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Polynomials and multilinear mappings in topological vector spaces
by
JACEK BOCHNAK and JOZEF 8SICIAK (Krakéw)

Introduction. In our forthcoming papers we want to give a unified
presentation of a theory of analytic functions defined in open subsets
of & complex or real topological vector space F with values in a locally
convex topological vector space F'. As a special case we will get the theory
developed in [1] and [8] for Banach spaces.

In this paper we gather the most important facts about polynomials
and multilinear mappings which are basic for the further developement
of the theory. Polynomials are the simplest analytic functions which are
used to bild up locally any other analytic mapping (by expanding it into

a series of homogeneous polynomials). Therefore their properties should
be éxamined first.

We hope that some. of the results of this paper may be interesting
for functional analysis apart from their application in the theory of analytic
functions.

In Section 1 we give several necessary and sufficient condmons for
a polynomial or multilinear mapping to be continuous (Theorem 1). Also
here the Banach-Steinhaus theorem is extended to homogeneous poly-
nomials of fixed degree % > 1 (Theorem 2).

The natural domains of existence of analytic mappings are domains
in complex spaces. It appears that in order to prove some facts concerning
real analytic functions it is convenient to complexify the given function
at first. The problem of complexification of real vector spaces, multilinear
mappings and polynomials is treated in Section 2.

Section 3 is devoted to existence of Gateaux differentials and their
continuity. This is of first importance when we ask whether a given fune-
tion may be locally developed into a series of homogeneous polynomials.

While preparing this paper we have been much inspired by [1], [8]
and [9].

1. Polynomials and multilinear mappings. In the sequel K denotes
either the field of complex numbers € or the field of real numbers R.
Letters B, F, G will denote vector spaces over K. If the field isnot strictly
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indicated the results are valid in both cases, K = R and K = (. We
assume that all the topological spaces considered in this paper are Haus-
dorff spaces.

DEFINITION 1. A mapping f: F — F is called a homogeneous polynomial
of degree k if and only if there exists a k-linear symmetrical mapping
fi B~ F such that f(z) = f(z, ..., 2), z<B. We say that f is associated
with f or that F generates f. ‘

Let us denote by Hom (E,, ..., B; F), Hom*(E, I'), Hom! s(H, )
and QY(E,F) the vector spaces of k-linear mappings of By X .. X By
into F, k-linear mappings of B* into F, k-linear symmetric mappings of B
into ¥ and homogeneous polynomials of & into F' of degree &, respectively.
The corresponding spaces of continuous mappings will be denoted by
L(E,, ..., By; F), I¥(E, F), I¥(E, F) and P*(E, F), respectively.

If k is a fixed positive integer, then 7, K — E* will denote the mapping
given by m (%) = (2, ..., 2).

A mapping f: B~ F is a homogeneous polynomial of degree k if and
only if there exists a k-linear (not necessarily symmetric) mapping g: E* —F
such that f = goax,. Indeed, the function

!]*(wu"":w}c = k'Zg(mjl’“ k

where the sum is spread over all the permutations (j;,..., j;) of the
sequence (1,..:, k), is k-linear, symmetric and, moreover, f = gom,
= g,07%, whence it follows that feQ*(E, F). The opposite implication
is obvious.

The following known theorem (Mazur-Orlicz [9]) plays a fundamental
role in our study.

THEOREM A. If feQ*(E, F) and f = f om,, feHom? (B, F), then

@1y vy m) e BF,

- 1 h]
W oo =5 \ Lt 0y e,
: skm:ﬂ .
where z, is an arbitrary ﬁwed point of H.
Proof. Let us denote the right-hand side of (1) by g(my, .. aﬂ,,)

We have to show that g = f. To this end observe that by %- llnoa,rlty and
symmetry of f we have

Fwot e+ ...+ epimy)

=F@ot a1t ey .y Bt gy )
Kt
= 1 -Tso . f(wo:-\amuz---5mky-~-5mk):
Job o Jit ——— .

ot tip=k 7 T

icm

Polynomials and multilinear mappings 61

where ¢, =1 and &s =1 if j, = 0. Therefore

A;
Z) = 2 ]7ﬂuf
ol

Jot e +ip=k

9@y ..oy oy Toy

Jo Ik
where
1
S (g g,
Egreenr E=0

Afo-nfk =

Suppose j, =0 for some s> 1. Without loss of generality we may
take s = 1.. Then

1

P G

Ajul'jwk = LI L
=0
Therefore A ..i; may be different from zero only if j,...j, 0.
But then j, =... =4, =1, j, =0, because j,+...j, =% Thus ¢
=7 QED.

