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Introduction. The aim of this paper is to give a unified and selfcon-
tained exposition of basic concepts and facts concerning analytic functions
defined in open subsets of a complex or real topological vector space B
with values in a locally convex topological vector space F. As a special
case we get the theory developed in [2] and [117] for Banach spaces.

In the present article results of our previous paper [6] on polynomials
and multilinear functions are essentially used.

We hope that our exposition may be useful for further study of the
theory of analytic functions in topological vector spaces. This theory
may be treated in natural way as a branch of non-linear functional analysis
and deserves further developement.

In this paper we always assume that B is a topological Hausdorff
vector space, F is locally convex and sequentially complete. However,
in many places additional assumptions are necessary. Generally speaking,
all the results are valid if F is a Baire space (sometimes Baire and metri-
zable) — in the complex case, or if F and F' (the topological dual of F)
are Baire spaces — in the real case.
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In order to make the exposition selfcontained we introduce in Section 1
a notion of integral of continuous function of a real variable with values
in F.

The main result of Section 2 is Lemma 2.1 which permits to imply
that a function has the derivative of order » if it has the weak derivative
of order n—+ 1. This lemma along with the Polynomial Lemma of Section 4
are basic for the greater part.of further results.

Similarly, as in the case when F is a Banach space, the most impor-
tant theorems of the classical theory may be generalized almost literally
to the case of analytic functions from €™ to F, where F'is a locale convex,
sequentially - complete t.v.s. over C (see Seetlon 3)

In Section 5 we develop & theory of series Z fny where f, is a homo-

==
geneous polynomial of degree n from ¥ to F. Here the main results are:

1°if the doma,m of convergenee H of the series 2 £, is not empty,-then H
is & balanced nelghbmhood of.0 eF and f = Z fnlS a.na.lytlc (or G-analytic)
in H, 2° if F is a real space, then the eompleleled series 2 .. converges in

an open set H < ¥ such that H < H This permits to trea,t real analytic
functions as restrictions of some complex analytic functions (see Theorems
7.1 and 7.2). :

Main theorems of this pa.per are presented in Sections 6 and 7. Here
we give several necessary and sufficient conditions that a functionf: U - F
(U is an open subset of E) be analytic. We try to elucidate interrelations
between analyticity, @-analyticity and weak-analyticity. In Section 6 we
give also generalizations of the classical theorems on convergent sequences
of analytic functions (Weierstrass theorem, Vitali theorem). .

The most interesting result of Section 7 seems to be Theorem. 7.5,
which gives a characterization of real analytic functions. This theorem
permity to generalize clagsical theorems due to Bernstein, due to Prings-
heim —~Boas and a theorem. of Malgrange.

The paper is closed by Section 8, devoted to some results on entire
mappings f: F — F. The main result: f is entire if and only if f|V is entire
for every affine line ¥ < H.

While preparing this paper we have been much inspired by [2], [11]
and [18]. The references inclosed are far from complete. For further
information we refer the reader to [11] and to Seminars of Lelong, [14],
[15]. .

In the sequel K denotes either the field of complex numbers C or
the: field of real numbers R. Letters &, F (with indices eventually) will
denote Hausdorff tepological vector spaces over K (shortly t.v.s. over K).
If the field is not strictly indicated the results are valid in both cases
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K =C and K =R. We always assume that t.v.s. F is locally convex
and s-complete (i.e. every.Cauchy sequence is convergent in F; comp. [6]).
I'(F) denotes any filtrant set of seminorms determining the topology
(if F. F' is the vector space of all continuous linear forms u: ¥ — K.
E (resp. f ) denotes the complexification of the t.v.s. B (resp. of the homo-
geneous polynomial f) (comp. [6], § 2). G°(U) denotes the set of the
functions of class G defined on an open subset U < B, ie. the set of
functions having the Gateaux differentials 6”f, n=1,2, at any
point 4T (comp. [6]°§ 3).

1. Integral of a continuous function of a real variable with values in
a locally convex space.
LeMmA 1.1. Let F be o locally CONVET S- com_plete t.v.s. over K. If [a, b]

denotes a compact segment of B and f: [a, b]— F is a continuous function,
then the - sequence

b—a ¥ ‘
(*) I, = oy ;f(“"{”%‘(b_“)\): no=1,2,...,

conwerges to an element I <F.
Proof. Given geI'(F) and 6 > 0, put

w(8) = sup {q(fm) f(y)) z,yela, b], lo—y[< 8} .

Observe that ‘
IL,,) < (b—a) (wq ( b:na)—f* w, ( b;’a’ ))

for m,n =1,2,... and gel'(¥). Since F is s-complete, it follows that
{In}ncN is convergent to an element I of F. - - :

DEFINITION 1.1. The limit T of sequence (x) will be called the integral
of f over [a, b] and denoted by f F(®)

—a Zf(a+% (b—q)) .

ProposrTION 1.1. Let f, g be continuous functions from [a,d] fo F, :
and let.a, i denole elements of K. Then

b b b
(i) [(of +B8g)di = ao{fdt‘vhﬁ{gdt;
b
HE qgf at) <

q (Im -

ff(t)dt —1lim?

(b—a) M, M, = sup {gof(t): tela,b]}, qel'(F);
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(ig) If fumctions f,: [a, bl—>F (n=1,2,...) are continuous and
qo(fy—f) 0 uniformly on [a, b], as n — oo, for every geI'(F), then

b b
det =i1r§°affndt;

(6 wlffa) = fuofit, ue'

(i;) If ¢: [o,d]-[a, b] is a function of class C' such that ¢(c)

= a,¢(d) =b, then : ,

ffdt = f(fotp)zp’dt.
a ¢
Proof. (iy), (ia), (is), (i) are obvious. Property (i5) is an imrpedia.te
consequence of (i) and of the corresponding formula for the Riemann

integral of scalar functions.

2. Weakly differentiable functions of one scalar variable.

LEmma 2.1. Let Q be an open subset of K. If f: Q— F is a mapping
such that for every ueF' wof has the (n-+ 1)-th derivative at tye £, then f
has the n-th derivative at .

Proof. Using the induetion with respect to m, it is enough to show
that the lemms is true for n = 1.

Fix t,eQ. Without loss of generality we may assume tl}a.t t, = 0.
Let o> 0 be so small that {i: [t| < ¢} i8 contained in £. Given uel",
the scalar function wof is of class C* in Q.

Therefore there exists a function r: 2 — K such that
and ‘

limr(t) =0
-0

wof(t) = uof(0)+ eyt eat®+r ()%, < e,

where

¢y = iuof(t)

dat

d |
T %—dl?’_uof(t) =0

(=0

Thus

luo (f “"; 0 _f@-1 ("))’ — loati— 7+ (B1—r(2)7| < My (It + 1)
T

o< ti<e, O<lt<e,

where M, is a positive constant depending on «<F’ but not on ? nor on <.
Hence for every geI'(F) there exists M, > 0 such that

q(f(t) _tf(.o)_f(f)‘;f(o)) < Mq (417 o< fti<eo 0< rl<e.
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Since F is s-complete, this implies that there exists an element f'(0) e 7
such that f'(0) = lim. (F(#)—f(0))/2.
t—>0

3. Analytjc functions from C™ to F. In this section F denotes a locally
convex s-complete t.v.s. over C and £ denotes an open subset of C*. If
QcC f: £~ Fisa continuous function and y: [a, b] - 2 is a mapping
of class C*, then the curvelinear integral of f over y is defined by

b
[faz = [fly)y t)dt.

By Section 1 the curvelinear integral always exists and it is an element
of F. Moreover,

u(ffdz) =fuofdz for ueld”.
¥ ¥

TueorREM 3.1 (Characterization of analytic functions of one complex
variable). Let Q = C. Given a mapping f: Q— F, the following conditions
are equivalent:

(A;) T has the complex derivative f'.

(A,) f is continuous and for every compact triangle T < Q2 we have

[fdz =0 (if a,b,¢ are the vertices of T, we put [ = [ + [ + [ ).
ar aT [a,b]  [b,e] [e,q]

(Aq) f is continuous and for every disk D = {#eC: |z—z,| < r} con-
ained with 4ts closure in £ we have

f&) = @=i)™* [f(t) @—2)'@, 2eD.
D
(A,) At every point aefQ the function f has all the complex derivatives
f®(a), & =1,2,..., and

-]

1) = D 19(0) (= ol

k=0

lz—a| < ¢ = dist (a, 02).

