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Banach spaces with finite dimensional expansions
of identity and umiversal bases
of finite dimensional subspaces

by
A. PELCZYNSKI and P. WOJTASZCZYK (Warszawa)

Abstract. Separable Banach spaces with the property (BAP) that the identity
operator on the space is the pointwise limit of finite dimensional operators are consid-
ered. It is shown that (BAP) is equivalent to the fact that the space is isomorphic
to a complemented subspace of a Banach space with a basis of finite dimensional
subspaces. This leads to an alternative proof of Kadec’s result {8] that there exists
a separable Banach space complementably universal for all Banach spaces with
(BAP). Other applications to a linear extension theorem and fo the existence of
various universal spaces are obtained.

Introduction. The present paper deals with separable Banach spaces
with the property that the identity operator on the space is the pointwise
limit of finite dimensional operators. This property — called by Kadec
[6] “The Banach Approximation Property” — is & stronger requirement
than the Approximation Property of Grothendieck [4] but weaker than
the Metric Approximéation Property [4].

In Section 1 we observe that a Banach space has the Banach Approx-
imation Property iff it is isomorphie to a complemented subspace of
a Banach space with a basis of finite dimensional subspaces. A similar
result for unconditional basis of finite dimensional subspaces is also
established.

In Section 2 we used the technique developped in Section 1 to prove
a result, due to C. Ryll-Nardzewski (unpublished), which generalizes
a linear extension theorem of E. Michael and the first named author
[11].

Section 3 is devoted to the construction of a complementably uni-
versal basis of finite dimensional subspaces for the class of all bases of finite
dimensional subspaces. This is done by a modification of the construction’
of the universal basis (¢f. [13]). Combining this result with the results
of Section 1 we obtain an alternative proof of Kadec's theorem (cf. [6])
on the existence of separable Banach space complementably universal
for the class of all separable Banach spaces with the Banach Approx-
imation Property.
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Section 4 is closely related to Kadec’s paper [6]. We show that the
universal space constructed in [6] has a basis of finite dimensional sub-
spaces and therefore is isomorphic to the universal space constructed in
Section 3. Using Kadec’s method we also construct a separable Banach
space, whose dual is an I, space, which ix complementably universal
for the class of all separable Banach spaces whose duals are L, spaces.
By an L, space we mean a space I, (u) for suitable measure u. The above
result is related to the recent investigation by Lazar and Lindenstrauss
[7] and Lindenstrauss and Wulbert [9].

The terminology and notation used in the present paper is standard.
We only mention here that if f: X — ¥ is a function and if Z is a subset
of X; then f|Z denotes the restriction of f to Z.

1. Finite dimensional expansions of identity and bases of finite
dimensional subspaces. In the sequel “f. d.” stands for “finite dimensional”
“operator” stands for “bounded linear operator” and “subspace” stands
for “closed linear subspace”. For any sequence (4,) of operators acting
between Banach spaces X and Y let

sup|| 374,
n i=1

sup sup “ 5] s,-A,-H.

no lel=1" T3

li

k((4,)

Il

DEFinmrion 1.1. A sequence of non zero f.d. operators (4,) from
a Banach space X into itself is called an (unconditional) f. d. expansion
of identity of X if

m=2An(a;) for weX
n

(and the series converges unconditionally). Moreover if A 4, =0 for
n # m.(n, m =1,2,..) then (4,) is called an (unconditional) orthogonal
expansion of identity of X.

The Banach—Steinhaus Principle implies that if a sequence (4,)
of £.d. operators is-an (unconditional) f. d. expansion of identity of TX
then span {J 4,,(X)is dense in X and k((4,)) < oo (res-p. Eu((4,) < oo)

n
‘Hence if a Banach space X has an f. d. expansion of identity, then X is
separable. The following observation is also well known

PROP.OSITION 1.1. For any separable Banach space X and any k=1
the following conditions are equivalent:

(a) For any compact K = X and &> 0 there ewist:
) s an f. d. operator
B: X — X such that 1) |B(z)—al| < ¢ for zeK, 2) |B|| < k.
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(b) There exists a sequence (B,) of f. d. operators in X such that
lim [|B,(#)—#|| =0 for zeX and |B,J| <k forn =1,2, ...

(¢) There exists an f.d. ewpansion of identity of X, say (4,) with
k((4,) < k.

For the proof use: for (¢)— (a) — that a pointwise convergent se-
quence of operators in a Banach space converges uniformly on any compact
set; for (a) - (b) — that any separable Banach space has a dense linear
set which is the union of an increasing sequence of compacta; for (b) — (¢)

assume without loss of generality that B,,., # By, for m =1,2,... and

put 4, = By, Agm = A2m+1 = '.I'E(Bm—}-l_‘Bm) for m =1,2, ...

