are infinitely differentiable on the open interval & and
are such that w(0) = 0 = w®(0) for every integer k> 1. As usual, 'w(")( )
denotes the k-th derivative of the function w( ).

1.4. Equivalence of functions. I fi( ) and f,( ) are funcmons,
the equation f,( )= f,( ) will mean that these functions are equal
almost-everywhere on the open interval &.

1.5. Remark. Suppose that f( ) and ¢( ) belong to I'°%(®); it is
easily verified that

(1.6) FAgC)y=gANTC).

1.9. Notation and terminology. Henceforth, the word
“operaior” will indicate a linear mapping of Wj into W;. If 4 is an
operator and if w( )eW5, we shall denote by A-w( ) the function that
tne operator A assigns to w( ). ‘

As usual, the operator-product 4,4, (of two operators 4, and 4,)

is defined by
(1.8) A4y w( ) = Ay (dyw)( ) (forw( ) in’ Wy),
and 4, = A4, means that 4,-w( )= A4, w( ) for every w( ) in Wj.
The identity-operator I is defined by
1.9 ITw()y=w() (forw()in Wz).

A The space of generalized functions. Let 577 be the family of
all the opemtors A such tha,t the equation

(1.10)° = (4d-w) A w()

holds whenever both wi( ) and w,y( ) belong to W,

A (wy A wa)(

icm°®
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It is easily verified that <3 is an algebra whose unit-element is the
identity-operator I. The algebra 5 will be topologized in § 3. For further
comments on <75, see 1.26.

1.11. DErFINITION. If f( eI (&), we denote by f the mapping which
assigns to each w( ) in Wy the function f A w'( ):

(1.12) frw()=FfAw() (forw()in Wg).
FWe call f the operator of the function f( ); we shall often write
(1.13) {f(t)} instead of f.

1.14. Remark. The unit constant function 1(
for —oo < &< oo. Let us prove that

(1.15) 1=1.
To that effect, it suffices to note that (1.1) gives

)is defined by 1(z) =1

)2 i
(1.16) TAw () = [1(t—u)w’ (w)du = [w';

0 0 .
consequently, 1 A w'(t) = w(t)—w(0) = w(t) for {ed, whence L A w'( )
= w( ). Conclusion: (1.15) is now immediate from (1.12) and (1.9).

1.17. PrOPOSITION. If fi( ) and f,( ) belong to L'*°(&), then

(1.18) fi{) =Ff() implies fi =1,

and the equation '

(1.19) {efi(t)+0ufa(6)} = osfytaf )
holds for any two complex numbers ¢; and ¢. ;ﬁ;s-‘

Proof: immediate from (1.12) and (1.1).
1.20. The operator D. We denote by D the restmctlon to W~ of
the differentiation operator:

y=w'()
1.22. THEOREM. The algebra o3 i8 commutative, and D esly; moreover,
I )eL(@)
and the two properties

(L.24)

(1.21) D-w( (for w( ) in W3).

(1.23) implies  fesly,

D{fy A fo®)} = fufs,

(125 fi=F implies  fi() = fu()

hold whenaver f,( ) eI’ (&) for b = 1,2.
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1.26. Comments. This is the only theorem in this paper; its proof
is given in § B. Equation (1.24) states that the operator-product of D
and {f, A f2(?)} (that is, the product of the operators D and f, A fp: see
(1.13)) equals the product of the operators f, and f,. From (1.23), (1.25),
and 1.17 it follows that the mapping f( )~ fis a linear injection of I 3)
into =7z; this is analogus to the linear injection of L'°°(&) into the space
9'(®) of Schwartz distributions — the injection of I}°(&) into 75 justi-
fies our description of <5 as a space of generalized functions.

§ 2. Elementary applications. Recall that 1( ) is the unit constant
(L =1(¢) for —oco << t< o). When ¢ is a complex number, the equation
{e1{t)} = ¢I comes from (1.19) and (1.13) and implies that elesZ; (in
view of (1.23)). Since the correspondence ¢— ¢l is an algebraic isomor-
phism of the complex field C into /7, we shall not distinguish between
a complex number ¢ and the operator ¢l: )

(for ¢eC);

(2.1) ¢ =c¢l = {cl(t)} = cl
in particular,
(2.2) 1=1I={l(t)}=1.

Suppose that ¢;,eC for k = 1,2 and fi( )eL'*°(@); setting fo( ) =1( )

in (1.19), the equation
(2.3) . {efi(B)+ e} = 61 fi4¢.

follows directly from (2.1). In view of (2.1) and the commutativity of
the algebra 7z, we see that
Ade =cAd (for Aes/y and every ¢ in C).

Substituting f,( ) = 1( ) in (1.24), we obtain

@.4) DANf(6)} =fo  (for fo( )eI®(&))

2.5. Notation. If f{ )eZ* (%) is a function such that |%(0—)| < oo
for 0 < k< m, we set

@6 .. amf & pmy Z F0(0—) Dm=*,
) In particular, if {f(0—)| < co then
@7) of £ Df—f(0
One last definition:
2.8) , ] = 0 fort<o,
1 for ¢ >0;

icm
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the function > [t} is the Heaviside unit jump function. Note that Defi-
nition (2.7) gives

(2.9) a{L1} = D{It31};

we shall see in § 3 that D{|t}|} corresponds to the unit impulse applied
at the origin.