(A;) For every point ae there are elements ¢ «F (k =0,1,...) and
a positive number v such that

00

£(z) = D) alz—ay,

k=0

le—al<<r.
(Ag) For every weF' the function uwof is analytic in Q.
Proof. (A;) = (A,). Since for every ueF’ the function »of is analytic,

50 0 = [uofdt =w([fdt) for ueF'. Thus [fdt = 0.
ar . ar ar

6 — Studia Mathematica XXXIX. 1
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(A,) = (A;). By the Morera’s theorem the function wof is analytic.
Thus

(*) uof(2) = (2m4)™" [wof(t) (t—2)"" dt,
8D

and this gives the result.
(A;) = (A,). For every ue<F" the function wof is continuous and (*) is
satisfied. So wof is analytic and
=] 1 ‘
wof(s) = D = (wef)¥(a) (z—af
k=0
By Lemma 2.1, (wof)® = uof® &k =1,2,...
by the Cauchy inequalities

zeD, uel",

g—a| < g, uekl’ .
Let 0 < 7 << p. Then

1
}75 wof®(a)y| < Mr~% k=0,

M, being a constant depending only on w and . Thus for every ueF’

and n>1
& 1 ' 1
w(fo— ¥ =9 (a) (z—a)k) < Y| wof® (g o—ayt
( 2 2w

<M, r |z~ a|
r—|z—al P

ntl
) ,  lr—al<r,

whence for every gel'(F)and n>1

alse- Z L1 o) < aty T (B0

72— al r
k=0

le—al<r, n=1.

Implications (A,)=- (A;), (As) = (Ag) are obvious. Implication (A,)
= (A,) follows from Lemma 2.1. The proof is concluded.

DeriNiTION 3.1. A function f: € o Q—»F is called analytic if and ’

only if f safisfies (A;).

COROLLARY 3.1. If a series S‘ahz" (ay, eF) converges in the disk || < o,
then it converges uniformly on e@el;zodisk |#] < 7, where 0 < |r| < o. The sum
f(2) =]§;)a,kzk is analytic for |z < o.

COROLLARY 3.2. The coefficients ¢, of‘ the series in (A;) are given by
the integral formulas

= (2ri)"! f f&) (2—a)y*'dz, k>0.

lz—al =1

icm°®

Analytic functions in topological wvector spaces 83

In particular

2n

fla) = @=)7 [ fla+re)at

and

20, gel'(F),

where M%(r) = sup{gof(z): [z—a| = r} (Cauchy inequalities).
CoROLLARY 3.3. If f: Q — F'is analytic and q is o continuous seminorm
in F, then qof is a continuous subharmowic function in Q.

Indeed, it is obvious that gof is a real continuous function. By Corol-
lary 3.2

gof(a) < (2m)” fqof(aﬁ—wﬂ‘

80 gof is subharmonic.

COROLLARY 3.4. If ¢: Q—C, f: Q—~F are analytic, then 23z
—@(2)f(2)eF is also analytic.

Proof. For every ueF’, the function uo (¢f) = guof is analytic.

COROLLARY 3.5 (Three circles theorem). If D = {2¢C: 7 < |2| < 73}
is a ring contained in an open set Q < C, and f: 2 — F is analytic, then
for every continuous seminorm qon F we have

gof(z) < MMz, zeD,
where

ay =,  M; =sup{gof(2): ol =} (5,5 =1,2).

Proof. By Corollaries 3.3 and 3.4 the function ¢{z7*f(2)] = l2|"*¢of(2)
is subharmonic in D for any fixed AeR. By the maximum property

l2|*gof(#) <
Hence, if 4 is chosen in such a way that Mr*
the required inequality.

THEOREM 3.2. If Q < C" is an open set, then for any function f: 2 — F
the following conditions are equivalent:

max {M,r7%, M,r;%}, =zeD.

= M,r;*, one gets

0, .
(a,) f has the partial derivatives 5;f G=1,..,n).
7

(a;) For every weF’ the function wof is analytic.
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(as) At every point aeQ the function f has all the Gateaux differentials
okf, k=1, and

1
flato) = Y oif(@), weW,

k=0

where W is the maximal balanced neighborhood of 0« C™ such that oW < Q
(ay) For every point oeQ there exists a neighborhood W of 0 <C™ such

2 fulw

k=0

that

fla+z) zeW,

where f,: C"— F is a homogeneous polynomial of degree F.
Proof. (a,) = (a,). Given u ¢ F' the function « of has the partial deriva-
0
wof (j =1,.
Oy %
is analytic.
(2) = (a5). By Theorem 3.1

tives — ..y %). So by the classical Hartogs theorem, wof

fla+ta) yfk W <1, meW,
k«

1@
where f.(z) = W —cﬁr flad-tx)| . In particuldr

t=0

= D ful@), oW .

k=0

fla+a)

It remains to prove that f, are homogeneous polynomials. But wof
is analytic, so
@& gl
—d?uof(a-{—tx) T - fla 4+ t2)

= U O —s-
i=0

)
is a homogeneous polynomial of degree k. By Corollary 4, [6],

fk( dtk’f a,+M')

T

=0

is also a homogeneous polynomial of degree k.

() = (ay). It follows from (a,) that uwof is analytic for every weF”
Now Lemma 2.1 implies (a,). .

One can easily check that (ag) = (a,) and (a,) = (8,).

DrrFINirioN 3.2. A function f: C" o Q - F is called analytic if and
only if f satisfies (a,).

icm
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CoroLLARY 3.6 (Hartogs theorem). Let B be a Hausdorff t.v.s. over C,
dim B < co. Let U be an open subset of E. If f: U~ F is & function such
that fIV N U is analytic for every affine line V = E, then for every zeU the
function f has all the Gateaur differentials 6&f, k> 1, and

=)

1
f(oth) = ZF SEf(h),  heW,
k=0

where W is the maximal balanced neighborhood of 0B such that 2+W < U,
i.e. f is analytic in U.

COROLLARY 3.7. If @ = C* and f: Q — F is analytic, then O°f is ana-
lytic in Q for every acZl, where 0° = §°1t ]2, O, In particular,
f is of class C™.

Proof. It is enough to observe that by the iteration of the Cauchy
integral formula we get

o) =— [ O dty... dt,,

(2mi)™ oD, i 3Dy (tr—2) "1, — =)™

zeD,

where D = D;x... XD, is any relatively compact polydisk contained
in ©, and o =a;!... a,!

ProrosITION 3.1. Let fi: @ +F, k =1,2,..., bea locally uniformly
convergent sequence of analytic functions from an open set & < C* o a space F.
Then

1° f = lim f, 4s analytic,

k—o0
2° 0°fi, — 0°f locally uniformly in Q for every aeZ’.
Proof. 1° It is obvious that for every wueF’ hm uof,c = yof. It

follows from the locally uniform convergence of { fk}kev that {#ofi}rnis
ocally bounded in 2. By the Vitali theorem the sequence {0 ;) .x cOD-
verges locally uniformly and by the Weierstrass theorem, #of is analytie.
In virtue of Theorem 3.2 the function. f is analytic.

2° Given weF' and a polydisk D = D,;x ... xD,, contained in Q
with its closure, we have

dty... dt, ,

0" (1wofi(2)) = al(2mi)™ f vofill)

g (b —2) 7 (G, —2,) T

uel', zeD, k
Therefore

>0, where § = 8D X ... x 9D, and f, =1.

Pfule) = at(2mi) [ Falt)

dty... dt
J (G—2) L (f,— R

2,) 1 2eD, k=0,
n


GUEST


86 J. Bochnak and J. Siciak

whence for every geI'(#) and every compact subset 4 < D,
q(0°F(2) —0°f(2)) < My sup {g(F()—fi(@): teS}, zed, k=1,
where M, depends on ¢ and on 4 but not on 2 nor on k. The proof is com-
pleted.
ProOPOSITION 3.2 (Vitali theorem). Assume that
1° Q is an open connected subset of C,

2° a'sequence of analytic functions f,:
bounded in Q and

Q— F k=1 1s locally uniformly

8% {fu (@)} converges for every x belonging to an open non-empty
subset U = Q. Then {fi}y.n converges locally uniformly in L.

Proof. Fix qeI'(F). By the assumption 20 the sequence {gofi}i.n
is locally uniformly bounded in Q. Hence, by a reasoning analogous to
that in the scalar case, the Canchy integral formula (A,) implies that the
functions f; are equicontinuous with respect to the seminorm g at every
point zef. This and the convergence of {f(#)};.n for xeU imply that
for every compact subset 4 = U

(%) supg(fk —fil@) =&~ 0, as k1> o0,

The proof will be completed if we show that (*) holds true for every
compact subset 4 = 2. Because then, F being s-complete, the sequence
{£5 () }ren has a limit f(2) for each we 2, and again by (*) the convergence
is locally uniform in Q.