The condition (a) for ¥ =1 is usually called the metric approxima-
tion property (cf. [4]). Kadec [6] uses the phrase “X has BAP” for “X
satisfies (b) for some %k < co”. Concluding X has an f. d. expansion of
identity iff X has BAP in the sens of Kadec [6]. This property for sepa-
rable Banach spaces is weaker than the metric approximation property
but stronger that the approximation property of Grothendieck [4] which
means that X satisfies (a) without requirement 2).

It (4,) is an f. d. orthogonal expansion of identity of X, then 4,
are projections because A,(x) = A,(3 4, (@) = 3 A, An(2) = 4;(2) for

m m

‘weX n=1,2,...)

A sequence (X,) of f.d. subspaces of X is an (unconditional) basis
of finite dimensional subspaces for X, shortly an f. d. s. basis for X if for
any zeX thereexists a unique sequence (z,) such thatx, eX, forn =1,2, ..
and z= Y », (and this series converges unconditionally). Reecall the fol-

n
lowing well known

ProposITION 1.2. (cf. e.g. [14]) If (4,) is an {unconditional) orthog-
onal f. d. expansion of identity of X, then (4,(X)) s an (unconditional)
f. d. s. basis for X,

Conversely, if (X,) is an (unconditional) f. d. s. basis for X, then for
any n there exists a projection from X onto X, annihilating all X, for m # n.
The sequence of these projections is an (unconditional) orthogonal f. d. expan-
sion of identity of X.

Observe that the classical concept of a basis for a Banach space
corresponds to the f. d. s. basis (X,,) with dim X,, = 1.

An orthogonal f. d. expansion of identity (4,) is said to be monotone
(resp. the correspondent f. d. s. basis {A,(X)) is monotone) if k((4,) =1
For a monotone £. d. s. basis we have

PROPOSITION 1.3. For any Banach space X the following conditions
re equivalent

(i) X has a monotone f. d.s. basis;
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(ii) X is & su;-space (¢f. [111]), 4. e. there is a sequence of f. d. projections
(P,) from X into itself such that |P,Jl = 1 for n = 1,2, ...; P(X) = Py(X)
< o5 U Pu(X) is dense in X;

(ili) there exists a sequence of non-zero f.d. subspaces (X,) such that
spanl_J) X, is dense in X and
n

n n+1
| Sal<] 3]
= j=1
Jor any e X; (j=1,2,..,04+1;0 =1,2,...).
Proof. (i) — (ii). Put P, = 4, B, = S;' A; for n=2,3,..
j=1

. Where

(4,) is a monotone orthogonal f. d. expansion of identity of X.
(ii) — (iii). Put th = P(X); X, = P,(X) nkerP,_, for n = i,2,...
Then for any 2;¢X; (j =1, 2, ..., n+1) we have

1 ) n4-1 n
Btz (Sa)] =) 5.
(ili) ~ (i). See e.g. [14].

Now we are ready for the main result of the present section.

. TIIF:“OREM 1.1. 4 Banach space X has an (unconditional) f. d. Expansion
of identity iff X is isomorphic to a complemented subspace of a Banach
space with an (unconditional) f. d.s. basis.

The proof of Theorem 1.1. is an immediate consequence of the next
two lemmas.

Levwa 1.1. Let (4,) be an (unconditional) f. d. expansion of identity
for a Banach space Y and let P: Y - Y be a projection. Let X = P(Y')
Then (PA,| X) is an (unconditional) f. d. expansion of identity for X. M ore-'
over k((PA,| X)) < |P|k((4,)) (vesp. b,((P4,]X)) < |[PJk,((4,))

Proof. Obvious. "

DEFLNI?.‘ION 1.2. The (unconditional) envelope of an (unconditional)
[. 4. ezpansion of identity of X, (4,) is the Banach space D(4,(X)) (vesp
Zu(An(X))) whose elements are sequences (#;) such that mzA-(X‘) f01:
J=12,... and the series Zi'wj is  (unconditionally) conviergént. The

operation of addition and multiplication by s ) i i
. : y scalars are defined coordi-
natwise and the norm in (4, (X)) (resp. in DulA, (X)) is defined by

)l = Sgp“ ij 1’ (resp. ||(z,)l, = sup sup “jsiw,-”).
iz n | st

z]-]=1
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TEvvA 1.2. If (4,) is an (unconditional) f. d. expansion of identity
of X, then the space Y = 3[4, (X)) (resp. ¥ =3, (4,(X))) has the fol-
lowing properties:

(«) The sequence (Y,) is a monotone (unconditional) f. d. s. basis for ¥
where

Y, = {(wf)eY: z =0 for j#mn j=12 N

(B) The operator U: X — Y defined by U(w) = (4n () for meX 4s
an isomorphic embedding such that |of < ||U (@) < k((An)) llz]l (resp. ||l
< U @)l < Fu((4,) l2ll) for zeX.

(y) The operator P: ¥ — U(X) defined by

onto

P((@) = (4n 2,: a))  for (z)e¥

is a projection with || P < k((An)) (resp. |1 P, < ku((An))).

Proof. Routine.