2.10. PROPOSITION. Suppose that f( ) is a function which is continuous
on the open interval @. If f'( ) has at most countably-many discontinuities
in each compact sub-interval of the open interval &, then

(2.11) fl.=0f = Df—j(0—)D (i f'( )eZ"(@)).
Proof. From [4, p. 143] it follows that the equa,tions

i
FO—F0) = [f =1AF®
0

hold for both 0 <1< &, and &_

<.t< 0: the second equation iy from
(1.16); consequently, )

W FO—F0=) =LA@ (for ted).
From (1), (1.18), and (2.3) it follows that

@ FE=10-) = LA T );
multiplying by D both sides of (2), we obtain

® D{f(t)}—f(0—)D = DAAf (0} ="

the last equation is from (2.4). Conclusion (2.11) is immediate from (3),
(1.13), and (2.7).

2.12. DEFINITION. For m > 1 let A, (D) be the family of all the func-
tions y( ) such that y™ V() is continuous on the open interval &, such
that y™( )eI*(&), and such that y™(-) has at most countably-many

-discontinuities in each compact sub-intwml of the open interval &. -

2.13. PROPOSITION. If y( )eX (@) then 0™y = y™.
Proof: by induction (based on 2. 10).

2.14 Remarks. If f( )ed ' (d), it fo]loﬁvs 1mn1ed1ately from 2.10
and (1.13) that

(2.15) o =1 -l d f(t)}
it is necessary that f( ) be continuous, since 9{|t% [} % {d|t%|/dt} = 0.

It will be shown in another paper that the operation f( )+ 8f corresponds
to the distributional derivative (see 3.10).
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2.16. Invertibility. An operator A is called invertible if A es7z and
- if there exists an operator X such that A X =1. Suppose that 4 is invert-

ible; since 7y is a commutative algebra, there exists exactly one operator.

A~! such that A 'es/; and AA™" = 1.

Setting f(t) =t in (2.11), we obtain 1 = Df (since f'( ) = 1( )).
Consequently, D is invertible, and D~* = {f(t)}; since f() = ¢ we can
write .

1

(2.17) D7 ={t} =

Substituting #(#) = #"/n! into 2.18, we can use (2.6) to obtain D™{"/n!}
= 0"y =1, so0 that

t 1
=" .
{n!} iz

We may now multiply by D~ both sides of (1.24) and use the commu-
tativity of the algebra 7y to obtain :

(2.18)

t
(2:19) - {[Arb—wfiwau} = £,D7,.

Substituting f,( ) = 1( ) into (2.29), we can use (2.2) to obtain

(2.20) (f fuwas) = D7,

2.21. PROPOSITION. Suppose that Y ety and Vesty. If the equation
VY = E holds for some invertible R, then V 4s invertible and ¥ = RV,
where R]V denotes RV

Proof: easy; see 1.76 in [5].
2.22. Rematks. Let o be a complex number. The equations

a{eat} - {Edt_ eat} — a{eat} — D{eat}—l)

are fr01‘n (2.15) and (2.7)2 consequently, (D—a){e”} = D; we can uge
2.21 (with B = D) to solve this equation for {e™}:

‘ D
D—a

Formulas (2.18) and (2.28) ean be compared with the Laplace-transform
formulas

(2.23)

"} =

1
s—a

3

ki 1
2{1t1|m}=sn_ﬂ- and L4} =

icm
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recall that the funetion #+> |t)| is the Heaviside unit jump function. If
F( )eIl*®(&) the equations
1 D

t
=T = S D7F = {Of ea<ﬁ-u>F(u)du}

(2.24)
are from (2.19) and (2.23). Sefting @ = ¢ (a complex number) and F(?)
= ¢ in (2.24):

G‘ ct
— = —1}.
D—e¢ {e }

(2.25)
Let us derive another formula: from (2.11) we see that
D2{sinat} = Dd{sinat} = a.D{cosat},
and another application of (2.11) now gives
D {sinat} = a(—a{sinat}+D):

solving this equation for {sinat}:

v

(2.26)

sinat) D
e
On the other hand, the equations

sin at \
|

are from (2.15), (2.7), and (2.26). The equations

fa D D“lfg = {fw__—sina(;— u) fg(u)d'u,}

{cosat} = @ { { Sinat} D2

a = D4 g2

(2.28)

D2t a?’® " Dita

are from (2.26) and (2.19).

2.29. An integral equation. Take A > 0 and let @( ) be a function
in I*¢(—1, 1); for example, G(t) = e*/(A—1)%. Let us find a function
y( )eI™°(— A, A).such that :

y(t)+ fe“"‘y(u)du =G(t) (whenever [t|< i);
£

if y( ) is such a function, it follows from the first equation in (1.1), from
(1.18), and from (2.24) that

1
Yy— _1¥= @,
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‘whence
D— 1
D— 2

(1—]~—-—)G G+ D12 G,

y =
and another application of (2.24) now gives

t
Y1) = @0+ [ G (wydu  (for —A<t< A):
0

this comes from (1.25). Throughout this problem and the next, we use
B = (— 4, A).

