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STUDIA MATHEMATICA, T. XL. (1971)

On Liouville F-Algebras*
by
JOHN T. DALY (Oswego, N. Y.)

Abstract. This paper investigates the spectra of elements from a Liouville F-
algebra. A generalization of the notion of a Shiloy boundary for a Banach algebra
is defined and the principle result concerns the presence of algebraically prineipal
closed maximal ideals on this boundary.

1. Introduction. A commutative F-algebra 4 with an identity
element is called a Liouville F-algebra if the spectrum of each non-con-
stant element in A is an unbounded subset of the complex plane C [2].
The entire functions E in the topology of uniform convergence on the
compact subsets of C is an example of a singly generated Liouville F-
algebra. Birtel [2] was interested in characterizing ¥ when he defined
the Liouville property. The first example of a singly generated Liouville
F-algebra which properly contains B was constructed in [3].

In Section 2 we investigate conditions which guarantee that the
spectrum of an element from a Liouville F-algebra is identifiable with C.
We introduce and investigate a generalization of the Shilov boundary
for a Banach algebra. The major result of this study is the existence of
algebraically principal closed maximal ideals at non-isolated points on
our boundary. The reader is referred to [8] for the basic information
on F-algebras.

2. Speetra jn Liouville F-algebras.

DEFINITION 2.1. An F-algebra A with identity element e is called
a Liouville F-algebra provided the following condition is satistied:

If a cA and there exists an M > 0 such that |h(a)] < M for each he M,
then a = e for some Le C.

* The results of this paper are part of the author’s doctoral dissertation written
at Syracuse University under the direction of Professor John A. Lindberg, Jr.
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From this definition it follows immediately that a Liouville F-algebra
is a semisimple algebra.

PROPOSITION 2.2. If 4 is a L'Loum'lle F-algebra, xed and x # de
for any Ae C, then the specirum of m, , 18 a dense connected subset of C.
Moreover, o(z)° (complement of o(z) in C) contains mo closed commected
subsets other tham single points.

Proof. Assume that o(z) NN (4 r) =@, where N(2,7) = {ze C:
g—A| <7} Now f(z) = (#—A)"" is amalytic on N(4,7/2), an open
subset of C containing o(2). A well known result for F-algebras implies
that there exists a unique yeA such that h(y) = f(h(w)) for each he M,
[9, Theorem 10.1]. However, y<A has a bounded spectrum, which con-
tradicts the Liouville hypothesis since y = Ae for all 1e¢ C. Hence, o(x)
is a dense subset of C. .

Now assume that o(x) = ¥V, U V,, where {V,};i, are separating
non-empty open subsets of C with o(2) NV, @, i =1, 2. The {V,};,
may be chosen to be disjoint, for if V; NV, # @ then o(2) N (V, N V,)
# @ since o(x) is dense in C. This contradicts the fact that V¥, and V,
separate o(x). For n sufficiently large, V, N o(®,) # @, ¢ = 1, 2. Shilov
has shown that there exists an idempotent element w, e, such that
i, (h) = fl@, (R), he M 1, Where f is the analytic function defined on
V., UV, satisfying |V, =1 and f|V, =0 [9]. Moreover, if j >4, then
a(u;)" = u; and, #(w;) = #l(u}) = #l(u;)>. The uniqueness of ued,
modulo the radical implies #f(u;) = u; [8]. Hence, 4 contains a proper
idempotent element [9, Theorem 5.1]. This contradicts the Liouville
hypothesis. Therefore, o (x) is a connected subset of C.

- Next let K be a connected closed subset of C, and assume K < ¢(z)°.
We assume that K is a subset of §, the extended complex plane. If K is
an unbounded subset of C, we adjoin the point at infinity to K. Let
U = 8—K. Now, o(») = U and o(x) is a dense subset of C. Hence a(m)
is dense in U. If U is not a connected subset of C, then ¢ (z) would not
be a connected subset of C, which contradicts the previous result. Hence,
U is a connected subset of C, and by our assumption on K, U is also an
open subset of 8. Moreover, § — U = K implies that U is a simply connect-
ed region in 8. If K contains more than one point, then by the Riemann
Mapping Theorem, there exists feHol(U) such that f maps U onto the
open unit dise [11]. Since o(®) = U and A is closed under the application
of analytic functions, fo# defines a unique element of 4. The transform
fo& is not constant since o(x) is dense in U and f is not constant on o(z).
Furthermore, fo# has a bounded spectrum, which contradicts the Liouville
property. Hence, K must consist of at most one point.

If A is a commutative F-algebra, then M, may be topologized in
at least two natural ways.
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(1) The weak topology on M, which M, inherits as a subset of the

dual space A’ equipped with the weak topology induced on A4’ by
A [9,p. 6].

(2) The direct limit topology on M : a set U < M, is open if and
only if U n M  is open relative to the weak topology on Mj induced
by 4, for each n =1,2,.

