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Uniform convexity of Banach spaces 1({p;})
by
K. SUNDARESAN (Pittsburgh, Penn.)

The class of Banach sequence spaces !({p;}) studied originally by
Nakano [4] has received attention in some of the recent papers. Klee
[3] studied bounded summability property in the spaces I({p;}) while
Waterman et al. [6] characterized reflexive I({p;}) spaces. In the present
note we sharpen the main theorem in [6] by showing that the hypo-
thesis in that theorem provides a characterization of uniformly convex
U({p;}) spaces and that a reflexive I({p;}) space is uniformly convex. We
accomplish the proofs of these results without appealing to the theorem
in [6].

Let {p;} be a sequence of real numbers 1< p; < co.  Then I({p;})
is the set of all real sequences x such that

1
27 laz;Pi < oo

>l tr
for some a > 0 depending on #. It is verified that with the usual defini-
tion of sum of two sequences and scalar multiple of a sequence the set
1({p;}) is a real vector space. Further if for z<l({p;})

) M) = 3=,

i>1 S
then M is a modular on I{{p;}). For a detailed account of modulars on
vector spaces we refer to Nakano [4]. If M is a modular on a vector space
the norm induced by the modular M is given by the formmula

. 1
ol = mf{g

£>0, M(fw)gl}.

The space {({p;}) under the norm induced by the modular M defined
in (*) is a Banach space.

Before proceeding to the main result of this note we recall some
terminology from Nakano [5] concerning modulars and state a theorem
useful in the subsequent dizcussion,
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Let M be a modular on a vector space EF and let the norm induced
by M be denoted by ||-]l. A vector weH is said to be finite if M (ir) < oo
for all real values of 1. The modular M is said to be finite if every vector
@ e Bisfinite. The modular M is said to be uniformly finite (uniformly simple)if

( Inf M(éx)>0)
M(z)=1

sup M(&x) < oo
Mz)<1

for every real number &.

The modunlar M is said to be wniformly comvexr if corresponding to
any pair of positive real numbers 7, ¢ there exists a 6 > 0 such that M (z)
< M), U(—y)=e=,

z+y

M(—z—) <3M(@)+ M(T)]—s.

For a definition of uniformly convex Banach spaces, see Day [2]. The
theorem which is stated below relates the uniform convexity of the mo-
dular M with the uniform. convexity of the norm induced by M.

THEoREM (Nakano). If & modular M is uniformly convem, uniformly
finite and wuniformly simple, then the norm induced by M is wniformly
COnves.

For a proof see Theorem 3 on p. 227 in Nakano [5].

We proceed next to the main theorems of this note. Let P be the
set of positive integers. If @ = P we denote by M, the function on I({p,})

defined by

: 1

My(z) = — |z, |Pn.
¢ ;Q‘ 2"

We note M, is & convex function. We further recall the following
inequalities:

(i;) I¥ p >2, then

[6+b["+[a—b* < 27 [|afP + b[7]

for any two real numbers a, b.

(i,) ¥ 1 <p <2, then
at+bff  p(p—1)
2 2

with a, b as in (i;).
For a proof of (i;) see Clarkson [1]. (i,) follows from the Taylor
expansion of (1-++t)? for small ¢.
. TEEOREM 1. The Banach space 1({p;}) is uniformly convex if and
only if

() 1 <infp; < supp; < .
>1 i1

a—b [P

lal-b]

a—b
2

P _ laP+ b

- 2
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Proof. Let the sequence {p.};, satisfies the inequality stated in (*).
Thus there exist real numbers 4 and B such that 1 <A < p; < B < 0. We
proceed to verify that the modular M is uniformly convex, uniformly
finite and uniformly simple. Let r, ¢ be two positive numbers and
@, y el({p;}) such that

Mo<r,, My)<r and M(@—y)=>e.