2.30. An initial-value problem. Given two complex numbers
6o and ¢y, let us find a function y( ) in I**°(— 2, 1) such that y (0—
y'(0—) = ¢;, and

) = ¢q,

7t
Tyl Oy = ikl %
) y+9y {see 21}

We are again dealing the case @ = (— 4, 1). If y( ) is such a function,
it follows from (2.6) that

(D*4-9)y = ¢, D*+ ¢, D+ {sec %}

Solving for y:

oD 1 [ent}
V=% irg T pare T e I

from (2.27), (2.26), and (2.28) we see that

i
sin 3¢ sin 3 (t—u) U
1) = ¢pcos 3t f —_
y() = ¢ Fo—e—+ 3 (secm)du

. 0
(for —2<t< A).

2.31. Translates. Henceforth, suppose that 0 <a <

co and @( )
eI (&). We set

G(t—a) for t>a,
0 for ¢ <

(2.32) G(t) = l

In paa:tlculam 1%( ) is the characteristic function of the open interval
-~ (@, ). In case a > @, we have G°( ) = 0 = 1°( ) (see 1. 4), so that
(2.33) G =1"=1° =0
2.34. ProposITION, 1°G = G°
Proof. In view of (2.33), 1°6¢ =0 = G° in case a>=d,. It only

whenever «>>d&,.

icm
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remains to consider the case a<< @,. To begin with, observe that
1) TAGEH =0 =@ ALEl) (or é_<i<a): '
this is easily verified. Next, suppose that a<t< & .- From (1.1) 1 and
(2.32) it follows that )
(2) 1A G = f@(u_ ) du = f 6 (z)d

a L}

On the other hand,
i~a

(3) 1°A G@) = (f + f) 1°(t— u) G (u) du,
t—a

and, since

. i — |F@ i —u>a,

) ()G (w) = 0 if t—u<a,

we see that 1°(f—u)G(u) = 0 if % > t— a; Equations (3)—(4) now imply

t—a
= [ Gwdu

, (2), and (1) to obtain
(6) ' 1A GH) =G A L(H) =1 A G2(1):
the last equation is from (1.6). The equations
1°¢ = D{I° A G(t)} = D{IA G“(ﬁ)} =1G°=@6"

are from (1.24), (6), (1.24), and (2.2): this concludes the proof.
2.35. Remarks. Setting G{ ) = 1*( ) in 2.34, we obtain

(2.36) 1°1% = 1%+

(5) 1% A G(B) (for a < t< @,).

We can now combine (5)

(for 0 < @ < o0).

Setting a = 0in (2.32), we see that @Q°( ) is the function which vanishes
on the half-open interval (—oo, 0] and such that G°(t) = G(¥) for ¢t > 0.
Note that

(2.37) G°(f) = @ (t—a) (for ted),
From (2.8) it follows that
1 fort>0,
10() = |ty = .
0 for t<0;
consequently,
(2.38) @) = [(t— ) |G(E—a) (for fed).

In view of our notation (1.13), we can use (2.38) to write 2.34 in the form

(2.39) I{G(t)} = {|(t—a)%|G(t—a)} (in case 0 < a<C oo).
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Formula (2.39) corresponds to the Laplace-transform identity
et L {161} = L{ (t— )} |Gt a)}
— and can be applied to the same type of problems.
2.40. For example, take & = (—oo, 1) and consider the equation
e for0<i<a
n dy—oy = :
0 when —oo<<t<< 0 or when a<< i< i

here ¢ is a given complex number. In view of (2.7), Equation (7) means
that
(8) Dy—y(0—)D—ey = o(19—1°).

Let us solve (8) subject to the condition ¥ (0—) = 0:
¢
= (10— 1% —— . — 0__ o chb_ .
) y = 15— = (- 1)e"—1}

the last equation is from (2.25). From (9) we can use (2.39) and (1.25)
to infer that

¥(1) = B(e“—1)—|(t— o)t |(ee™—1) (for —co<t< A).

2.41. Conecluding remarks. In Mikusifski’s caleulus [7-8], the
equation (9) above would involve the ratio ¢/s(s—¢), which would have
to be decomposed into partial fractions. Formulas such as

(2.42) re h{ (etm)!

— i —f—
A= s Tt GO (b— A ka)}

(proved in [5, 11.58.1]) are useful to solve more complicated Irn'oblems‘
2.43. PrOPORITION, If Aes/y and v( )eWy, then A-v = Awv.
Proof. Take any w( )in Wy ; the equations '

L do)yw()=A)Aw()=4d-@Aw)() =4 (vw)()

are from (1.12), (1.10), and (1.12). In view of (1.8), Equation (1) gives:

(4-0)w( ) =Adv-w() (for w( )eW;5);

the eonclusion 4 v = Av is now at hand.

2.44. CoROLIARY. If 0 < a << oo then 1° is the tramslation operator:

(2.453) Yw( ) =0°( ) - (for each v( ) in Wg).
Proof. The equations 1*-v = 1°0 = +° are from 2.43 and 2.34; con-

sequently, 1*-v = ¢° so0 that (1.25) implies our conclusion (2.45).

icm
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2.46. Remark. Suppose 0 < # < oo and w( )eWy. Combining (2.45)
with (2.32), we obtain )
w(t—uw). for t >z,
0 for t < @,

§3. The topological space ;. Let us associate with the linear
space W the topology of pointwise convergence on the open interval .
Henceforth, the algebra «7; will be equipped with the topology of point-
wise convergence on Wy (this makes sense, since 73 is a space of mappings
of the topological space Wy into itself). Suppose that Besf; and let
(Ap)per be a family of elements of 7 (that is, a function of J into «3):
the relation
1) : B =lim4d,

herd

means that
(2) Bw( ) =limd,w() (for each w( ) in W3);
b2

to simplify matters, we suppose that J is a subset of (~oo, co) having
4 as an adherent point. The equivalence (1) <-(2) is an immediate
consequence of the topology that «/; has been equipped with. We
denote by

lim 4,

B>
the mapping that assigns to each w( ) in W; the function B-w( ) defined
by (2); consequently,

(3.1) (Umd,)-w( ) =lmd,-w() (for w( )eWgz).
h—>2 h>d ‘

It is easily seen that the topological space = is locally convex and
Hausdorft; it can be proved () that multiplication is sequentially contin-
uwous and that «; is topologically complete in the following sense: if
lim4,-w(t) exists (as 7 — 1) for every te® and for every w( )<Wy, then.
the equation (2) defines an element B of /7.