The weak topology on M 4 18 the weak™ ‘ropology determined by the
subbasis of sets of the form ¥, , , = {he M ;: |d(h) —a (h,)| < &} where acA.
The direct limit topology on M . 18 stronger than the weak topology on M.
The technique used in the previous proposition yields the following:

COROLLARY 2.3. If A is & Liowville F-algebra, then M, is connected
in the direct limit topology. Moreover, if he M, then h is not isolated with
respect to infinitely many M 3 iy =12,

We note at this point that the known exa.mples of singly generated
Liouville F-algebras all have ¢(a) = C [2, 3]. However, the Liouville
hypothesis is not sufficient to guarantee that o(a) is equal to C for all
choices of a generator, as Example 2.4 will illustrate. We precede the
example with a discussion of a method for forming smgly generated
Liouville F-algebras which will be referred to later.

If D is a compact subset of C, then Hol(D) denotes the algebra of
functions which are analytic in D (the interior of D), and have a contin-
uous extension to D. It is well known that Hol(D) is a Banach algebra
under the norm, |f |iD = Supl f(2)] for feHol(D). A theorem of Mergelyan

[11], states that Hol(D) ls the uniform closure on D of the algebra of
polynomials in #, if and only if D is a non-separating subset of C. Let
{D(n)}r., denote an increasing sequence of compact non-separating

subsets of €, and ¢ = U D(n). Assume 3™ : Hol(D(n+1)) - Hol (D (n))

n=1

is the natural homomorphism defined by a%™'(f) =f|D(n) for each
feHol( (n+1)), n=1,2,... Since the sequence {D(n)}r., is an increas-
ing sequence, z"' is continuous, and }*!(Hol(D(n))} is clearly dense
in I-Iol(J) 'n,)) Using Arens’ terminology [1], let Hol(s) denote the strong
dense inverse limit of {Hol(D(n)), apt'},. In Michael’s terminology,
Hol(s) is the projective limit of the Banach algebras {Hol(D(n) ),

Hol(s) is clearly a singly generated semisimple F-algebra

=QDW

I gy Yom -
and Myg ) is identifiable pointwise with o(a)
ExAvpre 2.4. Let
D(n) = {2 C: 0
U{zeC: arg 2 =2n—1/k, k>

L 2m—1/n: 1/n < || < n}
n+1, 1jn < |2l < n}.

arg 2<
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LEMMA 2. 5 If o = U D(n) then 4 = Hol(o) is a Liouville I'-algebra.
n=1

Furthermore, U D(n) is a proper subset of C.

=1
Proof. We note that D(n) € D(n+1) for each » =1,2,..., and
¢ = G D(n) = C—{0}. Hol(o) is a singly generated semisimple F-algebra
n=1

with an identity element, and o(a) is identifiable with ¢(a) = C—{0}.
The proof that 4 is a Liouville F-algebra follows from the argument
used in the proof of Lemma 3 of [3].

The example may easily be modified to exclude infinitely many
points, from ¢(a). We now discuss what conditions must be placed on
A, which will guarantee that ¢(a) = € where a generates A.

DERINITION 2.6. An algebra A4 is said to admit square roots, if for
each feA with f'ed, 2*—f = 0 has a solution in 4.

The algebra 4 in Example 2.4 does not admit square roots, as is
demonstrated by the following argument. Since 0¢o(a), a 'ed [9, The-
orem 5.2]. If sed were a solution to o’—a = 0, then §* = a, and s(2)
= ;J—L_l/; for zeo(a). Without loss of generality, assume that s(1) =1,
Now, s(z) is analytic off the positive real axis, and so s(z) defines a single
branch of the square root function away from the positive real axis.
The choice of D(n) implies that s(2) has a continuous extension to a circle
I" about the origin in the relative euclidean topology on I'. This clearly
is a contradiction. Fence, #*—a = 0 hag no solution in 4.

Example 2.4 provides a counterexample to Theorem 3.1 of Birtel
[2]. We now give the correct formulation of hiz proposition. We let aZa)
denote the Euclidean interior of o(a) = C.

PROPOSITION 2
generator a, and A admits square roots then o(a) = C provided cr(na) #* @.

Proof. Without loss of generality we assume the m-base for A g

= U ala).

n==]
If O'(a) # @, then an elementary application of the Baire Category The-
orem implies that U(a # @ for all » sufficiently large.