It is obvious that the mapping given by (1) isan 1s0morph1sm between
Q*(B, F) and Hom!(E, F). Moreover, f is continuous if and only if f is
continuous.

If F and F are Banach spaces, then P*(®, F) and L*(E, F) are also
Banach spaces, if the corresponding norms are defined by

Iftl = sup {If (=) llall <
Ifll = sup {If (1, ..., )ll:

) ProrostrIoN 1. 1°If B and F are Banach spaces over K, then mapping (1)
8" a topological isomorphism between the Banach spaces PYE,P) and
LB, F). :

2° If E and I are Banach spaces over R and the norm in B is defined
by a scalar product, then (1) is am isomeiry between P* and LE.

Proof. It is obvious that [|f]] < |Ifll.

1° It follows from (1) that

HfH

<1}, fePH(T, F),

II%H<1 (j::l; -!_k)}; f‘Lk(EJF)'

Wi, .. Z lesnt oot e

o Ep=0
e\ 2k)*
-%;-2(7)8’”!23‘” 29,

where [zl<1 (j =1,...,k). So |fi<

first part of the proposition

[inl and this implies the
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2° Pirst assume that dim B < oo. Let 8 = {zeB: fz| <1} k=2
and x,y are points of § such that Il = If (e, y)ll, then [f(z-+v)|

— il lo< gl Indeed, suppose e.g. [f(@—¥)| < [l la—ylF. Since f(,y)
= if(e+y)+1f(2—y), we have

IFl = 1F @, )l < IfI e+ I+ lo—yll*

This contradiction gives the result.
Given arbitrary k> 2, we can find By, ..., Z,e8 such that |fi
= |f(#, ..., &) Take aeS such that the scalar product {a, ) #0
(j =1,..., k). Then there exists ¢ > 0 such that the set
s @)l = 171

4 = {(@, cony ) 8% Cayopze (=1, By Fwyy oo
K

,#p)ed at which -3 <a, )
=1

attaing its maximum on A. It is. enough to show thads & ¥ = ... = g,
where g = 41. Suppose that @ +a; 0 and w — g %0 for a pair of
different indices. Then at the. pomt

)< Ifll-

is not empty. There exists a point (a, ...

@yt ed, o =af (G#EP,Q), @ =z, = (@+ap)/|ep+a]l

we would have

k k
Day @y > Y,

=1 g=1

(because, [[@3+ ;|| < 2), what is impossible.

Let now the dimengion of B be infinite. Let a,,...,, be arbitrary
fixed points of the unit ball § = E. Let V be a k-dimensional subspace
of ¥ such that a,, ..., a,eV. We take the scalar product in V obtained
by the restriction to ¥V the scalar product in B. Then

ALV = sup {|If ())}:

Since the theorem holds for finitely-dimensional cage, we have

IFIVI < It

Therefore |fi| < ||f|. The proof is concluded.

Remar\k. Proposition. 1 (2°) has been proved by Banach [2] for
seperable unitary spaces. The method of proof of the finite-dimensional
case given here is due to 8. Lojasiewicz.

xeS NV},

1@y ooy mll <

DEFINITION 2. If f: E—Fis a finite sum f = 2 fk of homogeneous

polynomials f, € @ (B, F), then fis called a polynomial (ot' degree at most m).
PROPOSITION 2. Superposition of two polynomials is a polynomial.
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Proof. Let f: B~ F, g: F— @ be polynomials. We want to prove
that gof is a polynomial. Without los_s of generality we may assume that
geQ“(F, @) and f = fo+... +f, f;¢Q" (¥, F). Since

8
mmﬂMmMWW=2
: 115 +0sdg=0
it is enough to show that go f71
nomial. This,
mapping

ﬁ(fhonjl(w); zel

) fy‘ko n]'k (m)}’

iy ey fj,c ) is a homogeneous poly-
however;  follows 1mmedla.tely from the fact that the

CEUK X B (@ ey ) > G (@) - B (@) €G-

is (jit ... Fjx)-linear.

COROLLARY 1. Superposition of continuous polynomials is & continuous
polynomial. If feQ" (B, F), geQ*(F, @), then gofeQ® (B, @). If acE is
o fived point and f.is a polynomial, then the mapping E>x —~fla+w)eF
is also a polynomial.

TeMMA 1. Let T be an arbitrary vector space over K. If f: K" - F
is a polynomial with respect to each variable seperately, then f is a polynomial.