3.2. Derivatives. Let J be an open sub-interval of (—oo, co).
I (F (w))xr s is a family of elements of </, we set

def 1

a . ) )
(3.3) —E;F(m):gl-’;(lf (z+h)— F(2));

in view of (3.1), this means that d¥#(s)/ds is the operator defined by

Gh (GG F@)u0) = E@ () Gor w()Ws).

(t) This has been done by Hérris Shultz.


GUEST


210 G. Krabbe

3.3. PrROPOSITION. If 0 < # < co then

d
: —1°= —1°D.
(3.6) o

Proof. Take any w( ) in W;. Setting F(s) = 1* in (3.4), we obtain
d 7}
z], = —(1%. ,
®) (dml)w( ) am( wl ))

Let us verify the equation

0 (lx-w(t)) = —1%w' ) (for t‘;é @).

0z

(4)

Indeed, if { <, then both sides of (4) equal zero (by (2.47)); if ¢ >
then

6 x. _____(_3_ —_— ’ — __. (1}_ ’ .
70—(1 w(t)) = P wi—o) = —w'({{—s) = —1%-w'(£):

the first and last equations are both immediate from (2.47). Gombining
(3) and (4), we can use (1.21) and (1.8) to obtain

d z), — % . — 7). o
(Hil)w()_ 1P Dw( ) =—1D-w( );

since w( ) is an arbitrary element of W. Conclusion (3.6) is at hand.

written

i

ml A=+~ 1%) = —1°D,

o Tt
which implies thab
(3) lim—1~ (1*—1*% = p1°,
. b0 h
k>0

Y for m< i< w-+h,

0 otherwise,

e ‘

we can re-write (5) as follows:

B for m< b
(3.8) DI® =Iim‘ A BN
) 0 0 all other ted

3.7. The unit impulse. In view of (3.3), Equation (8.6) can be

icm
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the second equation is from (2.11). In consequence of (3.8), DI1® represents
the unit impulse applied at the time ¢ = #. Recall that 0 < @ < oo and

(3.9) P ={¢t—-a)il} (by (2.38)).

3.10 The Dirac delta. The equation dy = DI° governs the velocity
y of a particle of unit mass subjected to a unit impulse applied at the
time i = 0; if the initial velocity y(0—) = —1, then Definition 2.7
gives Dy+D = D1° so that y = —14-1°, which implies that g(f) = 0
for ¢ > 0. Although this example is extremely gimple, it illustrates the
fact that the answer is given directly (without the need for another Iook
at the problem): in this way it contrasts with the calculus described in
[5] (the answer in [5, 2.50] is not obtained as automatically: it requires
an additional step).

In case @& is the whole real line (—oo, co), it can be proved that the
correspondence f( ) > f (of I*(®) into ;) can be extended to the space
of all the distributions which are regular on the negative axis; under
this extended correspondence, the Dirac distribution &,( ) (concentrated
at the point #) corresponds to D1%; it might be added that the distribu-
tional derivative corresponds to the operation f( ) ~> df defined in (2.7).

311 Application. When ¢ = 0 the equation

6 8y = m(1'—1%)+ D1

governs the npwards deflection of a beam subjected to a uniform load
of density m applied to the interval (0, 3); when ¢ = 6 the beam is also
subjected to a load of magnitude 6 concentrated at the point ¢ = 8 (eom-
pare with [7, p. 128] and [5, 6.68-6.86]). In case m = 0 and

Y(0—) =5'(0—) = y®(0—) = y®(0—) =0,
we see from Definition (2.6) that 9*y = D*y, so that (8) gives

"6 6t°
(7 y = *5518 = 18{—3‘!*} = {[(t—8)}[(t—8)*}:
the last two equations are from (2.18) and (2.39). From (7) and (1.25)
it follows that y (1) = (¢:— 8)* when 8 <t < @&, : observe that ¥ = 0 when
@y < 8. .