Thus it is enough to show that the set
= {acQ: there exists a disk D with center o such that

SuIl)) q(fel®) —fi(®)) >0 as &, 1 oo}

XZE

is identical with Q. In order to prove that £, = £, it is enough to show
that if aeQ, and D is any disk with center ¢ and radius » such that the
closure D < @, then D c Q, Let G = {weC: |x—a|< 7} be a closed
disk such that G = Q and r < 7,. Let 7, > 0 be so small that {zeC: |z—a
<n} e 2, and r,<r. It follows from Corollary 3.5 that

4(fule)~fil@) < £ (M41), @G, k,1>1,

sup ¢(fu(@)—file)), M =sup sup ¢(file)—fi(e)) and
le—al<ry k1=1 x1eG

where ¢, =
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According t0 (*), eg—0 as &, — oo.

Consequently
suII)) q(fel@)—fi(2) < (M+1)ef >0 as k1> o0,
XE .
lgj—
7y
where a =
le 2
g T

Thus D = 2,. The proof is completed.
4. A polynomial lemma. Given a compact set X = C, we pub

(4.1) L2, X) = sup {sup {|f(2)["*: fis a polynomial of one complex
>

variable such that degf< % and if| <1}}, =zeC,

where |f] = sup {{f(#)|: zeX}. It is known [21] that if the transfinite
diameter (logaritmic capacity) d(X)> 0, then

1, if 2eC\ Dy,
exp G(2), if zeD,,
where D,, is the unbounded ecomponent of C \ X and & is the Green’s
function of D, with pole at oo.

We shall need the following

Levma 4.1. Let X be a compact subset of C such that the unbounded
compomnent of C \ X is regular with respect to the classical Dirichlet problem

(4.2) Lz, X) =

Lot {X}sen be a sequence of compact subsets of X such that X = Xy U X,

= X.Put
I*(#, X,) = lim sup L(y, X), weC.
Y-z

Then
Lz, X) =lim L*(z, X,), x<C,
800
the convergence being uniform on every compact subset of C.
Proof. By Lemma 4.2 and 4.4 of [21] the sequence (¥ (@, X)}een
is decreasing and :

L(x, X) =lim L*(z, X,), @C.

8—00
The limit function being continuous, we conclude that the conver-
gence is locally uniform in C.
Remark 4.1. Tt is well known that if X < C is a continuum (compact,
connected set containg more than one point), then D, is regular with
respect to the Dirichlet problem.
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POLYNOMIAL LEMMA. Let @ = {f: C" = F} be a family of polynomials
of n complex variables with values in a locally convex space F over C. Let
X, (j=1,...,m) be a compact subset of C such that the unbounded com-
pé7wnt of C\ X; is regular with respect to the Dirichlet problem. If

sup'gof(z) < o0, 2eX = X ;X ... X X,, qe['(F),

Jed

then for every o > 1 there exists 6 > 0 such that for every qeI'(F) one can
find M, > 0 such thai

gof(?) < M 0™, 2eXPx ... x X0,

where XP) = {zC: Qist (2, X,) < 6} (j =1, ... n).
Proof. 1° n =1, Given w> 1, put w; = (1+ )/2. Let %, be 5o
large that ’f/k—{—l w, < w for k > ky, and let 4 > 0 be so small that

Lz, X) < wy, ifdist(z,X)<s.
Given qelI'(¥), put
X; = {opeX: ﬁuq?qof(w)éj}y i=12,..

feo,

The sets X, are compact, X; = X;,, and | J X; = X. Therefore by
=1 v

Lemma 4.1,
lim I* (2, X;) = L(z, X),

j~»00

ol
zeC,

the convergence being locally uniform. So we may take j so large, that

(*) L'z, X;) < wq, i dist (2, X)< 6.
“Let J be any arbitrary fixed integer such that (*) holds true. Let
B = (£ o, Ewdy B =1,2,..., denote the k-th system. of Fekete

points of X, [10]. It is well known that the fundamental polynomials
of Lagrange, corresponding to the system of nodes £®, satisty the fol-
lowing inequalities

[Tz, ER)] < 1, zeXf,‘ §=0,...,k.

Therefore by (4.1)
1Lz, £9)| < (I* (2, X;))",
If fe® and degf =k, then by the Lagrange interpolation formula

2eC, s =0,...,k.

. ,
F&) = D L9, & f(g, ), zeC,
whence 8‘0

4of(®) < (b-+1)§ (T (2, Xy #eC.
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Consequently, if k¥ > k, we have

gof(2) <jof, dist (s, X)< 8, fe®, degf=k, qe<I'(F),
the number j depending only on ¢ but not on f, nor on 4, nor on z.
If % < ky, then for fe®, degf =k, qeI'(F) we have
ko

q0f(#) <( Y a0f (i) (L* (2, X))o < Hyob,

s=0

dist (2, X) < 6,

where H, is suitably chosen. To end the proof, it is enough to define
M, = max {j, H}.

2° m > 2. This case may be easily obtained by the induection with
respect to .

ProrosrrionN 4.1. Let U be an open subset of K”. If the series Y f;, of
k=0
homogeneous polynomials fe (K™ F) is convergent in U, then for every

compact subset G = U there exists 0¢(0,1) such that

qofe(?) < M,0%,  2¢G, k=0, qel(F),

M, being a constant depending only on q and G.

Proof. Given #,eU, let X = X;x... XX, be a compact subset
of U such that X; < K is connected and x,eint X. By the Polynomial
Lemma for every w > 1 and for every geI'(F) there exists M, such that

qofk(z)gﬂ[qwk, zeX, k=0.

Hence .
0
oful—z2|< M 65, 2¢X,k>0,6>0,
40Jx @ a
or

/]
‘Q‘:’fk(z)quﬂk, ze— X, k=0.
)

]
If 2 is sufficiently close to 1, then z,eint — X. Therefore by the
o »

Borel-Lebesque theorem, the proposition is proved.

Remark 4.2. Polynomial Lemma and the Proposition 4.1 remain
true if one replaces formally geI'(F) by weF". In the proof it suffices to
replace ¢ by |u|. )

" 5. Series of homogeneous polynomials. Let H, B,, F be t.v.s. over K
an let U denote an open subset of B. We always assume that ¥ is locally
convex and s-complete.
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DEFINITION 5.1. A series ) f, of homogeneous polynomials f,, e @™ (B, B,)

nl)

will shortly be called a formal series from H fo E,. The space of
all formal series with continuous terms will be denoted by S(EB, H,).

DEFINITION 5.2. We say that a f01ma.1 series S’ £, converges in a set

n=0

A c E it for every weA the series 2, fn(®) is convergent.

n=

DEFINITION 5.3. We say that a fcnmal series Z T8 (H, F) converges

normally at zero (at a point a<B), if for every qEF( ) there exists a neigh-
borhood W, of 0<E (of the point a) such that

E sup {gof,(x): xeW,} < oo.

n=0

DEFINITION 5.4. Given a formal series 2 fns the interior H of the set

n=

{eE: 2 f,, (w) is comvergent} will be called a domam of convergence of the
n 0

series 2 Fnr

n=0

DEFINITION 5.5. A function f: U — B, is called G-analytic in U, if for

every wel there exists a formal series ) f, from E to B, such that

n=0

an(h

flz+h) =

for all % in a neighborhood of 0e¢E.
DEFINITION 5.6. A continuous funection f: U — H, is called analytic
o0
in U, if for every point ze U there exists a series Y 'f,<S (¥, F,) such that

an(h

n=0

fla+h) =

for all » in a neighborhood of 0¢E.

DerNITION 5.7. A function f: U — F, is called weakly-analy th in T,
it for every we B, the function wof is analytic.

It is obvious that G-analyticity and weak-analyticity are implied
by the analyticity.

ProPOSITION 5.1. If a formal series 5’ fneS (B, F) converges in a neigh-

oyl

borhood of 0 H to a limit f which is continuous at 0, then the series converges
normally at zero.

icm°®
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Proof. Given gel'(F), let W be a balanced neighborhood of zero
such.  that q(f(h)< heW and f(h Z‘fn(h ), heW.
Then f(th) = 2 Fu(R)t*, |t] < 1. Therefore by the Ca.uchy mequahm%,

" Gof <M, heW, w30

Thus gof,(h) < M27" heW, =4W. The proof is concluded.
PROPOSITION 5

M, < o for

. Let E be a Baire - space.
1° If a series Z fueS(B, F) converges in an absorbing subset of B, then

n=>0

it converges 'noama,lh/ at zero.