Let ¢(a) £ C and without loss of generality we assume that 0¢o(a).
Then a is regular in 4, i.e., a7'ed [9, Theorem 5.2]. Let seA4 denote
a solution to #*—a = 0. Now §: M L4~ o(s) is & one-one ma.pplng since
§(h)? = a(h) for each he M, and &: M, — o(a) is & one-one mapping.
Moreover, if §(h) = —§(k) for some he M, and ke M, then a(h) =
a(k) and h¢= k. Thus o(s) No(—s) = @ since 0 ¢o(a). Bubt then o(s) N
N {—§ | o(a,) = O for u sufficiently large i. e., o(s) must miss an open
disk in C. This contradicts Proposition 2.2 and thus o(a) =

0 If A ds a singly generated Liowville F-algebra, with

chosen such that o(a,) < o(a,,,)foreachn = 1,2, ... Now o(a)

icm°®
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3. A boundary for F-algebras.
DEFINITION 3.1. Let A denote an F-algebra. If P is an m base of

zero in A, then the boundary I'p of'A is defined as follows: I'p = U ﬂ a3 1,
- = k=1 n=k
where é)ﬁn denotes the Shilov boundary of A,,. o

PRroPOSITION 3.2. If A 4s an F-algebra, then I'p is independent of
the choice of m-base for A.

Proof. Let P and P’ denote two choices of m-hase for A, and {4,}2,

and {4}, the associated sequence of Bana.eh algebras deterrmned by P

and P’ respectively. Let J Ilp = U ﬁ 05 . Then there exists K such
k=1 n=k An

that he@— for all » > K. The hemicompactness of M, with respect to

the sequenee {M; }o-, implies that given , there exists m = m(n) such

that MJ' M 1, Without loss of generality we assume m = m(n) > K.
n ¥

If he M_ﬂ1 », it suffices to prove that héBI . Let r: Zm - Z; be the natural
“n

n

restriction homomorphism of Zm into Z; defined by f,f(f) = f | M

for each fed,,. Now M . is a compact subset of M 1, and sinee for Ba-

nach algebras the Shilov bounda.ry depends only on the transform algebras,
we may apply Corollary 6.2 [10] to conclude that M N a“ < 6_

Thus, he Mz implies h-s«?z and it follows that I'r = PP, Slmﬂa.rly,

I'pr < I's and the proposition is . proven. ;

If A is now assumed to he a sir_{gly generated F-algebra and « denotes
a generator for A, then o(a) may be identified pointwise with the carrier
space M, of A. Moreover, a(I') = I', implies by Proposition 3.2 that I', -
is independent of the choice of m-base for A. Since the topological bound-
ary of o(a,), bdeo(a,), can be identified with 07 whenever A4, is singly
generated [9], we have I, = U ﬂ bdo(a,). Also, I, = o(a)— U o’(an)

k=1 n=k
where a(a,,) denotes the Euclidean interior of o(a,).

ProrosrrioN 3.3. If A is & singly generated Liouville F—aigebm with

generator o, then ]:,, =C— G afan) (closure in the Euclidean topology
on C). =t

Proof. Without loss of generality we choose an m-base P for 4
such that o(a,) = G(an+1) fo1 each n —-1, 2, LI cha ) =@ for each

then]“—«Uﬂbddan U ﬂ y

=U
k=1 n=k k=1 n=k

ne=1,2 ..., o(a, aak)=o‘(d).
Since o(a) is dense in c (Proposition 2.2) we have Z_“'

()=C-
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Without loss of genemlitv we may assume o(q) % O.

[

Clearly

Ic C— v o(a,). Let AeC— U ). It suffices to prove that if N, (4)
=1 n=

{ﬁe C: |z—M <7} for any 7 >0, then N( )r\F #@.  Assume

N, (2) n F = @ for some 7 > 0. Now [a( ) N N.(A)]° where the comple-

ment is taken with respect to N, (1), is a compact subset of N (ﬂ) Let D,

denote the component of [a(an) N N,(A)]° containing Aand let D = (M) D,.

ne=l
We prove that D must contain a point #, ¢o(a) where @, 5 A. Let y, denote
the circle of radius r about A. Now y, < o(a,) for any n = 1,2, ..., since
o(w,) is & non-separating subset of € and A¢o(a). Moreover, since o(a)
is & dense connected subset of C, we know that o(a) Ny, # @. Without
loss of generality we may assume that o(a) Ny, #@. But o(e,) being
a non-separating subset of €, implies that there exists an arc joining A
to co which misses o(a,), and intersects y,. Thus, there exists z,e¢D, Ny,
for each # = 1,2, ... Because y, iz compact, {r,}., has a limit point
¥y eD since x; eD,, for each j > k. Moreover, @, #* 1 since #;ey,.

Now D = ﬂ D, Since {D,}_, is a decreasing sequence of compact

n=1

connected subsets of €, D is a compact, connected subset of C. Also,

Dno@eDn() ola) u (D AT, — @ for each

71 1
mzn and DN Fu < N, ( ) NI, =@. Thus, D is a closed connected
subset of o(a)® which contains more than one point. This contradicts
Proposition 2.2. Thus, N,(3) N[, # @ for any » > 0 and the proposition
is proven. :

= @ since D,, N o(ay,)

Even if 4 is a- Liouville F-algebra with genera.tor a, I, is in general
not a connected subset of €. However, we do have the following propo-
sition.

Prorostrion 3.4. If A is a singly generated Liowville F-algebra with
generator a, then I, (closure now taken in the extended complex plane 8) is
a confiected subset of §.