Let us partition the set of positive integers into sets ¥, F' defined
by neB if p, > 2 and n<F if p, < 2. We note that M (z) = Mg(®)+My(2)
for all wel({p;}). Thus M (#—y)> ¢ implies either Mzy(wx—y)> /2 or
Mpla—y) > 62

Case 1. Let Mg(v—vy) > ¢/2. Since p, < B

z— 1 £
ME(——z—y) Z= o5 Mylz—y) = 2FF

Further since, for n ¢ B, p, > 2, it follows from the inequality (i;) that

sty z—y
2 ) +-ME( P

Now noting that My is a convex function it is verified using the
above inequalities that

$0r@)+ 31> 5 () 20 (7Y 30 (Y

ME( )< 1M () + Mp(y)].

2 2
z+y €
(T

Case 2. Let Mp(@—1y)> ¢/2. Let & be the subset of F' consisting
of the ne@ such that

[ —al = Ol2,] + [Yal)
where ¢ = Min (4, &/8r). With G, = F ~ @ it is verified that,

1 1
mze; 7 o=l < ; . (O (ol + lyal)n)
T4 p, 2

nely

2Pn
< D S l10m, -t Oyl

neGy Pn

< 3[ M (200)+ M (20y)].
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Sinee 0 < 2¢ <1 and M (%), ()<r
M (20m)+ M (20y) < 4or
Thus it is verified that
D —ln— s <20 <

n
ety

£ . O < &
— sinece —_—
4 = 8y

Since Mp(x—y) = ¢/2 it follows from the definition of @, that

() N oy > .

neG "

Then from inequality (i,) it follows that

) 52

1 .
(orx) 5 [Mg(2)+Maly)] > M
Since for ne@, p, <2 it is verified -
—
(73>
But from (**) it follows that

@L— &
MG( 2y) =2

1
1 Mg(z—1y)

Thus inequality (##x) yields

1 A—1)ce
5 DMalo) Mo(9)) > 3 (“1) + 22,

Noting that the function M, is convex it iy deduced from the above

inequality that

1 A—1)ce
5 @)+ M) > Mo ( “’) +Mp~g(“—";-y-)+-‘——32£

+ =

_ M(m—]—y) (A—1)ece
32

where P is the set of positive integers.
Thus choosing

. & (A—1)ee
6 =i, 4550)

it is verified that the modular M is unifo,rmly cOnvex.

icm
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The modular M is uniformly finite for if § is the function defined
on the real line by setting S (&) = [£[F it |&| > 1 and §(&) = [&[*if |¢] <1
it is verified that M (£z) < S(&) M (x). Thus Sup M (&x) < S(&).

Z)<1

Next we proceed to verify that M is umf)ormly simple. Let L be
the function defined on the real line by setting L(£) = |£]4 if [§/ =1
and L(&) = |£|F if |£] <1. Then it follows that M(&z)> L(§) M (w).
Hence M is uniformly simple. Thus it follows from Nakano’s theorem
that the norm induced by M is uniformly convex.

‘We next proceed to the Converse of the above theorem.

THEOREM 2. If 1({p;}) is uniformly conves, then 1 <<lim inf p;
< limsupp; < co.

Proof. Tf possible let I({p,}) be uniformly convex and liminfp; = 1.
Thus there exists an infinite subsequence {p;} of {p;} such that p; — 1.
By considering the vectors z¢l({p;}) such that @z, =01t n #£ 4 for some
j it is seen that the Banach space Z({p%}) is 1s0metr10a]lv lsomorphlc
with a subspace of I({p;}). Thus I({p;}) 1s uniformly convex. Hence it

‘is a reflexive Banach space. However, since Py —~1 by Theorem 2 in

Nakano [4] the weak sequential convergence a.nd norm, convergence
coincide in I({p.}). Since I( {ij}) is reflexive the unit cell in I( {pl 1) is
weakly compacf, Thus it follows readily from Eberlein theorem (see
[2], p. 51) that the unit cell in I( {p 1) is compact in the norm topology.
Hence I( {pt} is finite dimensional contra.dletmg that {pz} is an infinite
sequence. Hence 1 < infp,. If imsupp; = oo it is verified as in Lemma 1
in [6] that I({p;}) contains a subspace isomorphic to I contradicting
that the space 1({p;}) is reflexive. The proof of Theorem 2 is complete.

In conclusion we note that from Theorem 1 and proof of Theorem
2 in this note it is readily inferred that the Banach space I({p,}) is uniformly
convex if and only if it is reflexive.
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