2° If o series aneS (B, F) converges in a neighborkood U of 0eH,
then f = 2, fu s commuous at 0.

Pro of 1" Take & ﬁxed gel'(F). It follows from the assumptions that
gof,®) <27 " n =0,1, ..., for all 2 belonging to an absorbing subset A
of E. The functions fn bemg continuous, the last inequalities are still
valid in the closure 4. Since F is a Baire space, so int A == @. Therefore
there exists a point a<® and a balanced neighborhood W of 0¢E, such
that gof,(s) <27 "n = O) for zea+W. By Lemma 2 [6], gof, () <277,

1
re— W.
2e

2° Tix ¢> 0 and gel'(F). According to 1° the series Z’ fn is normally
convergent at zero, 5o Z gof.(z) < ¢/2 for all z in & nelghborhood W, of

zero in E, k being a posmve integer sufficiently large. Observe that

k
< ZQOfn(w)-F Z‘qofnm, BeWs.

q(f(@)—1(0)

Since f, are continuous, there exists a neighborhood W, of 0¢E such
thab the first sum is uniformly bounded by &/2 in W, Therefore q(f(z)—
—f(0)) < ¢ for zW, N W,. So f is continuous at 0.

PROPOSITION 5.3. The domain of convergence H of any formal series

Z fo from B to F is either empty or a balanced neighborhood of 0eH. For
evmy point weH and for each geI'(F), Zqofn(m < oo.

Proof. At first we shall prove that it aeH a.nd W is a balanced
neighborhood of 0<F such that a+W = H, then EEW < H. To this

aim let @ be a fixed point of W.Then 3 f,(va-+1r) isa series of homogeneous
=0
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polynomials of (z,#)eK* of respective degrees n, which converges for v
in a neighborhood of 1 and te(—1—4d, 14 8), where 4 > 0 is sufficiently
small. By Proposition 4.1 there exist 6¢(0,1) and M, > 0 such that

qofala-tm) < M0 te[—1,1], qel'(F).

This implies, by Lemma 2 [6], that

1 1
ohy @) <t = gpgy | aeran,

1
Since F is s-complete, this implies that Z In convelges in Se w.

n=

Thus, if H # @, H is a neighborhood of OeE and 5’ qofn(x) < oo for
weH, qel'(F). =

It remains to prove that H is balanced, ie. tH < H for teK, [t <1

Put y, = to%,, where |{,| <1 and #,¢H, We already know that y,eH,
if g, = 0. If y, # 0, then ¥, 0 and the mapping @: B>z — t,wek is
a homeomorphism. So y, is an interior point of @ (H). Since the series

2 fa(y) is, of course, convergent at every point ye®(H), it follows that
yo eH Thus H is an open balanced neighborhood of 0eH.
PROPOSITION 5.4, Assume that K = R. If a formal series an From

E to F, converges in an open set H < E (or the sequence { fn () e ’LS bounded

at every point weH), then there ewists an open set H < B such that H =« H
and the complexified series Z f., s convergent in A
n=0

Proof. Given acH, let U be a balanced neighborhood of 0<E such

that a+a-+tyeH, when z,yeU; —1 <
at every point z<H, we have

81;1.3 gofylet+z+ty) < oo

t< 1. Since ) f, is convergent
n=0

te[—1,1], gel'(F), z,yeU.

So we may apply the Polynomial Lemma to the family

= {Catefn(a’"l_m‘{'ty)ejﬁ}ne;\’?
if #, y are any fixed points of U.

Let w > 1 be so close to 1, that (w?—1)aeU. By the Polynomial
Lemma we may find § > 0 such that for every geI'(F), and x, y € U, there
exists M = M (g, ©,y) such that

Fofulata+(t+in)y) < Mo",

Hence, deviding both sides by «*” and putting ¢t = 0, = = 8, we get
(*) Gof, (0™ (a+ ) +idw™y) < Mo,

>1, —0<71<6, —1<t<1,

nzl, w,yeU

icm°®

"V = T(U) is an open set. Since (w?—
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The mapping T: B>z~ o (a+x)ek is a homeomorphism, so
1)aeU, so T{(w?*—1)a) = acV. Let
W be 2 balanced neighborhood of 0eF such that a4+ W<V and W
< 60 *U. It follows from inequality (*) that

Qo y(a+o+iy) <

Therefore for every ae<H we can find a balanced neighborhood W,

Mo™, z,yeW, nz=1.

of 0 such that the series Y f,, converges at every point zea+ W, iW,.
n=0

The open set H, given by H = U (6+W,+iW,), satisfies the required
properties. acH .

PrOPOSITION 5.5. If K ='C, then a function f: U—F is G-analytic
if and only if for every affine line V < E the function fIU NV is analytic.
Moreover, if f is G-analytic, then feG®(U) and

flotn) = N 83f(h)  for helV,

n=0

where W is the mazimal balanced neighborhood of 0 eE such that x+W < U.

Proof. Necessity. The funetion fl|U NV is analytic for every
affine line V < E, because
fle+1h) = 1, heW.

PR ADLANES

n=0

: Sufflclenoy Assume that f| U n ¥V is analytic for every a.ﬁme line
¥'< B, and let W be the maximal balanced neighborhood of 0¢E such

‘ that -+ W < U. By Corollary 3.6 f]U 0V is analytic for every affine

subspace ¥V = B, dim V < co. Thus, by Theorem 4 [6], the function f,
given by

Fu0) = () = flatth) e,

t=0
is a homogeneous polynomial of degree n. Hence, by Theorem 3.1, we

havef (-+R) E fulh), heW.

TuEOREM 5.1. If a fm mal series 5‘ fn from B to F converges im an open
0

set He E, then f = 2 £ is G- (malytw in H.

o
Proof. (a) K = C. By Proposition 4.1 the series > fa converges uni-
n=0

formly on every compact subset of H N ¥, where V is any vector subspace
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of B, dim V = 2. Thus for each affine line V = E the funetion f|H nV
is analytic. Therefore by Proposition 5.5, f is G-analytic. o
(b) K = R. By Proposition 3.4 the complexified series D' f, converges
n=0

in an open subset e IZ‘, He A By (a) its sum;‘ is G-analytic in H. Hence
f = fiH is G-analytic in H. ,

COROLLARY B.1. A function f: U— F is G-analytic if and only if
fe@(U) and for every weU there is a netghborhood W of 0eE such that

oy 1
flo+h) = D= 8f(h), heW.

n=0
@
TagorEM 5.2. If B is a Baire space and if o formal series 3 f, with
n=0

o0
continuous terms converges in an open set H < B, then f = 3 f, is analytic
in H. =0
Proof. By Theorem 5.1 the function fis G-analytic. So, by Propo-
sition 5.2, it is enough to show that the Gateaux differentials 67f, n > 1,
are continuous for any fixed weH.
(a) K =C. By Proposition 4.1 the series

o0

f. converges uniformly
0

=

on every compact subset of H n V, where V is any 2-dimensional vector
subspace of B. Therefore, given ze¢H and heH, the series 3 f,(2+1th)
n=0

converges uniformly with respect to ¢ belonging to a neighﬂorhood of
0¢C. Thus, by Proposition 3.1, we have

, heB, k>1.

=0

dk had dk
— th = ) — th
el = D) g faat

This may be written in the following equivalent form
o0

sEf(R) = D) 0%F (),
n=0
n\ =
8t f,(h) = E! (k)fn(m,...,w, hyoooy )
n—k k
is a continuous polynomial of degree k. So by Theorem 2, [6], the polyno-
mial &%f is also continuous.

(b) K = R. By Theorem 3, [6], the polynomials fn are continuouns

heE, k>=1.
But

and by the Proposition 5.4 the complexified series Zfﬁ converges in an
open subset H < B, H < H. By (a) n=0

f(h) = D 6:fuh),  well, heB, k>1,
n=0

icm°®
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~ 0 L
where f = > [,. In particular,
n=0 .

SEf(hy = Y Of,(h), weH, hel, k> 1.
n=0

By Theorem 2, [6], the polynomial % is also continuous.