Proof. We again assume without loss of generality that of(a,)
< o(ayy,) for each n = 1,2, ... Now o(a,)® (complement in §) is an open
connected subset of § and hence o (a,)® (closure in 8) is a oompa.ct connec-

ted subset of 8. Moreover, u( )¢ =2 a(a, +1)c implieg that D = ﬂ o' n+1)

=1

is & compact, connected subset of 8. If Ael’, and A # oo then Aebdo(a,)
whenever iec(a,). Thus l})‘w(a“)" for each » =1,2,..., and AeD. If
A = co then clearly AeD and thus I', < D. Conversely, if 1eD and 1 # oo
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then Aeo{a,)for each n =1, 2, ... By Proposition 3.3, I, = C— U o(a,) )

n=1

implies that Ael,. Thus D = T, and the proposition is proven.
It follows from the above proposition that the closure of I', in C is
a Buclidean perfect set without any bounded components.

In [3], Birtel stated that if for some choice of m-base, () bds(a,) = @,

n=1
then o(a) = C. [3, Theorem 3.2]. His proof assumed that 4 admits square
roots as previously noted. This assumption is not needed, nor is the

theorem dependent on the choice of m-base for A.

ProrosrrioN 3.5, If A is o singly generated Liouville F-algebra with
generator a and I' =@, then o(a) = C. Moreover, a: M, C is a home-
omorphism of M, with the direct limit topology onto C with the Euclidean
topology.

Proof. Proposition 3.3 implies that C = U o a,,) The remainder

of the proof follows as in [2, Theorem 3.2].

In fact, when I =@, Birtel’s proof in Theorem 3.3 together with
Proposition. 3.5 now yields the following characterization of the algebra
I of entire functions on C.

PROPOSITION 3.6. (Birtel) If 4 is a singly generated Liouville F-algebra
with identity then I' = @ if and only if A is topologically isomorphic fo the
algebra; B of entire functions on the complex plane with the compact-open
topology.

If A is a singly generated F-algebra, then the existence of Liotville
F- algebla.s with I' # @ shows that our I is not a maximizing set for any
G eA where a = le. In Section 4 we show that the two known concepts
of topological divisors of zero for F-algebras differ. For one of these con-
cepts the non-topologieal divisors of zero may have a zero on I'. We now
construct an example which shows that I" is in general not a determining
set for a singly generated F-algebra.

BxAMpLE 3.7. For each positive integer n and %, define:

E, ={=atiy: I/n<y<n, —nt+ln<e< “—1/”}:
B, ={=0+iy: —n<Yy< —1/n, —n+1ln <o < n—1/n},
2k+1
o = R —nt+lnLe<n—1/n
wl = {z = oy = Sk D) +1/ / },‘
. 2k+1 )
= = oy = — e —— —nF < e < n—1n
oo={=a+iy:y PATERTE +1/ n}s

Wl = o = oiy: y =0, —nt1/n<z<n—1/n},
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hY

o0 oo

" .
Let D, = E, VB, vwy v lJ w; VU ;. Now D, is a compact non-sep-
k=1 k=1

ara.’iing subset of C, 1 < B,, w; < E’;L for k =1, 2,..., n—1, and C

= |J D,. Let z, be a fixed point in if)’l and seb

) in+3
dn(n-+1)

in+3

Vo=l =atiy] = an(nt1)’

—n < B <n}.

Note that |J # < V, and \J w? < V,. Moreover, V, nE, =V, NE,

k=n k=n
=0 and if m>n then' V,,nD, s V,. Also B, < B,,, and B, < B,
for each » =1,2,...

We now define a sequence of polynomials inductively as follows:

Let p,(2) be a polynomial in 2z such that p,(z,) =1, and [Dilpom <1

(Iplp = %1]1)1) |2 (2)]). Such a polynomial exists by Runge’s theorem. Assume

P1(#)y ...y Py_1(2) have been constructed where p,(z,) =1, \pimu,ﬂg <1/2t
(]

and |pi—p_i|z, < 1/2¢ for i = 1,2, ..., n—1. We now show “how to pick
P,.(2) . Since V,, B, and F, are disjoint, non-separating compact sets in C we
can find a polynomial ¢(¢) such that |gp,m, <1/2""" and |g—p,lg

N . n - n
<1/2"". Let p,(2) = q(2)+(1—q(2))). Then p,(%) =1, and

]Pnl?nuE;, =g+ (1“ Q(zo))lffnuz«:; < |Q{‘ﬁnuzﬂ;,,+ D1 (o) — 4 (20)] -
<1/emtipjentl —1jon
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gince z,¢H,. Furthermore,

[Pn— Pnle, = |{g—Pp+1— 4(2)lg, <l¢—Pu-1lg,+ D1 (20)— q{20)]
<l/2viyjomtt =1/2n.