Proof. Suppose the lemma holds for functions of m variables. Given
fo E™+ s (u, 1) — f(u, 1) eF' satisfying assumptions of the lemma, then for
any fixed teK the function K™su—f(u,?)eF is a polynomial of m
variables. Put X, = {teK: f(u t) is a polynomlad of degree < n with
respeet to each variable uy, ..., Uy}, #=1,2,... It is obvious that

o
X,cX,,, and K =X, Therefore there exists n such that X, is
infinite. Let =1
U, = {’”’soa Ug1 5 -

sy Ut (8 =1, m)

be a syﬁtem of n+1 different points of K. Letb L(7E)(u,,., U (s =0, n)

denote. the fundamental interpolation polynomials of La.gmnge corre-

sponding to the system U, of nodes g, ..., Us- Then the mapping
g: K™t > I given by

n

> Iy, Uy)..

is a polynomial from K™+ to F. Moreover, by the La.gra.nge interpolation
formula, f(u,t) = g{u,t), weK™, teX,. Since, for every fixed ueK™,
both f and ¢ are polynomials in ts.K which have the same values at every
point of the infinite set X, so f(u,1) = g(u t) for every teK. Th]s con-
cludes ‘the proof.

CoroLLARY 2. If f: B~ F is a ;polynomwl on every affme line in B,
theii for evm"y su'bspace V<R, dlm E < oo, the funmon flV is a poly-
nomial, .

g(’“‘! t) = 'L(im)(umi Um)f(uliﬂ ver

y Umj, s 1)
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PropoSItIoN 3. Let B, F be arbitrary vector spaces over K and let
f: E—F be a polynomial on every affine line contained in E. Then there
exists a sequence of homogeneous polynomials FeeQ* (B, F) (k =0,1,...)
such that

fl@) = Y ful@), aeB,
k=0

where for every fized xe<E only finitely many compomkms of the series do
not vanish.

Proof. For a fixed #eF the mapping K2t — f(iz)eF is a polylomial.
Then

fltm) = D (@), teK,
k=0
where only finitely many components of the series do not vanish. Since

f(tam) = @) = 3 (fi@)t)

s0 fi(te) = t*fi (@), teK, weE, k> 0. We want to show that f,<Q*(®, F).
Given f,, let f; be defined by formula (1). The mapping f, is obviously
symmetric. It is enough to show that it is k-linear. To this end, given
@y, @, By ..., BpeB, take a subspace V < E such that dim V<k+1
and @y, ¥, Ty, .., & V. Since according to the Corollary after Lemma 1,
the mapping f,|V is & polynomial, so f|V* is k-linear. Therefore f,(uaz,+
Oy Byy ey B) = U (@1, Bay ooy )+ 0fy, (0, By .y By)y u, ve K. Hence
FreHom* (B, F) and the proof is completed. :

COROLLARY 3. [9]. Given a function f: B — F and. a positive integer m
consider the two following conditions: .

(P) For efum] fiwed «, heB there ewists a;(x,h)el (j =0,..., m)
such that

zeB, t, e K

flotn) = Mo ,b), tekK,
j=0

‘4.6 f is @ polynomial of degree at most m on every affine line contained in B,
(H) f(tz) = t"f(z), z<B, teK.
Condition (P) is necessary and sufficient that f be a polynomial of degree
at most m. '
Conditions (P) and (H) are necessary and sufficient that f be a homo-
geneous polynomial of degree m.
COROLLARY 4. Let F* be a set of linear forms w: F — K such that w(y)
= u(w,) for every ueF* if and only if @, = &,.
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If f: B~ F is a mapping such that wof is a polynomial of degree < m
fqr every weF™, then f is a polynomial of degree < m.

Proof. Let T,, = {ty, ..., t,} be a system of m-}1 different points
of K. By the Lagrange interpolation formula

wof(e+th) = 3 IN(t, Tpuof(a+4h) = u( 3 LN, T,)f(a+11h)
7=0

i=o
n
for ©, hel, teK, ueF*. Therefore K»t->f(x-+ih) = > L9(t, T,)f(x+
7=0

+1t;h)eF is a polynomial of degree < m for any fixed =z, ZeF. By the firgt
Corollary f is & polynomial of degree < m. :

Remark. If E, F and f satisfy the assumptions of Proposition 3 and
moreover f|U = 0 for an open non-empty set U c B, then f = 0.

Indeed, let ze® and aeU be fixed. The function g: Kst—
—f (a: +t{a— m)) eF is a polynomial which vanishes inaneighborhood oft =0.
Therefore f(v-+t(a—)) = 0 for teK. In particular f(z) = 0.

LemuMa 2. Let B, F, B; (j =1,..., k) be vector spaces over K and let
V be a convex symmetric subset of F.

(i) If feHom (B, ..., E; F),
fla+TU) = V, then f3U) < V.

(i) If feQ* (B, F), U < E is balanced and f(a-+U) = V, then f(—;; U)

U=U;X... XUy 0eU; < E; and

< V.