COROLLARY 5.2 (Riemann theorem on removable singularities). Let 4
be o relatively closed subset of U = E (B is a Baire t.v.s. over C) and let
f: UNA - F be an analytic function suck that for every affine line V < B
the set A NV is an isolated subset of the topological space U NV and
FI{UNA) NV is bounded in o neighborhood of any point of A. Then there
aists a unique analytic function f*: U— T such that f+[UNA =7].

Proof. It is obvious that UNA is nowhere dense. One may easily
check that U = \J (¢-+W,), where W, is the maximal balanced neigh-

2eUN4
borhood of 0eE such that z-+W, c U. Given ze U\ A, we have

Flath) = D fuh)y  heVy

n=0

where V, is a balanced neighborhood of 0 such that
1
z+V,c UNA, and f,= Tuégf'

By the classical Riemann theorem the geries > f,(h) converges for

el n=0
heW,. By Theorem. 5.2 the function f,(h) = 3 fulo—h), hex+W,, is ana-

n=0

Iytic. It is clear that f* = |J f, gives the required continuation of f.
reUN4

Countrexample 5.1. Let H be a normed space over C composed qf
all the points @ = (#,, @y, ...)€l* Which have only finitely many.coorfil-
nates different from 0. The function f: B —C, defined by the series with

S (nw,)", weB, is G-analytic but it is not ana-
n=0
Iytic, because f is not continuous. ‘

This example shows that Theorem 5.2 breaks off to be true if B is
not a Baire space. ]

DEFINITION 5.8. We say that f: U— F is continuous al aeU with
respect to a geminorm ¢ (or shortly thab fis g-continuous at @) if for every
&> 0 there exists & neighborhood V of a such that q(f(w)—f(a))< e
for zeV. - -

It is obvious that f is continuous if and only if it is g-continuous for
every qel'(F).

continuous terms f(x)
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An inspection -of the proof of Theorem 5.2 permits to formulate the
following
Remark 5.1. If E is a Baire spa,ce, f€Q"(E, F) are g-continuous

and H is the domain of convergence of 2 fry then f = Z f, i8 g-continu-

n=
ous in H and for every z<H all the Gateaux dlfferenma,ls nf(n=1)
are g¢-continuous. .

PROPOSITION 5.6. A formal series 2 I from E to B conwerges in an open

set U if and cmly if Z fn weokly com;m ges in U.

174‘
Proof. Let z be a fixed point of U. Let w > 1 be so clogse to 1 that

wzeU. Then

luofy(wa)| < M,, wueF’,nz=0,
whence

gofalon) < My qel'(F), n=0,
and. finally

gofa(m) < Mq(‘f'n} gel'(F)y n>=0.

6. Analytic functions in tepological vector spaces over C. In this
section all t.v.s. are over C (except Lemma 6.1 and Proposition 6.6); U is
an open subset of t.v.s. B.

LemMMA 6.1. Let U and U, be open subsets of a tv.s. B over K such
that U is connected, Uy, # @ and U, = U. Consider the following condition:

(C) If U, and W is a balanced mneighborhood of 0eE such that
z+W < U, then s+W < U,

If (O) 4s satisfied, then U, = U.

Proof. Suppose U N dU,; @ and let b« U N 0T ,. Choose a balanced
neighborhood W of zero in F such that b+W+W < U and let ae(b+ W)
< U, We claim that ¢+W < U. Indeed, any zea-+W may be written
in the form « = a-+w, weW. Since a =b+w’, w' eW, so # = b+w'+
+web+W+W < U. Thus a+weU. It follows from (C) that a+W < U,.
The equation b = a—w' (w'<W) implies that bea+ W. Thus be U,. This
contradition concludes the proof.

PROPOSITION 6.1. Let g be a continuous seminorm in F,let U be a neigh-
borhood of a point acE and let o be a familly of G-analytic functions
f: U—F such that

sup {gof(a): fe o, veUy< M < oco.
Then all the functions fe o are g-equicontinuous ot a, i.e. for every

&> 0 there ewists a balanced neighborhood W of 0eE such that a+-W < U
and

a(flata)—fla)<s oeW, fesst .
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Proof. By G-analyticity f(a+a) = 3 f,(2), ©<W, where
n=0

fula) =—,,;,—6"f( =@ro)7 [flatt) a0 for e,
ti=1

So gof, (@) < M, W, n > 0, fe «. Therefore
X 8
o(flata)—F@) < D qofu@) < M ) 2e0W, 0< 9<1, fes.

This proof and Theorem 1, [8], imply the following

COROLLARY 6.1. If U is a neighborhood of acE and f: U—Fis a G-
analytic function such that the function gof is bounded in U, then f is
g-continuous ot a, and the Gateaux differentials 83f(n > 1) are q-continuous
wn E.

Given a function f: U — F, consider the following conditions:

(a) \fqeI'(F) the funetion gof is loeally bounded in T.

(b) Vq e['(F) there exists an open non-empty subset W, = U such
that gof is bounded in W,.

(e) f is continuous at a point z,eU.

(d) f is continuous in U.

(e) f is analytic in U.

THEOREM 6.1. Let f: U— F be a G-analytic function. Then

(i) For every tw.s. B conditions (a), (d), (e) are equivalent.

(ii) If B is a Baire space and U is connected, then conditions (a), (b),
(e), (d) and (e) are equivalent.

Proof. (i) Implications (e) = (d), (d) = (a) are obvious. Implication
(a) = (e) is a direct consequence of Corollary 6.1.

(i) By (i) it is enough to show that (b) = (d), 1.e. to prove that for
every QEF(F) the seti .

={aeU: gof is bounded in a neighborhood of a} ‘

is identical with U. The proof will be done if we check that condition (C)
of Lemma 6.1 is satisfied.

Let #¢U, and #+W < U, where W is a balanced neighborhood of
0cE. Then f(z+h) = 3 f.(h) if heW, where nlf, = 04%f. By Corollary 6.1

n‘“ . -

the polynomials f, are g-continuous, by Remark 5.1 the function f is
g-continuous in W. Thus (C) is satistied. The proof is concluded.

Bxample 6.1. The function ¥: 12 —C defined by

o0
V(@) = ZW% ® = (@, Bay ...)el?

n=0

7 — Studia Mathematica XXXIX. 1
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is analytie in 7%, unbounded on the unit sphere. The function f = (. ,,
¥,, ...): 12—>C¥, where () = ¥(kr), is analytic but it is not locally
bounded (it is unbounded in every meighborhood of 0 el?).

COROLLARY 6.2 (Hartogs theorem). Let U be an open subset of By X H,,
where at least one of the t.v.s. By, B, is metrizable and B, X B, is a Baire
space (so both B, and B, are Baire spaces). If f: Us (@, @) — f(2y, @) e
s separately analytic, then f is analytic.

Proof. Given ;, kel #<C (j =1,2) and wel’, the function
wof(my+ 2 hyy 2at-2ah ) is ana,lytlc with respect to 2, and- 2, separately.
Therefore, by the classical Hartogs theorem, the funetion wof(x,-+thy,
xy+1hy) is analytic with respect to ¢ ranging a suitable open subset of C.
Thus it follows from Theorem 3.1 and Proposition 5.5 that f is G-analytic.
By Lemma 3, [6], for every geI'(F) there exists an open subset W, < U
on which gof is bounded. Consequently we may apply Theorem 6.1 (ii),
because without loss of generality we may assume that U is connee’ued
Thus f is analytic.

Observe that Theorem 6.1 (ii) implies the following

COROLLARY 6.3 (Generalization of Rado theorem). If U 4s an open
subset of o Baire space B, f: U~—C is a function such that f|U 0V is con-
tinuous for every affine line V < B, the set f7(0) is closed and f| f~(C \ {0})
is analytic, then f is analytic.

Further theorems on removable singularities will be glven in our
forthcoming paper. ’

THROREM 6.2. Let E be an arbitrary t.v.s. over C. Given any function
I+ U~ T the following conditions are equivalent:

(i) f is amalytic.

(i) f is comtinuous and weakly analytic.

(iii) f is continuous and analytic on affine lines.

(iv). f is analytic on affine lines and for every qel'(F) the function
gof is locally bounded.

Proof. Implications (i) = (ii) and (iii) = (iv) are obvious. If follows

from Theorem 3.1 that (11) (iii). If (iv) is satisfied, then f is G-analytic
because of Proposition 5.5. Thus by Theorem 6.1, we have (iv) = (i). This
concludes the proof.

THEOREM 6.3. If B is metrizable, then f: U — F is analytic if and only
if it is weakly-analytic.

Proof. Necessity is obvious.