Thus, there exists a sequence of polynomials {p,(2)}5., satisiying P (20)
=1, |pn|?',nuEﬂ < 1/2n and u}n_‘pn—xiE < 1/2"'

Let A denote the projective limit of {Hol(D,)}., using our previous
B o0

construction. We view 4 as an algebra of functions on € = {J D,. Then
n=1
the boundary I"is {ze C: 2 real}.

PROPOSITION 3.8. The algebra A is a singly generated Liouville F-
algebra. Moreover, the sequence {p, ()}, determines @ non-zero fe A satisfying
f| I =0. Furthermore, f(z) = 0 whenever im(z) 2 0.

Proof. A is clearly a single generated semisimple F-algebra. The
proof that A satisties the Liouville property is the same as in [3].

It suffices to prove that lim p,(2) = f(z) exists for each ze C and

N

f1D,eHol(D,) for each. 1 =1,2,... Let 1 denote a fixed positive integer.
We prove that {p, (2)}s, is a Cauchy sequence on D,. Let ¢ >0 be given.
Choose j >0 such that j >1 and 1/2/7* <. Let m >j. We will show
that |p,,(2)—p,(2)| < e for each zeD;. Let 2 be a fixed point in D, .

If 2¢D;, NV, then

1Py (2)— 23 (2)] < 1D D)+ 125 (2)) S |Plyy FIPsly< 1[2m 112 < 1[27

since z¢V,, N D, € V; for m >j. ,
Tt 2¢D, NV, then there exists a k>0 such that z¢E, U B, but
2eHy,, U By ,. Now m>Fk since 2B, U B,.

Case I. Letj > k. ThenzeB; U B = B,V ., since j > 1.If zE; then

m=1 m—1
(A= 25 S S [Prsa ()= Pa(@ S ) Parn—Pals s
n=f

n=f

m~—1
< 2 1/2mt < 1f2

n=1
If #cH) then

(6121 S 129+ 26N S (B -+ 1By ST <12

,
i
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Case II. Let k> j. Recall that ze,,, U Hy,,. Let zeB,,,. Since
zeli, for n >k and since zeV, N D, < V, for k > j we have:

D=0 @ < Y B ()= 2 )+ 22 () + I3 ()

m—1

< D Puir= Pl + el + 19515,

n=k

m—1 N
< Dl 1fertip et /i< 1)o7t
n=k

Now let ek, ,. Then zeH, for n >k and

Ipm(‘z ] = |p'm( )J+ |p1(z)f
= Puluyur, + 195l <1/2"+1/27 < 1/277

since eV, N D, = V;. .

Thus in all cases, if zeD;, then |p,(2)—p;(2)|<<1/2'~* <. Then
{P.(#)}5=; converges uniformly on D, to a function f, in Hol(D,). Since
Siw 1 Dy = f, then f(z) = hm P.(2) exists for each ze C and defines an

" element feA. We note tha.t Flzg) = limp,, (z,) = 1. Also, if z i a real
N0

number then ze () V,, for some k> 1 and |p,(2)] < 1/2* for n =k Thus
N=fe

f(z) = hmpn(ﬂ) =0 for each zel'i.e., f|I" = 0. Similarly, 1p,,] < 1/‘7"

1111phes f(z = 0 whenever im(2)> 0. This completes the plOOf of the
proposition. :

The algebra of entire functions and the published examples of Lio-
uville F-algebras are all integral domains. Example 3.7 illustrates that
this is not a consequent of the Liouville property. By reversing the roles
of B, and %, we may construct a ged with g = 0 and ¢g(2) = 0 whenever

11;1(z) £ 0. Then f-g = 0 where f % 0 and g # 0 and thus 4 has divisors
of zero.

4. Algebraically principal closed maximal ideals in singly generatéd
F-algebras. For Banach algebras we have the following characterization
of principal maximal ideals. This answers a question posed in [12].

ProrosrrIoN 4.1. Let A be a commutative semisimple Banach algebra
with an identily element. If he M, and L' (0) = zd for some wed then
hedy if and only if his isolated in M, S

Proof. If he M, and A1 (0) = wA where kb is isolated in 1, then
we may assume that # is an idempotent element in A with Z(h) =0 and
&| M;~{h} = 1. It follows that hed - Conversely, assume that % is not
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igsolated in M ,. Now ¢(y) = xy for yeA is continuous and one-one since
h is not isolated in M . Moreover, y™* is bounded by the Inverse Mapping

: -t 1
Theorem. Now [y~ = Sup =yl = -sinee ay 7 0if and only
o oyl ]

. o Y[l
if y %0 using the fact that h is not isolated in M, and Z(h') #0

for each h'e M ,— {h}. Thus inf 1201
v=0 Yl
[0] there exists an extension B of 4 in which zeA has an inverse. Thus
he M, does not extend to a multiplicative linear functional on. B and it
follows that h¢d,. .
ProrosITION 4.2. Ef A 45 a singly generated semisimple F-algebra
without proper idempotent elements then A contains « dense subalgebra B
such that:

=M # 0. By a result of Arens’

(1) B is a singly generated semisimple F-algebra without proper idem-

~ potent elements in a stronger topology.