A moment of reflection gives:

COROLLARY 1.1. A Banach space X is isomorphic to a complemented
subspace of a Banach space Y with a monotone (unconditional) basis iff
there emists o sequence of one dimensional operators which is an (uncondi-
tional) f.d. expansion of didentity of X. )

By a nonessential modification of the proofs (cf. e. g. [15]) one can
check that all known examples of Banach spaces which are not isomor-
phic to any subspace of a Banach space with an unconditonal basis also
are not isomorphic to any subspace of a Banach space with an uncondi-
tional f. d. s. basis and therefore to any subspace of a space with an uncon-
ditional f. d. expansion of identity. However there exists a Banach space
which does not have any unconditional f. d. expansion of identity but
which is isomorphic to a subspace of a Banach space with an uncondi-
tional basis.

ExAwpLs 1. 1. The Lindenstrauss space A defined to be a kernel of any
surjection of 1, onto L, (cf. [81) does not have any unconditional 1. d. expansion
of adentity. .

Proof. We shall identify a Banach space with its canonical image
in the second dual. Then A it not complemented in 4™ (cf. [8]). Hence
A is not isomorphic to any complemented subspace of a Banach space Y
with the property that ¥ is complemented in ¥**, In particular 4 is not
isomorphic to a dual of a Banach space (cf. [2], Th. 15). Since I, (and there-
fore A) does not have subspaces isomorphic to ¢;, the desired conclusion
is an immediate consequence of Lemma 1.2. and the following.
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LeMma 1. 3 If a Banach space X contains no subspace isomorphic
to ¢, (md if (4,) is an unconditional f. d. expansion of identity of X, then
(A (X)) ds zsomorphw to o dual of a Banach space.

Proof. By [14], Theorem IT 10, it is enough to check that ‘the sequence
(¥,) defined in Lemma 1.2. («) is boundedly complete f. d.s. basis for
;(X)). Precisely we have to check that if y; = (0,...,2;,0,..)¢¥,;

ZU(AJ’
. n
w3
n j=1

are choosen so that
s .
then the series Z y; converges in Duld,
7

1)

(X)). Clearly (1) is equivalent to

the inequality

() sup sup HZ 7“|< co.

n [BJ=1
Since X does not contain any subspace isomorphic to ¢,, the inequality
(2) implies that the series: Y x; is unconditionally convergent (cf. [1],
i

Theorem 5) but this is equivalent to the fact that the series Y'y; converges
. . 7
in 3, (4,(X).

Remark. Let us observe that to the contrary of [10], Theorem
6.1 and Corollary 8 to Theorem 6.1, there exists in I, an unconditional

f. d. expansion of identity, say (4,), which iz not absolute, i.e.
D4, (®)]| = + oo for some @el;. To construct such (A4,) pick any
n @

uneonditionally summmble sequence (x;) in I, satisfying the conditions

250 =0 and 2”.): || = 4+ oo, and put

j=1

De

Ay (@) = 2(n)e,+ Y o ("1 (2] —1))a

=
)

1
for n =2771(2j—1) and for & = (w(n))iely (4, =1,2,...). (Here ¢,
denotes the n-th unit veetor in I, (n = 1,2, ...)). We omit an easy veri-

fication that the sequence (4,) defined above is the desired unconditional
f. d. expansion of identity.

icm

CongecrurE. If X is an infinite-dimensional .#,;-space (in the sense -

of [10]) with an unconditional f. d. expansion of identity, then X is iso-
morphic to 1,.

2. A linear extension theorem. Let T' be a topological space, § a closed
subset of T, and C(8) and O(T) the Banach spaces of bounded continuous
scalar-valued functions on 8 and T respectively. Let  and H be subspaces

©
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of 0(8) and C(T) respectively. An operator »: B — H is called a linear
extension if «(f) is an extension of f for any feE.

DErFINITION 2.1. The pair (¥, H) has the bounded extension property
if, given any ¢ > 0, every fe E has a bounded family of extensions

&) = {fop: Wo 8, Wopenin T} c H

such that [f, y(2)| < & whenever zeT\W.

The following result was proved in [11].

THEOREM 2.1. Let S be a closed subset of a topological space T. If
B < C(8) is a separable my-space and if (E, H) has the bounded extension
property, then there exists o linear exiension u: E — H of norm one.

The concept of the envelope of an f. d. expansion of identity allows
us to prove the following improvement of Theorem 2.1. (due to Ryll-
Nardzewski, unpublished).

THEOREM 2.2. Let 8 be a closed subset of a topological space T. If
B < C(8) has an f. d. expansion of identity, say (4,), and if (E, H) has the
bounded extension property, then there exists a linear extension w: B — H
such that ul] < k((4,)).

Before ‘passing to the proof of this result we shall need some
lemmas.

Levma 2.1. If the pair (B, H) has the bounded extension property, then
given any & > 0 and open W > 8, every feE has an extension f,,weH such
that |f, (1)) < & for te T\'W and |f, wl<3If].