Sufficiency. By Theorem 3.1 and Proposition 5.5 the function f
is G-analytic. According to Theorem 6.1 it remains to prove that for
_ every gel'(F) the function ¢df is locally bounded in U. If it is not true,
there exist @ye U, qel'(F) and a sequence {z,},.x convergent to @, such
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s gof(z,) >mn, m =12,... This is, however, impossible, because
{f(m )nen is bounded, as it is weakly bounded.

ProposITION 6.2 (Vitali theorem). Let U be an open connected subset
of B. If f,: U—=F (n>1) is a sequence of analytic functions such that
Jor every qel'(F) the sequence {qof,},.~ is locally uniformly bounded and
for each x belonging to an open subset V< U the sequence {fu®@ en is
convergent to an element of F, then there is an analytic function f: U - F
such that for every qeI'(F)

1(ful@)—f@) >0  (n— oo, 2eT),
convergence being uniform on every compact subset of U.
Prootf. a. At first we shall prove that {f,},. v converges to a function f
which is G-analytic in U. Put

= {aeU: {f,(2)},.x converges for every x
belonging to a neighborhood of a}.

In order to prove that U, = U let a be a fixed point of U, and let W
be a balanced neighborhood of 0<FE such that a+W <= U. By. Proposi-
tion 3.2 the sequence of the functions {f,(a+ Aizr)},.x of one complex
variable 1 is locally uniformly convergent in 1] <146 (6§ = 6(z) > 0
sufficiently small) to an analytic function f(a-+iz).

In particular, {f,(2)},.x converges for every rea+W. By Lemma 6.1,
U, = U and by Proposition 5.5, f = lim f, is G-analytic.

N0

b. Given any geI'(F), by Proposition 6.1 the functions f,, » =1, 2, ...,
are g-equicontinuous at every point aeU.

e¢. Now we shall prove that the limit function f is continuous and

therefore analytic (because it is G-analytic). Indeed, observe that for any
fixed qu(F) we have

q(f(@)—f(@) < ¢(f(@)— f,,(x))+9(fn(w —fal@))+a(fa(0) —f(a)

or x, an n =1,2,...
Given ¢ > 0, let ¥, be a neighborhood of a such that
Q‘fn(‘v)“fn(a'))< ef9, weVy n=1,2,...
It follows that

(I(fk —fi(®) ) (fk(m fk(a’)) +Q(fk(a)_f1(0’))+!l(fz(a')"ft(“’))
<ef3, 2eV,, if &, 1= ky = ky(e, a).

Consequently, letting ! tend to co, we get
Q(frt(‘b)—f(:ﬂ)) < 5/3: wEVm w = kﬂ'
Hence, by (1) and (2), we have

Q(f(m) "“f(a’)) <e zeV,
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d. It remains to prove that the sequence {go(f,—f)}tn.n cOnVerges
to 0 uniformly on every compact subset of U. This is, however, a direct
consequence of a, b, ¢ and of the inequality

q(ful®)—F(@) < ¢ (fu (@) —ful@)+ g (fo (@) —F (@) + g (f(a) — f (),
which is valid for z, ae U, n > 1.

THEOREM 6.4 (On superposition of complex analytic functions). Let
U; be an open subset of t.v.s. B; over C (j = 1, 2). Assume that f;: U, — Hy,
for Uy— F are analytic functions and fi(U,) « Uy Then f =f,o0f, is
analytic.

Proof. By Theorems 6.2 and 3.1 it is enough to show that for every
weF' and for every affine line V < B, the function wof|U, N V is analytic.
We shall prove this in two steps.

1° If fi: B,—~C is a homogeneous polynomial of degree k and
g: D— B, (D < C) iy analytic, then f,og is analytic.

Indeed, if # = fiog and aeD, then

h(z)—h _ _
MM T (fgte)s . o) —ilo @), e, g()
=2 (P02 g0 0] (00, LIZED e, 00
+... +fk(g(a'>7 .. g(a), M);
Z—a
whence
)i — . _
W =1 @2 p0), g(@), e g@) @), o @),

9(a); -y g@)+ ... +Felg(@), ...

Thus, by Theorem 3.1, f,og is analytic.
2° In order to end the proof it is enough to show that if f: U -~C
(U< ®,) and g: D— U (D =C) are analytic, then fog is analytic.

Let aeD, b = g(a). Put f,, =

yg(a), gl(“))-

1
T 65 f. Sinee f is locally bounded, there
exists a balanced neighbourhood W of 0e¢#, such that

@ < M27",  2eW, n>1,

and
flo+x) = an(m), zeW.

Let > 0 be so small that g(2)—g(a)eW, when jz—a| << 7. Then
falg@—g(@)l < M2,  |z—a|<r, n=1.

icm
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Therefore

00

o) = Y flg@)—g(a)),

Py
the series being uniformly convergent. By 1° and by Proposition 3.1, the
function fog is analytic in |e—a] < 7.

ProrostTION 6.3. Let U be an open subset of B. Assume that a function
g: Ux[a,bl>(w, t) > g(x, 1) ¢ F satisfies the following conditions:

(i) For any fized zeU, g is continuous wilh respect to iela, b], and
Jor every qeI'(F) gog is locally bounded in U x [a, b].

(ii) For any fired te[a, bl, g is analytic with respect to weU.

Then the function )

iz‘ a’[ < 7y

b
Fla) =fg(w,t)czt, zel,

is analytic in U.

Proof. By Definition 1.1, f{z) = lim f, (x), xe U, where

b—a n R
Fulm) =ng(m1a+7{(b_a’)); zel, n=>1.

It is obvious that f, is analytic in U. Moreover, given qel'(F) and
#ye U we may find a neighborhood W of #,, W c U, such that

qgog(z,t) < My, x<W, te[a,b],

whence |
. qofn(w)< Mq(b_a’)}
By Vitali theorem (Proposition 6.2) the function f is analytic.

"PROPOSITION 6.4. If fi' U — F is analytic, then for every k = 1,2, ...
the function

zeW, n=1.

UX B> (2, y)—~ 0f(y) e F
is analytic.

Proof. Given (%, y,)eU x B, let W be a balanced neighborhood of
0¢F such that o+ W+W = U and let » be so small that ry,eW. There
exists & neighborhood. ¥ of y, such that rV = W, and consequently iV <« W,
if |t| = r. Thus

Gy = -— ff(x+tyt" Ydt, wew,+W, yeV.
[il"r

The function under the integral is amalytic with respect to (,¥)
(Theorem 6.4) and continuous with respect to (x, ¥, t). Thus we may apply
Proposition 6.3, whence the required result follows,
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PROPOSITION 6.5. If f,,: U—F (n =1, 2,...)1is analytic ard f: U —+F
is o function such that for every qeI'(F) the sequence {go(f,—f)inen con-
verges 10 0 locally uniformly in U, then

1° f 48 analytic,

° g(&kf, () — Ef ) =0 (if n— o0) locally uniformly in Ux B for
every gel'(F) and keN.

Proof. 1° It follows from the assumptions that f is continuous in U
and analytic on affine lines. Thus f is analytic in U.

2° Given x,¢ U let W be a neighborhood of 0 such that 2,+W < U
and e, = sup {g(f, @+ x)—f(w,+ 2)): meW}—>0. Let V be a balanced
neighbourhood of 0eF such that V4V < W. Since

R ,
8ifly)— 85f(y) = Tn;mf(ﬁl(wrty)vf(wntw))i"“’dt, wew,+V, yeV,
“ =1
50

2(O5(Fa ) =T (W) < Bl e,

Let y, be any fixed point of E. Let A >0 be so small that Ay,<V.
The mapping @: E>x— 1 'zeE is & homeomorphism. Thus (V) is
a neighborhood of y,. Of course

1(059, () = Xq (850, () < Ky,
if ye®(V), zexy+V, where g, = f,—f. Therefore

vewy+V, yeV.

Q(aggn(y)) < ku_kem. yed(V), m€m0+va n=1,2,

The proof is concluded.

PROPOSITION 6.6 (Identity theorems). I. Let U be an open connected
subset of t.w.s. B over K. If f: U— F is analytic and f(x) = 0 for z in an
open subset V. < U, then f = 0.

II. Let U be an open connected subset of the complexification B of a

to.s. B over R. If f: U—F is analytic, UcE contains an open subset
V< B and f(x) = 0 for eV, then f = 0. :

Prooif. I. Put Uy = {aeU: f(#) = 0 in a neighborhood of &} and
check that U and U, satisty condltlon (C) of Lemma, 6.1. Thus U, = U.