Proof. (i) Let a = (a,,..., a;). For any fixed & = (B, ..., %) eU
we have —f(ay, a3+ 25, ..., @+ 2,)€V. The convexity of ¥V implies that
Fl@rt@yy oy Gt 2} —F (01, Gt Tay o ovy Ot By =F(B1 B34 D2y ooy )
«2V. By the induction with respect to % we get fla) 28V, zeU.
Therefore f(3U) = V.

(ii) From formula (1) we get

3

@) flo) = 3 (=10 (F) flatsa).

8§=0

) .
But (—1)*"*f(a+sz)eV, when e — U, s=0,..., k. Therefore

2Ry
k!

1 1 &
flw)ecV, we—l—c- U, where c=-k-!—s=0(;c

< (2¢)*V, as zeU, whence f(

)=2"/k!. PFinally, f(z)e 14

1
26

Given @ locally convex topological vector space E (shortly Les. H),
denote by I'(B) any filtrant set of seminorms determining the topology
of E. :

U)CV.

§ — Studia Mathematica XXXIX. 1
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THEOREM 1. Assume that F, B, B; (§ =1, ..., k) are topological vector
spaces over K, F is locally conves, fe Hom (By, .., By; F) (f Q" (B, F)).
Then the following conditions are equivalent: ‘

(i) For every qel'(F) there ewists a mon-empty open set U in E, X

. X B, (in E) such that gof is bounded on U.

(ii) For every qelI'(F) there exisis a neighborhood U of zero in H, X

. X B, (in B) such that gof is bounded on U.

(iii) f 4s contimuous at zero of By X ... X B, (of B).
(iv) f s continuous at a point @ of By x ... X By, (of B).
v) f s continuous. )
Proof. Implications (v)= (i), (v)= (iv), (iv) = (i) are trivia.l, so it

Yemains to prove only that (i) = (ii), (ii) = (iii) ) and (iii) = (v)

Case I: feHom (B, ..., B;; F). Let U = Ul . XU, be a nelgh
borhood of zere in E,X... X H, such that qof(m) M in a4 U. Then
according to (i) of Lemma 2, gof(u) < 2* M for ue U. Thus (i) = (ii).

To prove that (ii) = (iif) it is enongh to show that for any seminorm
g eI'(F) the funetion gof is continuous at 0. Let us fix > 0 and suppose
that gof(z) < Mon U = Uy X... X Uy, U; being a balanced neighborhood
of 0¢H;. Then for every & qof(y < &M for YebU = §U X ... X &, It
iy obvious that gof(y) < e, ye&U, if £ is sufficlently small So qof is con~
tinuous at 0el, X ... X By

(iii) = (v). Fix a = (ay, ...,
that (jii) =

ap) el X ... Xy, >0, QeF(F). Assume
(v) holds for (k—l)—linea.r mappings and observe that if f is
continuous at 0ekB,X... X B, thén the mapping g¢: EyX...xXE,
3 (@yy «ney Tg) = f1, Boy ey wk)eF is continuous at 0. Indeed, there exlst
balanced neighborhoods V of zero in F; such that

qof(@yy ..y @) <& @V (f=1,...,k).
Let f<(0, 1) be so small that fa,eV,. Then -

gof(fay, sy ..., ) =_qof(a1, Oyy By ..oy y)  for @peVy (j =2, ..., k).
Hence ' k
qof(ay, @y ..., @) < e for melVy, eV, (j =3,..., k).

By the induction assumption the mappixig‘g i§ continuous in , X
X oo X By, in particular
(+) (f(“ly“z‘Fwa; .- a'};‘{‘mk)_f(“u .

for z;€V;, V; being a neighborhood of 0 in &, '
Oondltlon (iil) implies that; there. ex1st neighborhoods T, of 0 in E;
such that

() qof(ys, .-

B

.y a’lc)) < ef2

T A T
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Let V;’ be a balanced neighborhood of zero in B, such that v/ +v;
< U; and take 7¢(0,1) so small that ya;eV; (j =1, ..., k). Then
(++4)  qof(®yy Gatsy ...,
Indeed,

ot m) < ef2, @menV] (j=1,..,k).

7 Fe V] e Uy naytumeVi+V, < U; (G =1,..,k),

so according to (++),

qof (®Byy ot Bay ooy G ty) = ﬂqof(ﬂ “@yy (@t 2),

Inequalities (+) amnd (+++) imply that
eV X...XVy, where V; =TV, n g7/
every point ael X ... X H,.

Case II. f<Q*(E, F). Implications (i)= (ii) and (i) =
proved analogously as in case I by using (ii) of Lemma 2.