(2) M, and Mp are homeomorphic with respect to their dirvect limit
topologies.

(3) Iy is homeomorphic with I'y with fespect to the direct limvit topol-
ogies.

(4) Each closed mazimal ideal of B is algebraically principal.

Piroof, Let « denote a choice of generator for 4. A is the inverse
limit of {4} ;. We assume without loss of generality that the seminorms
are chosen on A such that |l¢], =1 and |lafl, < llall,;, for each aeA and
n > 1. We identify M, with ¢(a) (pointwise) and M3 with o(a,). As
noted in Section 2, M ; is homeomeorphic with oz (a,). Slnee 4 is a semi-
simple algebra, we may. obtain a concrete realization for elements in A
as functions on o(a) by defining a(i) =M4(h) where a(h) = Leo(a) for
each he M,. In particular, a(d) = 1 for each leo(a).

If p(e) is a polynomial With complex coefficients in the complex

variable z then p(2) = p(A)+ (z— 1)¢;(2) where ¢,(2) is a polynomial in 2.
We note that ¢;(z) is uniquely determined and when 1 is allowed to vary,
¢;(2) becomes a polynomial in the two variables 1 and z. Now p(a)ed
and p(a) = p(A)e+ (a—1e)i(a) where g;(a)ed is & similar decomposi-
tion in 4 for each Aeo(a). The semisimplicity of A and the fact that M,
has no isolated points guarantees the uniqueness of the representation.

‘We define a new sequence of seminorms on the  algebra of polyno-
mials, ¢[a] = 4, inductively as follows: Set o3 (a,) = o(a,), 0 o(a,) = o{ay)
and write p for p (a). Let |ply = [IPll; Iph = ol + Sup) la—Aely* Sup 1galo-

If ||, has been defined for ¢ =1,2,..., n—1 then set ]pln ][p[{,n
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+ Sup |a—72e],_;- Sup |gl,.1. Clearly |.|,is an additive seminorm and
Aeo(ay, _q) ca(ay, g
the s&bmulmphca.tnve pqopem} is easily proven by induetion.

I N, ={p<Clal: |Ip|, =0} and ¥, {1960 [a]: Ipln =0} then
il < 12|, for each » = 1 and p eC[a] implies that ﬂ N, < ﬂ N, = (0)

since A4 is an F-algebra. Let B, = C[a]/N,, and let Bn denote the comple-
tion of B, with respect to the quotient norm | [, determined by | |,,. E,L is
a singly generated Banach algebra. If ¢, denotes the identity element
in B, then we mnote that le,|, = lle,l, = 1. We use the notation o, to
denote the generator a-- 1N, of B, and o(a,) to denote the spectrum. of
i <B,. .

We next prove that o(a;,) = o(a,) pointwise and thus My 4,, i homeo-
moyrphic with My for each n =1,2,... If leco(a,) then for any poly-
nomial peO[a], [:p( W< ol < 19, i01 each 7 > 1. Since polynomials
are dense in B,, leo(a,) and thus o(a,) < o(a,) for each # > 1. We now
prove by induction on n that o(a,) = o(a,) for each n > 1.

Let ueo(a;) where u¢o(a;). Let » denote a simple closed rectifiable
curve such that o(e;) < (interior of y) and- u lies outside of y. Using
Runge’s theorem, we may choose a sequence of polynomials {p,(s)},
in the complex variable # converging uniformly on y to 1/z— « and satis-
fying |px(u)| =% for each % >1. It follows from Theorem 5.1 [6] that
{pr(a)}is, is & Cauchy sequence in || |;. Indeed, there is a constant &, > 0
such that [[p(a)l, < K, - Sup |p(2)| for any polynomial p(2). Since p, ()

Zey

= Pp(A)+(2—A) g 2 (2), we have for zey, leo(a,):

(= 2)(1,1() — G2 ()| < |24 (D)= D12+ (B0 () — P ()
< 28D |py(e) — P2l 73, 0

" Now o !

Sup | (7= 2) (01,1(2) — s (2)] > mi lo— A1 Sup Ig1,4(2) — g (2)]-

Asu‘(ul) lsa(al) Zsa(al)

Since o(a;) is & compact set contained in the interior of y, inf |z—2]

26y
Jeo(a;
= ¢, > 0. Thus i
&up HQIC A Qm l“l K S'llp iqk: Z(z)_QnI Z Z)l
lw(al)
< 2K, /9, - Sup) 124 (2)— P (2)] 7, 0
Aea D.l
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Then {g; )71 converges uniformly in leo(eq;) and
!pk——:p'm]l = “Pk"‘PmHH’SuP Ha1—;-31]hsup “qk,l'__
Jso{ay) Aeo(ay)

Qm,lnl 1:.;,. 0.