II. Let a be a fixed point of V and let W < & be a balanced neigh-
borhood of 0B such that a+W < U. Let W < B be a neighborhood of
0k such that a+W < ¥V and W+iW < W. Then by the analyticity
of f,

flatatiy) = an(ww),

n=0

41y eW-1W,
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where nlf, = 63f. It is obvious that (53f) | E = &2(f| V). Therefore f = 0
in a—;—W Hence f,, = 0 in E. This, by Theorem 3, [6], Imphes that f, =0
in B. Thus f =0 in a+W-+iW. Finally, by I, f =0 in U.

ProrosrrroN 6.7 (Maximum property). If f: U — F is analytic and q
is any continuous seminorm in F, then qof cannot attain its local maximum
at any interior point a of U, unless gof is constant in a neighbourhood of a.

Proof. By Corollary 3.3 the function gof|U n V is subharmonic
for every affine line ¥ = E. Thus ¢of satisfies the maximum property.

7. Analytic functions in topological vector spaces over R. In this
section all t.v.s. are over R; U is an open subset of t.v.s. B.

THEOREM T7.1. Assume that E is a t.v.5. over R such that its complexifi-
cation B is o Bagre space (this assumption is certainly satisfied if B is
a Fréchet space) Then for any analytic fun('mm f U-—~F one may fmd
an open subset T of E and an analytic fmzctwnf U—F such that U= U
and f] U=f

Proof. For every point ae U there exists a ba.la.nced nelgthlhOOd W,
of 0e¥ such that

= Y ful),

n=0

(*) fla+x) reW,+W,,

1
where f, =— zS"f By Lemma 4 a, [6], the complexified series 2 fn con-

n=0
B 1 A
verges in n (W,+iW,). Since E is a Baire space, we may apply Theorem
1e

5.2. Thus the function

f;(w) = Eﬂ(w~u), xea-!— (W +iW,),

is analytic in V, = a4+ U,+1U,, where U, = E—EW o It is obvious that

fa(.v) = f(x) for xea+ U, The set U= U V, is open in Band Uc T.

aelV
The proof will be completed if we show that f,(z) =fy(z)in V, "V,
because then the required funetion f is given by

f(@) = fula),

Observe that V, NV, = (a+ U,) n (b+ U +i(U, N U,). Without
loss of generality we may assume that ¥V, n V, is connected or equivalently
that (a4 U,) 0 (b+ U,) is connected. Since f,—f, =0 i]} (a+ T, N

N (b4 U,), we may apply Proposition 6.6, and therefore f, = f,in ¥, 0 V.
The proof is concluded.

weV, acl.
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THEOREM T7.2. Assume that E is & Baire space and F is a Banach
space. Then for any analytic functwab f U— F one may fmd an open subset
U of E and an analytic function f: U—F such that U < U and f]U I

Proof. It follows from the proof of the previous theorem that it
iy enough to show that for every pomt a e U there is a neighborhood 7, = B

—->Fsuchtha:tfa|17 NU =flV,nT.
.2, that

Vi 2eW,+W,} < oo, where - Z‘ f,, denotes the formal series
n=0

of ¢ and an analytic function ju
Since F is a Baire space we may assume, by Proposition 5

2 sup {gof, (=
of ( ), and ¢ the norm in F. Thus, by Proposition 6 a, [6],

)3 fief. o ve (7,0,
2,5 gof,(z): P (Wo+iW, ) < oo

n=0

and therefore by virtue of Proposition 6.2, the function

fulo) = Dfilo—a),  aeV, = at - (WtiW),

is analytic.

The following theorem is an immediate consequence of Theorems 7.1
and 6.4.

THEOREM 7.3 (On superposition of real analytic functions). Let U, be
an open subset of a t.v.s. B; over R (j = 1, 2). Assume that F:‘l and 1732 are
Buaire spaces, fi: U,— By, fo: Uy—>F are analytic functions and f,(U,)
= U, Then f = fy,0f, is analytic:

Lemva 7.1, Suppose F' (the topological dual of F) is a Baire space.
A function f: R— F is analytic if and only if it is weakly analytic.

Proof. By Lemma 2.1 the function f is of class C%. Fix toeR. It is

1
=—f(")(to), of the

funetion f at ¢, converges in a nelghborhood of zero (because then the
fact that f is weakly analytic implies that its sum is equal to f(t,1)).

Thus it remains to show that there exists ¢ > 0 such that for every
qeI'(F) one may find M, > 0 such that

(%) g(a,) < Moo,

enough to prove that the Taylor series Z a,t

n=1,2,...

Since F’ is a Baire space and the sequence of continuous funetions
{F'> 4 — [u(a,)|* R}, .y is bounded at every point ueF”, we may find an
open subset ¥ < ¥’ and a positive number M such that

x‘u(a,n)|<M’”, ueV, n =1,2,..,
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This and the linearity of the mapping #’>u —> u(a,)eR imply that
there exists a neighborhood W « F' of zero such that

[u(a,)| < 2M™, ueW,n =1,2,...

Since W is absorbing, for every ueF’ there exists 2> 0 such that
lu(a,)} < AM™ (n = 1). Thus

lim sup VWJ! < M,

n—-oo

uekF’.

= 1/M. The

Cauchy inequalities |u(a,)| < Myo™" (=1, ueF’) imply that for any
geI'(F) there exists M, > 0 such that (*) is satisfied. The proof is con-
cluded.

THEOREM T7.4. Let U be an open subset of a Baire metrizable vector
space E over R. If F' is a Baire space, then for any function f: U —~ F
the following conditions are equivalent:

(a) f 48 weakly-analytic.

(b) f is analytic.

(¢} The function @: F'X Us(u, x) - uof(x)eR is analytic.

Proof. (a)= (b). Let & be a fixed point of U. For every z<F there
exists » > 0 such that the function (—r, )3t — f(atx)eF is analytie
(Lemma 7.1). Therefore

o0
Therefore the radius of convergence of \2 u{a,)t" is < 20
n=0

) flata) = Dful@), wed,
where ’ *
W fuld) =2 flatw)
» di® o

and 4 is an absorbing subset of R.
If weF', uof, is a continuous homogeneous polynomial of degree =,
because

ntuof,(x) =

=0

This, according to Corollary 4, [6], and Proposition 5. [6], implies
that f, is a continuous homogeneous polynomial of degree n.
By virtue of Proposition 5.2 it remains to prove that the series Z In

n=0

converges in a neighborhood of 0eH. (Its sum is necessarily equal to f,

because 3 f, converges weakly to f).
n=0
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Let W, be a balanced neighborhood of 0eF, the diameter of W,
being <1/n. For each neN the seb

N Lo

zell’,,

where T, = {uelF’: |uof,(x)

Sn =

is closed and B’ = U 8, Indeed, for any wu<F' the series Z %0 f, is nor-

n=0 =0
mally convergent at zero (Proposition 5.2), so there exists n, such that
sup {|uofy (#)] <L
Thus uesS,,.

fweW,, k=1,2,...

Since F' is a Baire space, there exist a neighborhood V of 0eF, :

uoe B and m eN such that

B=1,2,..}<1,

Hence sup {lucf,(@)]: ¥ =1,2,...}<2 for ueV, xcW,,. Since V
is an absorbing subset of F’, this implies that for every w ¥ the sequence
{wofilren 18 uniformly bounded in W,,. Therefore the sequence {fi}in

sup {Juof,(x)|: wetg+ V, weW,,.

is unﬁorml‘y bounded in W,,. Thus the series Z‘ fr converges in W,, and
flat+a) = ka(m for W,

(b) = (c). The analytlclty of f implies that for any aeU there exists
a nelghborhood W of 0¢F such that

= D uof, (=)

1
w 0%f. The function

D(u, atx) wel', wW,

where f, =
D,: F'X Bs(u, ) > uof,(z)eR

ig a homogeneous polynomial of degree m-1, continuous with respect
to u and w separately. By Lemma 3, [6], and Theorem 1, [6], the poly-
nomial @, is continuous. It is obvious that

D (uo+u, a+t+x) = D(u,,

a)+ Zdin(uo, 2)+ Py (1652), ueF',zeW,

n=1
whenee it follows that @ is analytic, because @, (u,, x)+ D, _,(u, ) is
a continuous homogeneous polynomial of degree » from F'x E to R.
(c) = (a) is a direct consequence of the following
Leyna 7.2. Let By (§ = 1, 2) and F be tv.s. over K. If U, is an open

subset of E; and f: U X Uy>(z,y)— (2, y)eF is analytw, then f 18
analytic mth respect to x and y, seperately.
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Proof. Given (a, b)eU; X Us, flat+a,b+y) = Efk(m, y) for (x,y)
k=0

eW;x Wy, where W; is a neighborhood of 0¢E; and f, is a continuous
homogeneous polynomial of degree k from E, X F, to F. It is obovious
that E,»x— fi(r,0)eF is a continuous homogeneous polynomial of
degree k. Thus the continuous function U,>x— f(x, b)eF is analytic
for each beU,, because
flata,b) = Yfule,0), @,
k=0
From the proof of (a) = (b) we deduce easily the following
Remark 7.1. I E,F, U satisfy the assumptions of Theorem
7.4, and f: U — F is analytic, then for every ae U there exists a balanced
neighborhood W of 0¢ F such that

}‘fm

fla+a) reW,

1
where f, =‘;1—t onf, and, moreover, for every qel'(F)

;sup {gofu(x): zeW} << oo,

Hence, by Proposition 6a, [6], and PIOI}Oﬁlthn 6.2, the funetion
f may be extended to an a.na.lytle function j U F where U is an open
subset of E such that U < U.