(ili) = (v). It follows from formula (1) that the k-linear mapping f
associated with f is continuous at 0<E*. Therefore by virtue of case I,
7 is continuous. This, however, implies that f = f o, is continuous.

PROPOSITION 4. Assume that B and F are topological vector spaces
over K, B is a Baire space, F' is locally convex and f: B — F 48 continuous.
If f is a polynomial on every affine line in B, then f is a polynomial on B.

_Proof. By Proposition 3 one can find polynomials zeE, f,<Q*(E, F)
(k =0,1,...) such that
o
= D fula).
k=0

($ f(=)
At first we shall show that the polynomials f, are continuous. It is
obvious that

oy {0+ @) ) < &2
q(f(aer )—F(a)) < &

Therefore f is continnous at

(iii) may be

.1
fk('z') = ];111;1 _tk— (f(tw) -—-f(O) ——fl(w) T _f]c—l (t.’l?)), k4 eE,
because for any fixed » there are only finitely many components of series (§)
which do not vanish.
Assume that fy,...,f;—; are continuous.

Given teK (¢ # 0) and
gel'(F), the sealar funetion )

g1ty 9) = g0 (1)~ 1O ilt2)— ...~y )

is continuous in F and lim g(¢, ) = gof,(x), w<E. Since F is a Baire
=0

space, there exists an open set U = E on which gof; is bounded. By
Theorem 1 the polynomial f; is continuous.
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Put
= {wek: fi(w) =0 for k>n}, n=12,..

The set B, is closed, B, = K, and B = UE Therefore int (H,)
=1

s @, if n is sufficiently large. By the Remark a.fter Proposition 3 f, =0
for &k > n, where # is sufficiently large. This, however, implies that f

= :\:‘ f 18 a polynomial.

* ;EXAMPLE. Proposition 4 breaks off to be true if B is an arbitrary
topological vector space. For instance, let E be the subspace of I* composed
of those # = (#y, ®s, ...) I’ which have only a finite number of coordinates
different from zero. It can be easily checked that the series of homogeneous
polynomials

g(x) = 49’157 z ‘ZZ:

\%l

=
]
-

is convergent locally uniformly in * and its sum g is continuous in #,
The function f = g| F is continuous in ¥ and it is a polynomial on every
subspace Ve B, dim V < oco. However, f is not a polynomial on ¥, because
its restriction to the vector linex = t¢;, teK, where € = (d;, &, ...)
(6 = 0if j # &, 6; = 1) is a polynomial of degree j (j =1,2,...).

Given any vector space ¥ over K, dim F = oo, one may find a func-
tion f: ¥ — F such that its restriction to every affine line V, <« F is
a polynomial but f is not a polynomial. If E is a Baire space, then such
a function must be discontinuous.

THEOREM 2. Assume that B and F are vector spaces over K, f, <Q* (B, T),
n=1,2,... and f(x) = lLim7,(z) for meE Then

(i) feQ"(E, F).

(ii) If B and F are topological vector spaces, B is a Baire space and F
is locally comvem, f,eP* (B, F), n =1,2, ..., then feP*(H, F).

Proof. (i) follows directly from formula (1).

(i) Let gel'(¥). Then gof, as a limit of the sequence of continuous
real functions gof, in the Baire space Z, is bounded on an open subset
of E. Therefore by Theorem 1 the polynomial f is continuous.

PROPOSITION 5. Let B be metrizable, let F be locally comven space and
let fQ"(B, F). If for every continuous linear form weF' the function uof
is contmuous, then the polynomial f is continuous.

Proof. Suppose condition (i) of Theorem 1 is not satisfied. Then
there exists a seminorm ¢ eI"(F) such that for every # e N there exists a point
z,eE such that gof(s,) > » and the distance of ®, to 0 is smaller then
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1/n. Bince for every uweF’ the sequence {uof(w,)} is bounded (because
it is convergent to 0), so the sequence {gof(,)} is bounded. This gives
a contradiction, which ends the proof.

Ligvma 3. Let A be a topological Baire space and let B be a metric space.
If a function f: AXB->K is continuous with respect to each wariable
separately, then it is bounded on a non-emply. open subset of A X B.

Proof (following Noverraz [10], p. 27). Given meN and yeB, let us

put .
y(m) = {wed: |f(z,y)| < m}.
Let B, (n =1,2,...) be a ball with center y,eB and radius 1/#. The
set A, , = () 4,(m) is closed, because every set A4,(m) is closed. We
yeBy
claim that 4 = U A, Indeed, for a fixed xzed the function B>y

m,n=1

- f(®, y)eK is continuous and therefore |f(z,y)| < m, for all yeB, et Mo
and 7, being integers sufficiently large. Hence wedy o, Since 4 is a Baire
space there exists m,, n, eN such that an open subset U < A is contained
in 4,, ,. Consequently |f(z,y)| < m, in UX B,

COROLLARY 5 (see [5]). Let E, F, & be topological vector spaces over K,
B — Baire, F — metrizable, @ — locally convex. Then every bilinear map-
ping f: EXF — @ seperately continuous is continuous.