Thus p,(¢) e bleﬁl. Now if ueo(a)), then there exists ]L‘GJIBI such that
h(e;) = w. But h(b,) =1limh(p,(a;)) = limp, («) which is a contradiction

N—00 n->00

since |p,(w)| = n for each n > 1. It follows that o'(al) = o(ay).

Now assume inductively that o(a, ;) = o(a,_,). It suffices to prove
that o(a,) € o(a,). Choose a simple closed rectifiable curve y about o(a,) =
o(a,_,) as before, where ues(a,)N o(a,)° lies outside of y. Theorem 5.1 [67],
with our induection hypothesis, gua.ra.ntees constants K,_, and K, such that
1Dlpey < Ky 1Sup p(2)] and |p], < K, Sup[p z)| for each polynomial p.

Next choose a. particular sequence {pn z)} _, Where p,(2) > 1/z—u on

o(a,) and p,(w) > . Following the previous argiment
we have:

n for each n>1

lpk pm;n ]pk pmHn+ SU.P !a_lein—‘l'

deo(ay 1)

Sup |9k, G2l

Aea(ay, . 1) . .
I SD 4 () ) T+, SUD e 1] SUD g (8)— G )
oy . i Am(::’_l) i.so(fxz;l)
< KS“P ka(z)—./pm(z)f where K = K(Kn—l’ K;n Op—1)-

oey
Again by our bhoice of {p}2., we have (o, —ue,) " eB,, i. e, u¢s(a,)-
Tt follows that o(a,) = o(a,) and thus M 4, and Mz are homeomorphic
with respect to then- weak * topologies.

Let i+ : B 1—>B denote the natural homomorphism of Bn 1
into En determined by sebting 1“”‘(13((1,,, +1)) p(ay,). Since |p(a,)l,
< |2 (dppt)ln a1 TOT each % >1, n2*! is well defined and continuous. The
sefuence {B,,,, a+1} determines an F-algebra B, the strong dense inverse
limit of {B,, =**'} [1, Theorem 2.4]. Now c¢[a] < 4 and ¢[a] < B. Let
y: B— A denote the natural extension of the identity mapping to all
of B. y is clearly a continuous homomorphism of B into 4. We prove
that v is actually an isomorphism of B into 4.

We first obtain a representation for any beB. If beB, there exists
{pn (@)}, such that p,(a) - b in B. Now

lpw_pmll\ = ”pn"}%n“k'i" S\lp ‘ah‘}'elk 1 Sllp ‘in Qm,llk—léo
Aeot ﬂk

1 dea(ag—y
for each k> 1 implies that {g, ;}n-, converges to bsz for each Aeogp(a)
= G o(a}). This yields a representation for beB, namely, b = b(4) e+

n=1

+(a—A€')by.
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Applying y, we obtain u(b) = b(A)e+(a—2e)p(bs) = p(b)(Ae+
+ (a— Aé)p (b;) since b(R) = p(b)(4) for each Aeoy(a) = op(a). I yp(d) =0
then 0 = (a— Ae)p(b,). If A’ e 4(a) and 2 # A then [(a—Ae)p(b)1(A)=0
implies w(b;)(4') =0 since (a—2e)() = 2 —A 0. The fact that A
containg no proper idempotent elements implies that A is not an isolated
point in ¢,4(a) (cd. the proof of Proposition 2.2). Thus (b)) (X)) =0 for
each A'eoy(a), 1. e, yz(blf;:o. The semisimplicity of 4 implies that
p(by) = 0. ’

By our definition of {| |,}r-1, We have:

1) o), = !lw(b)||1+1§1(1p) Ha-MHIAS‘uP [l (D)l -

calay)

In general, for #>1 we have:

(@) bl = lp @)+ Sup la—2e,., Sup byl

) ea(ay—1) Zeo(ap_1)
By applying (1) we obtain [b]; = 0. Since ¢ (b,) = 0, the previous argument
‘applied to b, implies that [b,], = 0. Thus {o], = 0. In general, if |b|,, =0
then the above argument implies |b,l,., =0 for each Zleo(a, ). By
applying (2) we obtain [b], = 0. Since B is an F-algebra we have that
b = 0. Thus p: B— A is an isomorphism. g

Now b = b(A) e+ (a— Ae')b, is a unique representation for beB since
p is an isomorphism and A is semisimple. Thus each closed maximal
ideal in B is algebraically principal. This completes the proof of the prop-
ogition.

COROLLARY 4.3. If A is a singly generated Liowville F-algebra, then
A contains a dense subalgebra B such that: :

(1) B is a singly generated Liouville F-algebra in a sironger topology.

(2) A 1is isomorphic with E if and only if B is isomorphic with .

(3) Bach closed mazimal ideal in B is algebraically principal. ¥

‘Proof. Let B be the algebra constructed in the previous proposition.
We identify B with its image (B) < A. If beB = A has a bounded spec-
trum with respect to B, then M, = My implies that beA has a bounded
spectrum with respect to 4. Hence B is a Liouville F-algebra. Moreover,
A is isomorphic' with B if and only if I'y = @ (Proposition 3.6). The
corollary now follows from the fact that I'y = I'p.