§ 4. Partial differential equations. As before, JJ is an open sub-interval
of (—oo, o0); again as before, 0 < @, < oo, but from now on & is the
open interval (0, @,). Consider a complex-valued function (z, )~ F(z, t)
on the open rectangle J X &: we shall denote by F(z)( ) the function
defined on the open interval & by

(4.1) F(z)(t) = F(x,1) (for e and 0 <<t<< ).
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It F(o){ )eL® (@) for all med, we set
(4.2) {F(a, )} = F(w), ,
where F(z) = {F(z)(t)} is the operator of the function F(z)( ) (recall
the definitions (1.12)-(1.13) with f = F(x)). From (4.2) it follows that
' a - d
H;{F(m, )} = FrRARE

the right-hand side'is defined in (3.3). If the function (z, ¢) - 0 F (, 1) /0z
‘is continuous on the open rectangle J x &, then

- q F
L E{F(m’ )} = {—a—zF(aa, t)} (for wed):

this can be proved as in [5] (see 9.15.1 in [5]). Note that 6[(t.—— ®)%|/0z
hag no meaning when # = ¢, but

d d d _ - )
@) ==t} = 1" = —DI*  (for 2> 0):

see (3.9) and (3.6). -

4.3. The time derivative. As before, we consider a complex-
valued function (w,1t)+ F(s,t) defined on the open rectangle J X &,
this function being such that F(z)( )eL'°°(#). For zed we set

det

(4 o (o, 0} 2 DF @, )}~ Fla,04)D,

and

) () 0 0) % 0P, 03P 0, 040) D Fifn, 04)D,

where
(4.6) iz, 0+) d:“limil?'(m, 7). '
o3 O

I >0 and Fls,1) = |(t—2)%] then F(z,0+) = 0 = Fi(w, 0-F),
so that

9 :
) o 5 U2} = D{l(t—a) 1} = D1

thfa last equation is from (3.9). Again we remark that the ordindry deriv-
ative 0|(t—w)%]/0¢ has no meaning when ¢ = 2. From (2) and (4.5) it
follows that

_ a GAN '
(4.7) ('d?) 1® = (a_t) 1* =D1°  (for 0< @< o).
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It is readily proved that the equation
) p) )
(5) —o P, 6} = {Em, t)} (for @ed)

holds when F(z)( ) belongs to the family ¢ (&) (that was defined in
2.12); in particular, it holds when the function (z, ¢)~ 0F(z, 1)/t is
continuous on the open interval &. ‘ ’
4.8. Motivation. The réle of the equations (1), (2), (3), and (5)
is to justify utilizing the operations d/dz and 8/dt (defined for families
of operators) rather than their classical counterparts.
4.9. Vibrating string. The equation

(‘;{)z{m”’ t)) = (%)2{17@, )} (for 0<a<1)

governs the vertical displacement U(w,t) of a point with coordinates =
and U(z,?) at a time # > 0; the point lies on a string with end-points
at 2 = 0 and at # = I < co. Using the notations defined in (4.1)~(4.2),
the equation can be written

(1) ((%)2— (dl;;)g) Uz)=0 (for 0<a<h:

“recail thdt U (w) is the operator of the function U (4)( ) defined by U(x) ()

- UI(‘i’t%s solve the equation (1) subject to the initial conditions
@) Uz, 04) =0 = Ui(w, 0+)
and subject to the boundary conditions

3) 0=U(0) and U@ =46,

where @ is the operator of a given function G( )eZ'°°(®). From (4.3) we
see that the equations (1)-(2) imply

(4) | (D2~— (-g‘-)z) Uzy=0 (O<a<l).

<ol

deo

If X and XY belong to <3, it follows easily from (4.7) that the equa-
tion
(5) Ux) = X1*4+ Y1-°
defines a solution of (4); if the initial conditions (2) are satisfied, then
(5) implies (1). Let us determine the parameters X and Y to satisty the

(B X))

boundary conditions: setting & = 0'and @ = in (5), we obtain

(6) U@©0) =X 1+YI' and U(Q) = X1+ Y15
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next, we substitute the bbunda;ry conditions (3) into (6) and use (2.36)
to solve for X and Y:
-1'q G
SR T R S U £2
substituting into (5):
ll—z 11+z:

U(m) = 10___121 G — 10__121 G’

from which (2.32) readily gives the answer

(7 U(x) = {S‘ (G"(t—zkl—l+m)~G°(t—~2Z:l—l—m))}.

k=0
- Bquation (7) -verifies the initial conditions (2); since it also satisfies

(4), Cenelusion (1) is an immediate consequence of our definition (4.5):

(4.10) (-a%)2 U(z) = D*U (#)— U, 0+)D*— Uy (s, 0-+)D.

If the function @ ( ) is not continuous, then the solution (@, 8) > U(x,1)
= U(a)(t) (defined by (7)) is not differentiable: the classical equation
62

aﬁ.’
EE U((l', t) = EZ— U(-’ﬂ, t)

has no meaning in this case.

411. A fundamental solution. Let p be afixed complex number;
Ho0<a<oo we set pi(t) = [exp(—pt)] cerf(m/2ﬁ), where cerf denotes
the complementary error function, and
(412) P3(1) =1°(1) = 1°(1)e™™  (for ¢ in &).

As usual, pf, denotes the operator of the function # 1> P5,(t) defined

on @. For m = 1, 2 it is not hard to verify that
. d\e
(4.13) ((p-{—D)m~— (ﬁ) )pfn =0 (for 0 <A< oo).

414 A more general problem. Given a family (h(m)( )eer OF
elements of I'*(®), and two families (9(@))eer a0d (6(@)),e; of elements
of o7/z; the index-set J is an open interval J = (0, 1) with I < co. Given
1< m<2and a >0, consider the initial-value problem

~ , Ay BT
(415) ((“ﬂ) ~a (@—)) U@) = ha),
(4.16) U(, 0+) = g(x),
(4.17) Uy(@,0+) = G(z) (in case m =2 only).

e © .
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In view of (4.4) and (4.10), this initial-value problem implies that

(4.18) ((p+1))m— a? (%)Z)U(m) —R@D (for zed),
where ‘

h
(419) E@) =5 4+ on—1)(g(@) D+ Glo)+ 200 @) + 2~ m)g (o).