THEOREM 7.5. Let U be an open subset of a real Baire space B. If F'
is @ meirizable space (e.g. if F is Banach space), then f: U= F is analytic
if and only if fe@P(U), f is continuous and flU NV is analytic for every
affine line V < H.

Proof. The definition of G*(U) implies that all the Gateaux diffe-
rentials 6% f(n>> 1) exist, and the analyticity on affine lines implies that

an(h

1 .
where f, = - o%f and 4 is an absorbing set.

flz+h) = hed,
By Theorem 3, [6], the polynomials f, are continuous. The sets

1
A/ikl:{meE: |uof, (x)] < k, dist (u, 0) << ,ueF n>1}
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00
| s4dy. So there exists %, ! such that

o0
are closed, 4 = ) 4, and E =
k=1 8, ke, l=1

int 4, # @. Théréfore
l'u‘ofn (‘D)I < _ﬂfm

where, by virtue of Lemma 2, [6]

wel', n=1, wedy,

gofn(w V< My, qel'(F), nzl, zW,

where T is a neighborhood of 0¢E.
This implies that Y f, converges in a neighborhood T of 0 < E. By the
n=0

analyticity on affine lines

Fla+h) = D f(h), heW.
n=0
From Theorems 7.4 and 7.5 we deduce easily the following
COROLLARY 7.1. Let U be an open subset of a Baire metrizable space B.
If ¥ is a Baire space, then f: U->F is analytic if and only if feG*(U),
f is weakly continuous and flU NV is analytic for every affine line V < B.
In the following Corollaries ¥ is a Baire space, F' is a Banach space
and U is an open subset of E.
CoROLLARY 7.2. If f: U—R is a continuous function of class @ such
that 6zf(a) = O for weU, acd, n>1, where A is a subset of B such that
U Ra = E, then f is analytic.

aed

COROLLARY 7.3. If f: UXR—R is analytic, f 0, ¢: U—~R is
continuous, f(z, p(x)) =0 and @@= (U), then ¢ is analytic.

Corollaries 7.2 and 7.3 may be proved analogously as in [4].

COROLLARY 7.4. A function f: U — F is analytic if and only if it is
continuous and weakly-analytic.

Proof. By Theorem 7.4 the function f|U n V is analytic for every
vector subspace V « B, dim V < co. Hence, by Theorem 4, [6], feG*(T).
We may apply Theorem 7.5.

COROLLARY 7.5. 4 function f: U~ F 4s analytic if and only if for
each aeU there exist a neighborhood W of a, a sequence of continuous poly-

nomials g,: BT (deg g, <m),n =1,2,..., and constants a > 0,1 > f
> 0 such that

(*) 1F @) — g ()l < ap™

Proof. The necessity follows from Proposition 5.1. In order to prove
sufficiency, we may assume that 7 = R (Com]la.ry 7.4).

for yeW.
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Let m be any fixed positive integer and let # > 0 be so small that the
set

Wm = {C&+t1.’ﬂ1+... +tmmm: t]‘ER’ It]] <

is contained in W, where z, ...
from (*) that

() 19042(2) — gu(2)] < 2 (B+ 1) A7,

Let o satisfy the inequalities 1 < o < 1/8. It follows from (*+) and
from the Polynomial Lemma that

r(j=1,...,m)}

y T, are any fixed elements of E. It follows

zeW,, n>1.

lfln“(m)—fln(m)! < Ma(f+1 (o), n>=1,
for ’
BeW,, = {at (1) @yt v + b+ 7)ot 4, yeR, ] < 7,y 1T < 6,

j=1,..,m},

g; denoting the complexification of g;. Therefore the function
(@) = 1@+ D (gm@)—g @), @Wa '
F=1
is analytic in ﬁ‘"m. In particular, g|{ W,, = f| W,, is analytic. Thus (by Theo-
rem 5, [6]) feG*(U) and flU N V is analytic for any affine line V < H.
COROLLARY 7.6. 4 function f: U — F is analytic if and only if feG®(T),
f is continuous and for every subset I = {a+t(b—a): 0<ti<<1} = U

there exists am absorbing subset A = E such that for every wel the series
21
PN — 0z f converges in A.

n!

n=0
Proof. By the Pringsheim—Boas theorem, [3], fiI is analytic. Thus
we may apply Theorem 7.5.

8. Entire functions.
DeriNITION 8.1. Let B, F be t.v.s. over K. A function f: B+ F is

called entire, if there exists a formal series > f, from ¥ to F such that

fl@) = D fula),s

PrOPOSITION 8.1. A function f: B — F is entire if and only if it is
weakly entire.
Proof. It is obovious that f is weakly entire if it is entire. Let

= 3 a3 0),
n=0

rel.

uof(m) wvel, uel’,
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where g,(u;*)<Q"(E, K) for any weF'. It follows from the equation

=]

wof(tx) = Zt“‘gn(u; xz), tekK,
n=0
and from Lemma 2.1 that
& | ar i
alg,(u; ey = -yof(te)l =uo—— l .
nlga(us o) = g wof () Wﬂﬂm
1
Thus, aceording to Corollary 4, [6], - T f(tw)l is a homogeneous
=0

polynomial of degree n and by Proposition 5.6

oo

i@ = 3= af),

n=0

zel.

Theorems 5.1, 5.2 and Remark 5.1 imply the following

ProrosIrioN 8.2. 1° If B and F are t.w.s. over R, then every entire
function f: B — F may be continued to entire function f B> F.

2° If f: E — F is an entire function, then f is G-analytic in F and

flata) = > =

7L=0

(5nf($ Z‘EE, ael.

S;)-a

3° If B is a Baire space and f(x) = Z‘ ful®), eB, where Z‘ faeS(E, ),
then f is analytic in E. n=0

4° If B, F are t.v.s. over R and E is o Baire space, then évery analytic
entire fu,natwn f: E—~F moy be continued to an analytic entire function
f: BT

THEOREM 8.1. Let B, F be t.v.s. over K. Then:

(a) A function f: B — F is entire if and only if f V is entire for every
affine line V < E.

) If E is a Baire space and f: E — F is continuous, then f is analytic

entire function if and only if fIV is entire function for every affine line V < K.

Proof. (a) We know, [20], that (a) is true if dim & < oco. So

f@) = Y ful),

where f,| W is a homogeneous polynomial of degree n for every vector
subspace W < H, dim W < co. This implies that f,<Q"(E, F).

(b) By (a) fis an entire continuous function, by Proposition 8.1.2° fis
@-analytie. Since f is continuous and F is a Baire space, so the Gateaux

wel,
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differentials n!f,, = d;f are continuous (Theorem 5, [6]). Hence, according
to Theorem 5.2, f is analytie.

9. List of problems.

1° Does Theorem 6.1 (ii) remain true without the assumption that F
is a Baire space?

2° Is Theorem 6.3 true, if F is not metrizable?

3° Let F be a Baire space. Is B* a Baire space?

4% Is Theorem 7.3 true for arbitrary t.v.s. E,, B, over R?

5° Are Lemma 7.1 and Theorem 7.5 true, if F' is an arbitrary topol-
ogical vector space over R?

6° Is it enough to assume that f in Theorem 7.5 is locally bounded
instead of that f is continuous?

7° Under what weaker conditions imposed on ¥, Theorem 7.5 remains

true?

Aﬁded in proof. A. Hirschowitz gave countererexamples to the problems’
1° and 2°.
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