Proof. By homogenity argument, it is enough consider the case
where fe B and ||f| = 1. Let us put ’

Bj(fy g) = sup {]}fe,W”: fa,WE Qj(f7 8)}:

where @(f, ) is that of Definition 2.1. Using the bounded extension
property of (#, H) we define inductively two sequences: (]:n) in &(f,e)c H
and (W,) of open subsets of T such that W, o §; fn = fow,3 Wy =
= W,n (IN{e T: [f)] =2} (0 =1,2, )
Having done this we put f;n— =N “Z’! fj where N is any integer
i=

greater than M (f, ¢). One can easily check that ||f, il < 3. This completes
the proof of the Lemma.

It Z is a Banach space, then ¢(%) denote the space of all convergent
sequences of elements of Z with the coordinatwise operations of addition

and multiplication by scalars and with the norm. [|(2, W= sup kel -

Studia Mathematica XIL.1 1
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Let [w] denote the one point compactification of the positive integers.
Denote the “limit point” of [w] by “co”. For any topoldgical space T
there is a natural isometric isomorphism

dat ¢(O(T)) o3, O(T X [])

onto

defined by

_ fu®) for tel, n=1,2,...,
Jr((fo)t, n) = limf, (£)

_for tel, n = co.

Lemma 2.2. If (H, H) has the bounded extension property, then

(35 (e(B)), jz (o (D))
has the same property.

Proof. Given p = jg((f,)) for (f,)<o(B), &> 0 on.
s\(fa n , and open . subset W
of Tlxgw] such that W > §x [w]. Let W, = {teT: (t, n)e W for all
n = y Ly ana . Mo

map (see e. g. [3], Chap. XII, Theorem 8), W, is an open. subset
that SX [w] « W X [w] = ’T‘V T P - ubser ot & sueh

Let f., =1i_71tnfn. By Lemma 2.1 there exists an fmeH such that
Ilfmll<3!lfmﬂ 3ligl, foo extends f,, and |fo ()] < ¢f3 for te TNT,.
= fu—J»- Again, by Lemma 2.1, there ex1st% in H function g, Whmh
extends gn and (17,1 < 3llg.ll; 15, (0)] < ef3 for ie I'\W, (n=1,2,...).
Observe that 11111|]g”| = 0. Hence hmHgﬂll = 0. This implies that hm ( f00

+,) = foo- Let us put ¢ = j(( fw—}—gn). Clearly ¢ extends @ and
ol = 51113 oot Gall < 3ligll+ 3 SllPHgn” < 9ie].

. Fmaﬂyﬁ(t nyeT X [w]\W then (2, n)e I'x [@]\W, X [w]. Hence, by
efinition of jg, | (4, n)| < fe. This completes the proof of the Lemma.

Proof of Theorem ‘)2 The envelo
2.2. pe 3 (4, () can be obviously
regarded as a subspace of ¢(E) (To any (e.)e ) (4, () we assign the

sequence initi
q (21 ¢;) ec(B)). Hence, Lemma 2.2 and the definition of the bound-
ed extension property implies that the pair

(3s{ 3 (40 (®)), iz (e )

has the bounded extension
property. By Lemma 1.2 and Proposition
1.3 the envelope Y'(A,(H)) and therefore 13(2( «(B))) are m,-spaces.

co}. Sinee the natural projection T x [w] T is a closed -
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Hence by Theorem 2.1, there exists a linear extension o: js(z1 (4,.(5)))
— jple(H)) with |jv]] = 1. Let us consider the following diagram

iptvig Qm
| —

B2 N(4,(1) o ) E>H

where Ug(e) = (4,(¢)) for ¢cE and Qu{(hy)) = limh, for (h,)eec(H).

Clearly ||Ugl < k((4,)) and {@xl = 1. One can easily check that

u = Quiz'vjs Ug: E~H

is a linear extension with |ul| < %((4,)). This completes the proof.

‘8 Universal f. d. s. bases. Two £. d. s. bases (X,) and (Y,,) in spaces
X and Y, respectively, are equivalent (zsometmcally equivalent) if there
exists an isomorphism (isometry) T': X o2t . ¥ such that T(X,) = ¥,
for n =1,2,... By an isomorphism and an isometry we always mean
the linear 1somorphlsm and the linear isometry. A (complemerited) f. d. s.
subbasis of an f. d. s. basis (X,) is any subsequence (X, ) (sueh that

P: X - X defined by P(3 @,) = 3 @,
n=1 k=1

DermNtTioN 3.1, An £ d. 8 basis (X,) is (complementably) universal
for a class & of f. d. s. bases if any (¥,)e # is equivalent to a (comple-
mented) f.d.s. subbasis (X,) of the f. d. s. basis (Xn

f we have an f. d. s. basis (X%, (k = 1, 2, ... co), then the Banach

space in which (X;) is a basis will be denoted by @ X,, or sometime by

is a continuous projection).