Suppose that there exists a number ¢ such that

' (4.20) (—d—)éR(m) =¢R(z) (for all # in J);

daz
it X( )and ¥( ) are any two elements of I**(®), it can be shown that
the equation

w2 U = T Xyt VR (for we)

~ (@+D)y"—a

defines a solution of the initial-value p_robiem (4.15)-(4.17): see 4.25. -
The parameters X and Y can be adjusted to make (4.21) satisfy the usual
boundary conditions. Throughout, J denotes an open interval (0,1)
with I < co.

4.22. Casel = co. I wed, then 0 < # < I (since J = (0,1));if 1 = oo

- then al—ax = oo in (4.21), so that
(1) Ypu @ = Ypn =0 (for med);

the last equation is obtained by verifying that p& = 0 for both m =1
and m =2 (in case m = 2 this iy immediate from (2.33) and (4.12)).

From (1) and (4.21) it follows that, for any X{ ) in I'°(®), the
equation

R(@)D
(423) Ulw) = (@) =+ Xpy (with 0 <2< o)

(p+D)y"—a
defines a solution of the initial-value problem (4.15)-(4.17) in case J is
the open interval (0, oo). Recall that the number ¢ is determined by (4.20);
we can take ¢ = 0 when there exist two operators A and B such that
R(z) = Az B for all zin J.

4.24. Application. Let us apply the above procedure to the initial-
value problem ‘

0 \* d\?
(2) (—0—5) Uo) =(@~) Ue) (0<z< o)
with
(3) U@, 0+) =€  and Uz, 04+) =0 (for 0< << o),

Studia Mathematica XL.3 2
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and subject to the boundary condition

d
4 0 =1lim — U(x).
2 i e U
From (1) and (4.15) we see that this is the case p =0, ¢ = 1, m = 2,
and k =0 of (4.15); since I = oo we conclude from (4.23) that the equa-
tion ¢
_ E(@)D

(%) Vi) = For—

+ X1 (with 0 < @< o0)

defines a one-parameter solution of the initial-value problem (2)}-(3):
the last term on the. right-hand side was obtained by substituting

m =2 and p =0 into (£.12). From (3) and (4.16)—(4.17) we see that g(m)

= exp(—a) and G(z) = 0; substituting into (4.19) gives
' B(®) = g(#)D = o™ D;

consequently, (4.20) implies ¢ = 1: Egquation (5) becomes -
®) U@ = 22 e
@) —= = ; SR N
() FiIeE] + XX (with Q<w< oo}
] .Let us determine the parameter X to satisfy the boundary condition
(4); in view of (3.6), Equation (6) gives

d —e~*D2
@0 V) = i TP

combining with (4), we obtain

=D 1/ D D ,
M  rr=o ~§(D_l “75?5) — {—sinh t}:

the second equation iy from (2.23). Since & — (0, 3.), we have 10 =1
and 1°X = X; substituting (7) into (6), we can use (2.39) to obtain the
conclusion

Uw) = {e™" cosh t— |(t— )| sinh (t—a@)}.
More precisely, given any @, < oo, the equation
U(z, ) = e “cosh t— | (1— #)%| sinh (t—a)

(with 0 <¢< @,) clearly satisfies both the initial conditions (3); in
consequence, : 7

(2w - (o
55) Tt = () W ro<o< o).
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4.25 Bxistence proof. The fact that (4.21) satisfies the initial-
value problem (4.15)—(4.17) can be proved exactly as in [5]: here is a sketch
of the calculations. It follows from (4.13) that the equation (4.21) implies
(4.18). Consequently, if (4.21) also implies the initial conditions (4.16)-
(4.17), then it satisfies the initial-value problem: to see that this is so,
replace g(x) (respectively, G(z)) in (4.19) by U(x, 0+) (respectively, by
Uy(%, 0+)), and combine the result with (4.18); the definitions (4.10)
and (4.4) now show that (4.15) has been obtained.

In short: the answer (4.21) can be verified by checking that it satisfies
the initial eonditions. S

§ 5. Proof of the theorem. Let ¢,( ) be the function defined by
1 for0<u<t,
—1 fori<u<o,

and by e,(u) = 0 for all other values of . It will be convenient to denote
by e, the support of the function e, ); thus, e, is the interval having
end-points 0 and t. Observe that

(5.2) FA9M) = [fi—weam)gwdu (forted).
e :

(5.1) e (u) =

5.3. DEFINITION. For any integer n =1 we denote by q,( ) the function
defined by ¢,(0) = 0 and

—1
(1) g,(t) = exp (W) (when = 0).
5.4. PROPOSITION. Suppose that f( )eL™(®). If
(2) FA@GE =0 for ted and every ax=1, .
then f( ) = 0.