Proof. By Lemma 3 for every geI'(F) the function gof is bounded
on an open subset of E X F. By Theorem 1 the mapping f is continuous.

CoROLLARY 6. Let B, (j =1,...,k) be Baire meirizable vector spaces
and let G be a locally cover topological vector space. Then feHom (B, ...

-y By @) is continwous if and only if it is continuous with respect to

each variable separately.

2. Complexification. Let E be a vector space over R. It is easy to
check that the space F X F furnished with the addition operation of its
elements and with the multiplication by complex scalars according to
the following formulae

(+) (-”1: Y1)+ (@25 Ys) = (B1+ 82, Y1+ 42),
() (uti) (2,y) = (uw—vy, vwtuy),

is & vector space over C. We denote this space by F and call it the complez-
ification of H. It E is a topological vector space then operations (+)
and (x) are consistent with product topology so then E is a topological
vector space over C.

Every element (z, ¥) B may be written in a unique way in the form

(z,9) = (z, 0)i(y, 0). We may treat E as a subspace of E by identifying

(m1; Y1)y (%) ¥2) GEX;E:
u,veR, (m,y)e X B,
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ze B with (», O)eE‘ Therefore we may treat B as a direct topological
product of B and iF and write every element (z, y) T in the form w1y,

We may also identify B with the tensor product EF®yC.
Given any seminorm ¢ on E, we put

q(@) =inf{2|ij]q(mj): ] =2t7-w,-,m,-elf7, tjeC}, Zeh.
One may easily show that § is a seminorm on B and

max (q(2), ¢¥) < Qo) < g(@)+qly), o+iyed.

Therefore, if I'(B) = {g}; is the set of seminorms defining the
topology of a locally convex space E, then F(L7‘) = {q;};; defines the
topology of 5.

If ¢ is 2 norm in F, then § is a norm in B

- THEOREM 3. Let E, E (J =1, ..., k) be topological vector spaces over R.
Let F be a topological vector spcwe over C. Given szomR(El, ey By T
(feQR B, F)), there exists exactly one element f eHomo(E oy B )

(fch(E’ 17’)) such that ]‘IE1 o XB,=f f|E =f). The mapping f is
continuous if and only if the mapping f 18 CONtINUOUS.
Proof. Case L feHomy(Hy, ..., B,; F). Put
B - 1
(©) fat+id, .., ol +im)) = D iTif(af, ..., 0,

Epy e Ep=0
A+ivted, (j=1,..,k).

It is obkus that f is & continuation of f and f is k-linear over R.

Observe that f(ul, Dy Blhgy ooy Uy) = @f (Ugyveey Uge)y (UggoonyUy) eE1>< ><Ek
This implies that f is k-linea,r over C.

Formula (0) implies that f and f are simultaneously continuous.
Case IT. f Q% (E, ). Let f be the k-linear mapping associated with f.
Then f(u) f Uy oney ), usE is the desired homogeneous polynomial.

Remark. If 1’71, -+, By, I are vector spaces over R, then the element
feHom (By, ..., B;; F) may be interpreted also as an element of

Hompg (B, ..., H; ﬁ') So the mapping f also in this case may be correctly
defined. The same remark is valid for polynomials.

LeMmA. 4. Assume that B, F are vector spaces over R, U = E is convew,
V < Fis convex and balanced, feQ*(E, F), f(U) V. Then f (Z— (U-{—iU))
. - L . . e -
< ViV, where f<Q*(E, F) denotes the complexification of f.
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Proot. It follows from (1) and (C) that

. i(w+iy) =Z’is(f)f(w,...,$,y, e y)

§=0

1

k—s

: k
2 (= >" 9 2 ( ) Flleat e dt (et oo+ 8)7)
815 e0es =0 8§=0
k k .
Z (=1t Zi“ (s) (14 ... 4 &)F X
=1 ey ot eg=l 5=0
e+... 5 Egig T gy _ .
Xj( P PRERI, ?/) = Zapw/‘_i_'bﬁy’wu,

where ¢, >0, §,>0 and w, has

B

the form

w, =.(——1)Qf(81+"

By virtue of the inequalities

ma,x(z flui Zﬂu) < %12:; (;c) Z’C;:; (sk)< (4k)k/k!ﬁ< (4o},

this implies that

whence

s Sop1t -t y)
e+ )

@-
& eyt

 Flotiy)e(4e)V+i(4e)'V  for @, yel,

flotiy) eV +iV -

1
for x4 iy ‘oG (U+1T).