@®X,;. The basis (X,) will be denoted by X. For any f d 3. basis (X;) by
P, we will a.lwayq mean the projection P,: @X —>6—)X defined by

Pn(z

(n =12, ...).
Let us consider the set <7, of all monotone f. d..s. bases (B)k., where

Z @,. Observe that () is a monotone f d. s bams iff ||P,)l =1

dimo D E; < n. By the index of an f. d. s. basis (B, we mean the se-

i=1
quence (dim #,, dnnEz, ceny
E

dim B,) and by the dimension of this basis,

the number dim @ F;. In the set <7, we introduce a metric ¢ by the
i=1 .

formula

n  if indices are different,

i

otherwise,


GUEST


100 A. Pelezyiski and P. Wojtaszezyk

k 13
where the infimum is extended on all isomorphisms T: @E; - @F,;

i=1 i=1

such that T(E,) = F, (1t =1,2,... k). ’

Remark. As a topological space </, is a digjoint sum of sets of bases
with the same index, topologized by the metric o.

Lemua 3.1. The metric space (sZ,,, 0) is compact.

Proof. Let us consider the sequence of positive integers %, < k,
<... <k, =n. The set B,(ky,..., k) of all sequences of Banach spaces
EicEyc...c B, dimE,; =k, with the metric

0(Bic...c E), (F,c...c 7))
= Inint{| 7| |T-Y: T is an isomorphism from B, onto F, and
T(E)=F, i=1,2,...,7}

is a compact metric space. This result is implicite contained in Gurarij

[5], Lemma 1b. It is easy to see that the closed and open subset of 7,

consisting of all f. d. s. bases of the index (%, ..., k,) i3 a closed subset

of By sy s (Brs Butbay ooy i+ .. +F,). This completes the ’proof.
Define J,,: o, ., — o, by

() = (B)iz!  if dimension of (E)L, is n+1,
riT (B)k,  if dimension of (B,)%, is <n-1.

LeMya 3.2. Let & be a finite s-net for o7,, 0 < &< 1. Then for any
7 >0, such that s+ n <1, there exisis a finite (s--n)-net for A1y SOY
&y such that J,(7) = and if o(J,((H,), (B))<e for (Byedt,,,
and (B})e &, then there exists an (B2)e %, such that I ((EY)) = (BY) and
o((BD), (B) < e+,

Proof. Let & = {F", ", ..., F"}. Pick an /2-net & for every J;(F").

K
We will show that &, = (J% is an (e+ n)-net satisfying conditions of
i=1
the Lemma.
Let us consider any E = {E}¥!e.z,,, and E' = Fc &% such that
0(J,(B), F) < &. There are two possibilites:
1° dimension of E < (n-+1). Then J(B) = E so it is enough to
take E* = E'. Let us remark that Fe &° because F*e J;M(F%) and is an
unique element of J,*(F°) whose dimension is < n 1.
. . . -~ x
2°kd1mens1on of Eis (n+1). Then J,(E) = (E):,. Put B = ©F,,
k+1 i=1

B' = @F} and F = @E,. We can choose an isomorphism T: E' - &
=1 i=1
such that In| T |7 < e+ n/2 and T(B) = B, (i = 1,2, ..., k).
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Thus we have the following inclusion
al(Ep) c K < bT (Kz),

where In (ba™') < £+ /2 and Ky denote the closed unite ball in the Banach
space X. Let @ be the smallest convex body in F containing K, and
bT(Ky). By E weo denote the basis (B)¥! in the space E equipped with
the norm |[|]+]|| defined by the Minkowski funetional of the set (.

Observe that Ee J;*(F*). Indeed, fot P: B — I we have |||P,||| = 1
because Pk(bT(KEx)) =bT(Epm) <@, and P,(Kg) <« Kz < bT(Kp) < Q,
and sets @ and bT(K,1) are convex, so we get P,(@) = @ which is
equivalent to [||P./|| = 1. Moreover (E,)%, with the morm |||-||| is iso-
metrically equivalent to E' (T is a desired isometry). Thus E‘eJ; L(F*).
Obviously Q(E, E)< e+7/2.

E? we choose as an element of & such that o(E, E?) < 7/2. Hence
we get o (B, I") < e+ and J,(E*) = F* = E'. This completes the proof.

From Lemma 3.2 by an easy induction we obtain the following

ProrostrionN 3.1. Let 1> ¢ > 0. Then there exists a sequence (B0,
such that )

(i) &, is a finite e(1—27")-net for o7,;

(i) if (/. ((B), (BY)<el—27") for (B)ed,, and (B)ed,,
then there ewists (Ef)e B, such that J,((BY) = (B}) and o((B), (B?)
<e(1—27"7h).