Proof. From (2), (1.6), and (5.2) it follows that
0 =lim g, A f(2) = im [ g, (— ) &, (u) f (w) duss
n—>o0 n—>00 "’t

since |g,( )] < 1 (by (1)), we may apply the Lebesgue Dominated Conver-
gence Theorem:

B Y
tim (exp N as(wlan = [ a0
e €

in view of (5.1), this means that

i [}
0=[f (fort>0), and 0=—[f (fort<o),
0 : i

which implies our conclusion f( ) = 0.
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5.5. LEMMA. Suppose that the functions f( ), g( ), and h( ) all belong
to L1%(@). If the fumction |fI A (Igl A\ 1B])( ) is continuous on the open
wnterval @, then

(5.6) FAGAR@) = FADAL@)  (forzed).
Proof. From (5.2) it follows that
(3) FA@AH) (@) = [ [Fla—1)G{—w)H(u)dudt.
er &
" Since our hypothesis implies {fl-A (lg] A k) (%) < oo, it follows from
(3) that

f f]f(.as—t)g(lb—u)h(u)idudt< co;

er

we may therefore apply Tonelli’s Theorem to write

(4) FA(GA R)(x) = f(ff(w—t)g(t—u)dt)h(u)(lu,

ér %y

where z, is an appropriate interval. Let us prove that

x @
(3) FAGABR@ = [(ff@—gt—wat) h(w)du
E 0 u
" in case 2 < 0 (the case x >0 is analogous): the double integral is taken
over the friangular region
{(u,

consequently, the range of ¢ (in the integral (4)) is the 111te1va;1 T,
the equation (4) becomes

1) 2<<t<0 and t<u<<0};

= [&, ul;

0 u
FAGA W@ = [([fe—1gt—w)at) hw)du,

which implies (5). The change of variable » = ¢— u changes (5) irto
r—u

[ fla—u—n)g(v) d'u) R () du;

0

FAGAR() = f (
consequently, (1.1) gives
FA(gA B () =f (F A g@—w))h(u) du:
Conclusion (5.6) is now immediateofrom (1ay.

5.7. Notation. Let Cy(®) be the space of all the Sfunctions which are
continuous on the open interval & and vanish at the origin.
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5.8. Remarks. Tf g(
follows from (1.1) thai

IAg®)

)ELIOC(C‘(’)), then 1 A g( YeCo(®). Indeed, it'

i

’
.—_fl(t——'uv)g(u)tlu = f.‘F

0

(5.9)

the conclusion 1 A g( YeCy(d ) is now at hand.
5.10. Remark. If g( ) is continuous on @, then (LA g)'( ) =g( ):
this is immediate from (5.9).
5.11. LEMMA. Suppose that v( YeCo(®). If v'( ) is continuous on &,
then v( ) =1A2'()
Proof. Take t in @. If ¢ > 0 the equations
i
o(f) = o(t)—0(0) = o' =LA v(t)
(]
are from v(0) = 0 and (5.9). Same reasoning for £ < 0.
5.12. LEMMA. If G'( )eCy(®) and f( )eL(&),
and
(5.13)

then G A f( )eCo(®)

GAFCY =LA ANC)

Proof. Clearly, the function G( ) belongs to C,(®);
(8.11) (with v = @) gives G( ) =1 A G'( ), so that
1) GAFO)=@AAGIASC)

From (1.2) it follows that [@'| A |f]( )eI™*(&): we can therefore
use 5.8 (with g = |G'| A |f]) to conclude that the function 1 A (|G| A [f1)( )
is continuous on @, whence the equation
@) COAAG@ATCY =1AEFAN)

now comes from (5.6). Conclusion (5.13) is immediate from -(1)—(2). Set
3) AOE- NS

from (1.2) we see that g,( )eL°(®), so that 5.8 gives
(4) LA g0 )eCo(&).

Since we have already proved (5.13), we may combine it with (3)
to obtain G A f( ) =1 A g.( ): the conclusion G A f( YeCy(&) is now
immediate from (4).

5.14. The space of test-functions. From 1.3 it follows that
w( )Wz if (and only if) w® ( )eC,y(®) for every integer k> 0.

5.15. LEMMA. If f( )eI’®(®) and w.( )eWx then

(5.16) wy AFC ) eCo(®),

consequently,
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and
(8.17) (W AFY () =wAF()

Proof. Since w,( )eCy(®) (by 5.14), we can set &
obtain (5.16). From (5.13) (with ¢ = w,) we obtain

=, in 512 fo

) w AFO) =1A (wy AD()
It

(5) ) = wi A SO,
then (4) gives wy Af( ) = 1/\ g( ), whence

(6) @ AS'() =@Ag().

Sefting @ = w, in 5.12 we obtain w; A f( }eCo(®): from (5) we
therefore have g( )eC,(®); the equation
] AN () =w ASf()
is from 5.10 and (5). Conclusion (5.17) is immediate from (6)—(7).

5.18. LeMMA. If f( )eI™(@) and w( )Wz, then fA w( )eWy

and ]

(5.19) (FAw) () =w AF()=FAW()
Proof. If the equation

(8) wANBC) =w®Af()

holds for %k = n, then
(o AN () = @ ALY () =™ AF()

the second equation is from (5.17). Thus, the equation (8) holdsfor & = n-+1
whenever it holds for & = n; since (8) also holds for k¥ = 0, we conclude
that it holds for any integer % > 0. From (8) and (5.16) (with w, = )
it follows that (w A f)®( ) belongs to 0,(@) for any integer % > 0; there-
fore, w A f( ) belongs to W, and the conclusion f A w( )Wy now comes
from (1.8). The proof is concluded by noting that (5.19) is a consequence
of (5.17) and (1.6).

5.20. First conclusion. Dess;. Indeed, D is clearly an operator,
and the equations

De(wg A wy)( )

come from (1.21),
from (1.8).