PROPOSITION 6. Let* U be a convew subset of a real vector space B and
let q be a semmorm defined on a real vector space F. If f.<Q*(E,F), k

=0,1,

- and Z sup {gofy():

k=0

S’ sup {é o fi():

ze U} < oo, then

a;ezl;(U—}—iU)}< oo

Proof. Put a, = sup {gof,(#): weU}, V, = ¢ *([0,a,]), k=0. By

Lemma 4

Folet+iy) eV +iV,

1
for w—l—iyez—e-(U—l—iU).
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Therefore §of,(@-+1y) < 2a;, which ends the proof.

LeMMA 4a. Assume that B, F are vector spaces over R, U is a subset
of B, V e F is convex and balanced, f<Q*(E, F), f(U) c V and W is a bal-
anced subset of B such that 2o+ W+W < U, u, being a fized point of U.

Then

~f1 .
f(—(W—{—iW)) c V4iV.
4e
Proof. It follows from (1) and (C) that

Fla+iy)

1 N e (R
==r (—1)k—28721 (s) f(mu+(51+...+as)w+(sa+l+.,,+ gk)y)

&340y E5=0 8=0

= Za#wn+ 7;2/9#"’0/17

where a, > 0, 8, > 0 and w, has the form w, = (—1)°f(,+ (e + ...+ &) o+
F (&1t .-+ 5)y). It is obvious that z,+(e+...+ )a+ (g, + ...+

: 1 .
+e)yelU, w,eV, if o, ye—k—W. By virtue of the inequalities

wox( S 30) < S S <

=0 8=0
o N ; 1 -
this implies that f(m—lwy)e%—(V—l—zV) for m,erW, whence f(z-+iy)

. 1 ,
V41V for m—{—zyeE(W—{— iW). The proof is concluded.

PROPORITION 6a. Let U be an open subset of a real vector space E and
let ¢ be a seminorm defined on a real wvector space F. If f,<Q“(E, F), %
b
=0,1,..., and ]E_Esup {gofi(w): weU} < oo, then there ewists a neigh-
=0
borhood W of zero in B such that

Esup{giof(m): we%(w+iﬁ7)}< o0.

k=0

Proof. By Lemma 4a it is enough to take an arbitrary balanced

neighborhood W of zero in B such that x,-~W+W < U for a fixed point
e U,
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3. Gateanx differentials. In this section ¥ and F are topological
vector spaces over K, ¥ is locally convex (shortly l.c.s.), and U is an open
subset of K.

DEFINITION 3. We say that a function f: U — F has the p-ih Gateauwr
differential (G-differential) at a point m,eU (or f is of class GF at =), if

1° For every heE the mapping

fu: Epat—f(wo+1th) T,
defined in a neighborhood K; of zero in K, has the p-th derivative at 0;
2° The mapping

dk
oS Boh—~ Wf(xﬁ th)_oe F

is a homogeneous polynomial of degree k, k = 1, ..., , i.e. 6§ofeQ"(E, 7).

We write feG? (U), if f is of class G* at every point zqe U. The poly-
nomial 650 f is called the k-th G-differential at x,.

The condition 2° is not implied by 1°.

Bxavpie. If f<Q™(H, F), then o5f exists for every k=1, &f =0
for k=n+1 and

S F(h) = k!(;:)f(m, ey By Ry ey B)y k=1,
Nk —
In particular, 5%f(h) = nlf(h).
Proof.
fo+th) = 2(:") BF(@yoeey @y by ey ).
8=0 n—s 8

DerNITION 4. We say that f: U—F is of class #*(U) and write
fer*(U) if and only if for every affine subspace VeB dmV<k+1,
the tunction f| U NV is of class O* (For the definition of (*-functions
with values in l.c.s., see [6]).

THEOREM 4. If fer®(U), then feG*(U).