Lenia 8.3. Let (Z)iF] and (¥,)1%, be monotone f. d. s. bases. Let (Z,)E.,
be isometrically equiwlint to (17,.r)1’?=1 and the projection n: @Y, - DY,
defined by 75(2”: y.i} =) Y;, be of morm one. Then there erisis a monotone
f- d. s. basis I()l(i)’ﬁiﬁ‘ rsulch that

(a) (Z)i) is isometrically equivalent to (X iy oo Xy Lipid)

i=1
71

(b) (Yy)ix, is isometrically equivalent to (X )i,

m+-1 n+1 m+1 k
(c) the projection m;: @X; -~@X,; defined by =y () @) = 3 z;, +
i=1 i=1 d=1 r=1
+&y1q U8 Of norm one.
Proof. (X,)*t! is the £. d. 5. basis (¥, Y,, ..., ¥,,, Zzy,) in the space

m

@Y, XZ,,, equipped with the norm
d=1
Iy, &)l = inf (fly — U @)+ lle+2l),
.Wﬁéc;éi

m

' k
where U is an isometry from @ Z, into @Y, such that U(Z;) = (¥y)
=1 =1
(F=1,2..., k).
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LEMMA 3.4. Let (X2, and (Y,)32, be monotone f. d. s. bases. Suppose
that there exisis an increasing sequence (i) of indices and constants ._M and
N such that

o((X)hny (T hot) S M for  m=1,2,...

o0

® d ® : _—
and Q.0 < ¥ where Q,(Y 4)) = 3y, Then @ ()jly,-) = DYy, 18 & projection
=1 =

i i= k=1
of norm < N and the basis (X,) is equivalent to a subbasis (¥y).
Proof. The first statement is obvious. To prove the second observe
that our hypothesis implies that there exists a sequence of operators
n
T,: ®X; @Y, such that

T (X)) =¥, (k=12 ..) and
i=1 k=1

max [T, |7, < exp 20 for » =1, 2, ... Moreover for any two finite
dimensional Banach spaces B, and B, and the number (> 1 t]_ne set
Z (B, Bs, 0) of all isomorphisms U: B, - B, such that max [T} |UY| < ¢
equipped with the metric »(U,, U,) = max(||U,— U, U= T;Y) is
compact (cf. [5], Lemma 1. c.) Hence by the standard diagonal proeedure
we can choose a sequence of operators S, = T; such that:
n n n
(¢) For each # and k> n, 8| ®X;: ®X; —+k@1Yik and 8,(X,) =T,

i=1 i=1
(r=1,2,...,80).

n
(8) For each n the sequence (8,| ®X;).., is a Cauchy sequence
i=1

n n
in Z(@X;,® Yi;u exp 2.M).
i=1 k=1
Let F, = 8, P, and T'(z) = limF, (»). T is an isomorphical embedding

because for & = Y x; we have
k=1

1 i ) = 2.
ep il el < IUm Sy (2)]] = 1T (@) < lzllexp

Moreover T(X;) = Y, . This concludes the proof.
TuroreM 3.1. There exists an f. d. s. basis (B,) which is complemen-
table universal for all f. d.s. bases. '
Proof. We inductively construct a sequence of finite dimensional
monotone f. d. s. bases (Z7)¥z, such that:
1° each Fe 4, is isometrically equivalent to a subbasis (Z?");%:» of
the basis (Z¥)f2, and the projection Qp: ®Z — @Z7 defined by QF(121 %)
ot ST -

= X'z, is of norm one;
k=1
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2° (ZM¥n, is isometrically equivalent to the subbasis (Zytn, of
the f.d.s. basis (Z2H)kns;

3" if FeB,,,, J,(F)*F and J,(F) is isometrically equivalent
to (Z})i=:, then F is isometrically equivalent to Zgy ..., 220, z*
for some i,., >k,.

Let Z' be the one dimensional space. Suppose that Z" have been
choosen to satisfy the conditions 1°-3°. Let ((F})iL,,..., (F)k,) be a
sequence of all elements of 4,,, which dimensjon is # 1.

From the inductive hypothesis (F})1;' is isometrically equivalent
to (Z}Z_)il;ll and the eanonical projection onto it is of norm one. Thus in
view of Lemma 3.3 there exists a monotone f. d. s. basis (Zp, 23, ...
ooy Zi0ly Zi ) such that (225, is isometrically equivalent to (Z3Ykn, and
(FiL, is isometrically equivalent to (Z3 s Zhy, ZY,) and the

i1
Eptl L1

‘1
projection Qum ( Yz) = ¥ 2, 42,41 is of norm one.
i=1 k=1

If we repeat this procedure replacing Z* by Z™* and F' by F* and,
50 on, we obtain after » steps a f. d. s. basis 2" which is our basis 2"+
It is easily seen that Z"*! satisfies the conditions 1°— 3°.

I we identify @®Z; with its image in ®Z?! (see 2°) we obtain the

oo ik
Banach space F = [ éZZ;‘ with the monotone f. d. s. basis (5,)., having

n=1i=1
the property: for any n the basis (Z2En is isometrically equivalent to
(Bfr,. Tt is the desired complementably universal f. d. s. basis. To this
end let us consider any f. d. s. basis (X;)i2,. Since any f. d. s. basis is
equivalent to the monotone one, we can assume that (X)), is monotone.
It is a consequence of properties 1°—3° and the definition of %, that
there exists an increasing sequence (i) of positive integers such that

A{(XTfrs (Bia)<e for n=1,2,..

e 20

and @, =1 where @,(3 ¢) = Y e,

k=1 k=1

The desired conclusion follows

from Lemma 3.4.