5.21. DEFINITION. If f({ )eI (&) we denole by [f] the operator that
assigns to each w( ) in Wy the function fAw()

(5.22) [lw()=FfAw() (forw()in W).

=(wy A wg)' () =w A wy( )= (D-wi) A we( )

(5.19), and (1.21). The conclusion De.s; is immediate

icm

(5.24)

in view of Definition (5.22),
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5.23 PROPOSITION. If fi( ) and fo( ) belong to L'*°(®), then

[fllf] = [fi A fel;
Sfurther, if wy( )eW5, then
(5.23) HAFAw)() =i AT A wa( )

Proof. From 5.18 we see that |f,] A |w.l( )eWz; consequently, we
can set w = |fy] A |ws| and f = [f,] in 5.18 to conclude that the function
IFd A (f2l Al wsel)( ) belongs to Wy: Conclusion (5.25) therefore follows
from (5.6). From (') 25) and Definition (5.22) we see that

(1) [fil([fel wa)( ) = [f1 A fel we( ); )
since w,{ ) is an arbitrary element of W, Conclusion (5.24) is immediate
from (1) and (1.8).

5.26. Remark. If f( )eL'(®), then [flesZ;. Indeed, [f] is an
operator (by (5.22) and 5.18): it only remains to prove that (1.10) holds
when 4 = [f]. Setting f; = f and f, = w, in (5.25), we obtain

FA i Awe)( ) = (FA w) A wa( );
this means that

. L1 (o A wa) () = ([F1-w0) s ( ):
therefore, (1.10) holds for 4 = [f].

5.27. Remark. If Apesfy for b =1, 2, then A; A, sy (this is easily

verified). :

5.28. LEMMA. If f( ) eL™(®) then fesls and

(5.29) f=1[f1D.

Proof. Equation (5.29) is immediate from the three definitions
(L.12), (5.22), and (1.21) (see also Definition (1.8)). In view of 5.27, the
conelusmn fed; comes from (5.29), 5.26, and 5.20.

5.30. LEMMA. If fi( )eI’®(®) and fo( )eI°°(&),
fi() =fil)

Proof. Set fo( ) = fu( )—fa(
= 0; consequently, the equation
(1) forw(@®) =0
holds for every w({ ) in Wy: the proof will be completed by showing that
fol ) = 0. Take any integer n > 1 and let ¢,( ) be the function defined
in 5.3; since g,( )eWj (this iy easily verified), it follows by setting f =1
in 5.18 that 1 A g,( JeW;: we may therefore set w( ) =1A ¢,() in
(1) to obtain '

) forLA )() =0

then f, = f, implies
); from (1.19) we see that f, = fi—f,

(for every ted)

(for every te®).
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The equations

(3) ForQA @) =f AAAG) () =fiAdl)

are from Definition (1.12) and 5.10. Combining (2) and (3), we see' that
foA 2,(8) = 0 for te® and every n>1: the conclusion 0 = fo( ) now
comes from 5.4. Since 0 = fo(.) = fi( )—fo( ), we have proved that
fl( ) :fz( )-

5.31. LemmA. If Besty then the equation

(5.32) B Ap)() =i A (B9 )
holds for every p,( ) and p,y( ) in Wz,
Proof. The equations
B@AP() = B(paA2)( ) = (B-p) A ma( )

are from (1.6) and (1.10): Conclusion (5.32) is now immediate from another
application of (1.6). )

5.33. PROPOSITION. The algebra o5 is commutative.

Proof. Take 4, and 4, in &/y: it will suffice to demonstrate that -

A;Ay— Ay A, = 0. Let w,( ) and we( ) be any two elements of Wy: we
begin by -observing that : : .

(@) Ady (s Aw))( ) = Ay ((dym) A w)( ) = (Agrww)) A (Aya)( :

these equations are from (1.8), (1.10), and (5.32) (with p, = 4,-w,).
On the other hand, the equations

(B)  Aadi-(wi A w)( ) = A4, (w, A (A w))( ) = (Ay w) A (A5 wp){ )

are from (1.8), (5.32), and (1.10). We now subtract (5) from (4) to obtain

(6) A (o A wa)() =0,
From (6) and (1.10) it results that

M 0= (Aw) Awj( ) = (A-w)-1w,( )

where A4 A, A,— 4,4,

(for wy( )eW3):

the last e'qua;tion is from Definition (1.12). From (7) it follows that 4 -w,
= 0;setting f,( ) = 4w, ( ) and f,( ) = 01in 5.30, we obtain 4 wi () =0
for all w,( YeWs: the desired conclusion 4 = 0 is at hand.

5.34. PTOOf of the theOIenl. The a
1gebra eﬁw" 18 -commutative
(by 5‘33), Dedm (by 0.20)'

(125 2oy e ; Property (1.23) was Pproved in 5.28, and
. a5 also been proved (see 5.30). Consequently, it only remains to
prove (1.24): to that effect i .

I ) 86t () =fi A fu( ) and note that (5.29)
gives f = [f; A f1D; it will therefore suffice to prove that ‘

8 D(f1 Af:1D) = fofs.

icm
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To prove (8), observe that the equations

(9 DIfi A f]D = DIfi][fe] D = ([fy]D)([f:]1D)

come from (5.24) and by utilizing both the associativity and the commu-
tativity of the multiplication in /3. Conclusion (8) comes from (9) by
two more applications of (5.29).
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