Proof. (a) k = 1. The derivative

d
B () = — F(o-+1h)lizg
exists for every heE, and the restriction of 85f to an arbitrary two dimen-

sional subspace of F is a linear function. Therefore df is linear in E.
(b) k> 2. We have only to show that

Sf(h) = —(ﬁf(ﬂﬂ-th)l :
. - dtk t==0
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is @ homogeneous polynomial of degree %, i.e. we have . to find
SF feHom* (B, F) such that 3’”’f(h .oy b) = 8Ef(R). To this end we put

B f ey -oey b)) = i dtk- (x+2th)

We shall prove the theorem, if we show tha.t 5’“]' 80 deﬁned 1§, k-linear.
Fix hy, .. h,;E‘ and observe that the mapping

g: Usw— 85 f(hyy ..., by) e

belongs to 7*(U). Therefore 029 (hy) is linear for h,eX. Since

d -,
859 (hy) = “d—tﬁ’éltln, Flhay ooy Iidlico

d( alc

e [N X)
at, \0ty ... 0ty ' B o

P ST

oot 0ka(w+% tihi) = .. =lp=0

< . :gkf(hu--'ahk)w

50 8%f is linear with respect to h,. But & f is obvmusly symme‘mc, then
it is k-linear. The proof is concluded.

ExAMPLE. We shall show that feG"(U does not imply that f er* (T).
Let U = R’ Put

plo,7) = ‘exp(— 1"”»—:02)’ it ol <7,
' 0, it |2 =r

Then the function f(z,y) = p(x— iVI—yT, il/'lﬂﬁjl—
G in R? but f is not continuous at (0, 0).

Lemma 5. If g: K — F has the k-th derivative at-0, then the followmq
Taylor formula holds

(1) g(t)

where im 4 (f) =

=0 : C " i
Proof. One may repeat the proof of Theorem 1 in ([4], Ch. I, § 3)
replacing everywhere the norm by an arbitrary seminorm gelI'(F).

If K =C and k> 2 formula (T) is trivial, because then f is analytic
in a neighborhood of 0 (see [3], p. 83).

(z,y)e R, isf ‘of

el

t
=g(0)+ﬁg( o PO, e,
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DerINITION 5. Let B be a locally convex space over K. We say that E
is sequentially -complete (or shortly’ s-complete) if for every Cauchy
sequence {&,},.n, ¥, <F, there exists an element z<F such that z, — .
A sequence {;},.n is called Cauchy sequence if for- every gqeI'(F),
q(@p,—®,) ~> 0 a8 m, n— oco. 5

It is obvious that every lLc.s. which is quasi- eomplete in sense of [5],
is also s-complete. If t.v.5. B over R is & lc.s. and s-complete, then Eis
also a le.s. and s-complete. ‘

THEOREM 5. 1° If B is a Baire space, f: U - F is continuous and
feG*(U), then for every xe<U the G-dszm ential o f is  continuous, i.e.
okfePH (B, ).

2° If K =C, E is an arbitrary topologwal vector space, F is s-complete,
F¢GH(U) and gof is locally bounded in U for every q<I'(F), then 65f < P*(B, F).

Proof. 1° Fix xeU and let 4 be a balanced neighborhood of 0¢E
such that 4+ 4 < U. Using the induction with respect to &k we may assuime
that the function

k! ? 1 zk-l kl
Fity 1) = 55t =gt 3 80 = .. — g o)

is continuous with respect to he A for every fixed teK, 0 < [t] < 1. More-
over, by formula (T), limF(t k) = 8f(h), hed. In particular, for every

gel'(F) and te K, 0 < [t] < 1, we have lim go P'(t, k) = go 65f(h). Since E
is a Baire space, there is an open subset ¥, < A on which go 8kf is bounded.
By Theorem 1 the polynomlal okf is contmuous

2° If K =C and feG*(U), k> 1, then f(z-+th) is analytic in the unit
dise [f] < 1 for every fixed heA A Dbeing any balanced neighborhood of
0eE such that s+ 4 < U ([7], [3]). Therefore

Y[ fle+ et a

Jtl=1

Okf(h) = k!(2me)”

Given qel'(F), gof is loeally bounded. So we may choose A in such
a way that gof(z+h) < M < oo for hed. Therefore

qodlf(h) < KM  for hed.
Apphca;tlon of Theorem 1 concludes the proof.
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Introduction. The aim of this paper is to give a unified and selfcon-
tained exposition of basic concepts and facts concerning analytic functions
defined in open subsets of a complex or real topological vector space B
with values in a locally convex topological vector space F. As a special
case we get the theory developed in [2] and [117] for Banach spaces.

In the present article results of our previous paper [6] on polynomials
and multilinear functions are essentially used.

We hope that our exposition may be useful for further study of the
theory of analytic functions in topological vector spaces. This theory
may be treated in natural way as a branch of non-linear functional analysis
and deserves further developement.

In this paper we always assume that B is a topological Hausdorff
vector space, F is locally convex and sequentially complete. However,
in many places additional assumptions are necessary. Generally speaking,
all the results are valid if F is a Baire space (sometimes Baire and metri-
zable) — in the complex case, or if F and F' (the topological dual of F)
are Baire spaces — in the real case.
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