Combining Theorem 3.1. and Theorem 1.1. we get

TumoreM 3.2 (Kadec [6]). There exists @ Banach space E with the
Jo d. s. basis which is complementably universal for all Banach spaces with
f. d. expansion of identity.

Moreover it is true the following:

TuroREM 3.3. If X is a Banach space with the f. d. expansion of identity
which is complementably wniversal for all Banach spaces with the fod. ex-
pansion of identity, then X is isomorphic to B.

For the proof use the standard decomposition method (ef. [13],
Corollary 4).
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THEOREM 3.4. There exists an unconditional f. d. s. basis which is
complementably universal for all unconditional f. d. s. bases.
Proof. Let (E,) be a complementably universal f. d. s. basis. We set
B=1{e=)e,cH: Y e, is unconditionally convergent}.

n n

"
In F we introduce the norm by ||| 3 e,ll| = sup sup || 3 eie,ll- 1t is
n n lepl=1 k=1l
easy to see that (&, [||||) is a Banach space, has an unconditional f. d. s.

basis (E,) and this basis is complementably universal for all unconditional
f. d. s. bases.
The method of the above proof is essentially due to Zippin [17].
THEOREM 3.5. There exists a Banach space with an unconditional
f- d. s. basis which is complementably universal for all spaces with an wuncon-
ditional f. d. expansion of identity. This space s unique up to isomorphism
among spaces with an unconditional f. d. expansion . of identity.

The first statement follows from Theorems 1.1 and 3.4. The proof -

of the second uses the standard decomposmmn method (ef. {13], Corol-
lary 4).

T = 2 @, 4;¢ X, we have 5‘ llzl? < oo and is said to be Hilbertian if for
any sequence (x;), &; st, such that anLI]Z < oo the series 2 x; con-

verges.

THEOREM 3.6. The following classes of f. d. s. bases contain an universal
element:

() the class of all Besslian f. d. s. bases,

(ii) the class of all Hilbertian f. d. s. Imses

b) A f. d. s. basis (X,) is said to be boundedly complete if for any

sequence (x;), x;¢ X;, such that sup] 5’ z;]] < oo the series Z ¥; converges

n
and is said to be shrinking if for anv fe (®X,)* we have

)i fall =1; @ :f’xi}) = 0.

lim (sup {|f (2
n 1=n

THEOREM 3.7
universal member:

(1) the class of all boundedly complete f. d. s. bases,

(ii) the class of all shrinking f. d. s. bases,

(iii) the class of all f. d. s. bases of weakly sequentially complete spaces,

(iv) the class of all f. d. s. bases of spaces which do not contain a sub-
space isomorphic to eo.

The proofs of the above results are nonessential modifications of
proofs of Zippin [17] (cf. also [13], Theorem 4, and [16]).

. The following classes of f. d. s. bases do nmot contain an

Remark. a) A f. d. s. basis (X,) is said to be Besslian if for any
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4. Some remarks on Kadec’s paper [6]. In this section we will pre-
serve Kadec’s notation of [6]. The symbol R* is reserved for Euclidean
n-space equipped with the sup norm. We want to show

ProposrrioN 4.1. The Kadec's space E (c¢f. [6]) has an f. d. s. basis.

Proof. It is sufficient to prove (see [14], Th. II. 2.) that there exists
a sequence of finite dimensional projections P, fulfiling the following
condition
(*) P,(e) -e for any ec E and P, P, =

To do this we need the sequence ((,) with the properties:

(1) ¢, is a finite subset of J,

(2) for each eomponent Ji-"n~1 there is exactly one pomt in
C,n J§rn-1,

(3) for each t = Ivl}e (', there exists a sequence of projections (w%);..,,,

X(() l'ﬂfU X(’l T ]) JTL 7( = 7mm(k r) and inf’ml <6 3

() €, C, (n =1,2,3,...)

We will constmc‘r such a sequence inductively.

= {t} where t = {»,} is an element of J such that the following
diagram commutes

min(n, m) -

R id R id & id
a Ye Y
X, — X('1)~ — X

oy 113

and lim fz,]|- 7, "] < ¢
n
Suppose that C, 0y, ..., C, have been chosen to satisfy the above
four conditions. Consider all sets JU1 *n) guch that
Cn n Ji;v}i—'i.rm = 0.
From each such JUL;”») we choose an element ¢
following diagram commutes

= {u;} such that the

X id d id
X0 —— (X 4 BYy —— (X L e

X ... i
ul
Jid Lia | =
vl v1d ‘Tn+2 {onts
. {1 1) s Y#1etiy 1) . (#1 Hy9)
X, T e X ly-tn -—anH ntl X nr2 —_— ..
. Upt1 Un+2 Un+3

and lim |fz,)- g t] < €5
k
Put C,., be a union of €, and the set of all elements ¢ constructed
in the above way. Conditions (1)~(4) are obviously fulfiled.
The projection P, we define by the formula:

for ¢ such that

. 1
P, ()®) = =2 (f(4)) et < and feC,. o
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It is a consequence of (2) and (3) that P, is a projection onto E,. We
omit the standard verification that P, satisfies (). This completes the
proof.