Two notions of topological divisors of zero have been proposed for
a locally m-convex algebra. We state these here. Let B, ,. denote the
natural mapping R, ;,: 4 > A where B, .. (y) = y(z+Ae).

DEFINITION 4.4. (Arens) Let A be a topological algebra and wed.
Then #- Ae is a strong topological divisor of zero if either R, ;, or Ly,
is not a topological isomorphism into {9, p. 46].
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DEFINITION 4.5. (Michael) Let 4 be a locally m-convex algebra and
let 2ed. Then x4 le is a topological divisor of zero in A if, whenever
{V}2., is an m-base for 4, there exists an ¢ such that ;+ le; is & topolo-
gical divisor of zero in 4, [9, p. 47].

For Banach algebras, these two definitions are equivalent [6]. Michael
[9] notes in Proposition 11.3 that Definition 4.5 is stronger than Defini-
tion 4.4, and raises the question of their equivalence. Kuczma [7] hag
recently given an example where there are topological divisors of zero
that are not strong topological divisors of zero, but his algebra is not
semisimple. Our Proposition 4.2 provides a class of semisimple algebras
in which the two definitions are different. We note that the conditions
of the following proposition are satistied if A is the algebra obtained by
applying Proposition 4.2 to Example 2.4.

PROPOSITION 4.6. Let A denote a singly generaied semisimple F-algebra
without proper idempotent elements, and hye M 4. Then a— e is not & strong
topological divisor of zero in A if and only if ki1 (0) is algebraically prin-
cipal. Moreover, if hyel'y then a—2e is a topological divisor of zero in A.

Proof. Now B, ;,: A~ (a—1é)4 is clearly a linear homomorphism.
We prove R, ;, is one-one. If (a—2e)f =0 for some fed, then f(2;) =0
for each k) # ks, hye M,. The algebra A has no proper idempotent ele-
ments and hence h;, is not isolated in M ,. Thus f = 0 and the semisimplic-
ity of A implies f = 0. Multiplication is continuous in A4, so R,_, is
continuous. If (a—Aie)4 = h;'{0) then (a—7ie)d is closed in 4 and
R, ,, i3 a topological isomorphism by the Inverse Mapping Theorem.
Conversely, if B,_,, is a topological isomorphism, then (a— 1e) 4 is complete -
and hence closed in A. But (a—Ae) A is dense in hy'(0) since 4 is singly
generated by a. Thus, k' (0) = (a—7ie)4.

Proposition 3.2 states that I', is independent of the choice of m-base
for 4. Now fix an m-base for A If hyel'y, then (a—Ae)(h;) = a(h)—A = 0.
But this implies that a,—Ae, has a transform which vanishes on the
Shilov boundary of A, for some n. Thus a—2eis a topological divisor
of zero according to Definition 4.5.
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On a class of operators on Orlicz spaces
by
J. J. UHL, Jr. (Urbana, IIL)

Abstract. Let L? be an Orlicz space over a o-finite measure space. If X is a Banach

n
space and t: L? — ¥ is a linear operator, ||{t{]|s = sup Z Hait(};E_)H where the supremum

is taken over  all measurable simple functions f = at g, {B;} disjoint and [|flle<< 1.

Under fairly general assumptions on ¥ and & it is shown that |[]#]]]e < oo if and only
if t(f) = [ fgdu where g: Q— % is measurable and the above Bochner integral exists

for all feL®. Consequently it is shown that such operators are compact. Finally, under
moderate assumptions on &, it is shown that t: L® — L® has |{|i||l¢ < oo if and only
if £'s adjoint is of finite double norm, thus providing a new characterization of Hilbert-
Schmidt operators.

1. Introduction. Let (2, X, ) be a sigma-finite measure space,
@ and ¥ be complementary Young’s functions and L®(RQ, Z, p)(= L®)
and L¥ (8, Z, u)(= L¥) be the corresponding Orlicz spaces of (equiva-

" lence classes of) measurable functions on 2. L is a Banach space under

each of the equivalent norms N, and |||, defined for f eL® by No(f)
— (K >0: [ @(f|/K)ap <1} and [fls = sup{[ fodus geI* Nelg)

1}. If X is a Banach space and ¢ is a bounded lmear operator mapping
IL°® into ¥, Dinculeanu has defined [||t|lle by

n
e = sup D llast(xz)lls
i=1 )
Whel'e the supremum is taken over all measurable simple functions,
f= 2 @ Xz, (B} = X disjoint, such that N4(f)<1. This norm for

opelat01s has been the subject of some study by Dinculeanu in [1], {2],

‘and [3]. The purpose of this note centers around proving a Bochner

integral representation theorem for these operators, examining their
compactness properties and looking at their rather close relationship
@.[8].

with operators of finite double no;
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