Remark 4.1. If we combine Proposition 4.1 and Theorem 3.3
we obtain that the space & of Theorem 3.2 is isomorphic to the space F
construced by Kadec [6].

Remark 4.2. Observe that the Proposition 4.1 and Kadee’s result
[6], Theorem 1 give us an alternative proof of Theorem 3.2 and thus
of Theorem 1.1.

Now we want to show the application of Kadec’s method to the
theory of separable Banach spaces whose dnals are I, spaces. This impor-
tant class of spaces, containing spaces of continuous functions on compact
metric spaces and spaces of affine functions on metrisable Choquet sim-
plexes, was extensively studied in [7], [9].

We will use the following:

TaeOREM 4.1. (Lazar—Lindenstrauss [7]). For a separable Banach
space X the following statements are equivalent:

a) X* is isomeiric to L,(u) for some measure p,

b) there is a sequence X, c X, < X, = ... of subspaces of X such

that X = | J X, and X, is isometric to R™
n=1

ProrosiTION 4.2. Let &> 0. Then there ewists a separable Banach
space Y,-whose dual is an L, space such that for any separable Banach

space X whose dual is an L, space there ewists an isomorphic embedding
onto

T: X - Y, with | T} | T7Y < € and the projection P: ¥, "~ T(X) of norm
one.

Proof. Let us consider the space R™ and by Zy,m for 1 > m, denote
the set of all pairs (¥, u) where Y is a Banach space isometric with R"
and » is an isometric embedding from R™ into ¥. In %,.m We introduce
the metric by the formula

ou((¥; w), (¥, wa)) = Inin ]| |+~

where the infimum is extended on all isomorphisms 7 from Y onto ¥,
such that the following diagram commutes

~ XY
u/
Rm/ ir
ul\\ j’

N T,

It is easy to see that &, ,, is a compact metric space.
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LEeavA 1.1, Let 7: B™ — R™ be an isomorphism. For any (Y, u)e %, ,,
there exist (Y, uy)e b, ,, and the isomorphism T: ¥ — Y, such that lif [z~
= [T} |T7"f and the following diagram commutes

u

RT(I —_— I’

g T

Rm ——s yl
At

Proof. It is enough to consider only the case n = m-+1 and 7| > 1,
fr"Y > 1. In R™ there are functionals e} (k =1,2,...,m) such that

lle|| = suplez(x)] for we R™.
It was proved in [12] that there exist yi, #i, ...,y T such that
Iyl = suplyz(y)] for ye¥

and € = u*(y}) for k =1,2,...,m.
Put *¢f = gi and choose y,eY such that y}(y,) =9, Observe
that y, ¢ w(R™). We define the functionals f;e T* by
W, =gfr (i=1,2,...,m),
£ = max (1, sup|y (#)]),
r<Q

f*i (y'n) =0 and

fo, = &'yr  where

Q@ =u{reR™: lgi@) <1 (i=1,2,..., m)}.

Then Y, is the space Y equipped with the norm |||y||| = sup|f;(¥)], T is
an identity from ¥ onto ¥, and u, = ur™!. We omit the verification.

Using 9, ,, instead of m,(X) (cf. [6]) and the Lemma 4.1 instead
of the Lemma 2 of [6] we construet the space Y, in exactly the same
manner as E in the Kadec’s proof. This completes the proof.

THEOREM 4.2. There exists a separable Banach space Y whose dual
is an L, space such that for any € > 0 and any separable Banach space X
whose dual is an L, space there exist an isomorphic embedding T: X — ¥
with || T |T7Y < L+e and the projection P: ¥ e T(X) of norm one.

Proof. The required properties has the space of all sequences (y,)
such that y,¢Y, and limly,|| = 0 with the sup norm, {|(v,)|| = suplly,.l-

- n n

n
An analogouns argument gives (for definition of £ ;-space see [10]).
THEOREM 4.3. For any A >1 there exists a separable %, ,-space Y
such that for any separable L, ;-space X and for any &> 0 there exists an
isomorphic embedding T: X — Y with |Tj| | T < 1+& and a projection
P: ¥ - T(X) of norm < A

onto
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Added in proof. The following theorem is true:

Any Banach space with f. d. expansion of identity is isomorphic to a complemen-
ted subspace of a Banach space with Schauder basis,

It was proved independently by W. B. Johnson, H. Rosenthal, M. Zippin “On
bases, finite dimensional decompositions, and weaker structures in Banach spaces”
(to appear in Israel J. Math. vol 9) and by the first named author of the present
paper “dny separable Banach space with the bounded approximation property is a com-
plemented subspace of a Banach space with the basis” (to appear in Studia Math.).
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