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limsupnt1og |#,), < 0. We shall show that this last inequality is equi-
nico ™= B
v:,lent to the one in the statement of the lemma. Now

limsupn " log [max ([log|a, |, PA(a,)]
" = limsupn ! max [log (Jlog|a,||), logPA (a,)]
n
= max[limsupn~* log (liog |a,l]), lixglsup%“llogPA(%)]_
n

Since limsupn~! logPA(a,) < 0 we have
limsupn ! log (%,)e < 0
n

if and only if
lim sup n~* log ([log|a,|]) < 0.

Thus, if ¢ed, then the easiest way of defining a logarit]?rp for @ yields
an element « of A if-and only if a satisfies the stated condition. It is clear

that the constructed element z belongs to D.
THEOREM 5.8. A~ = exp*[Dn(—D)L
Proof. Lemma 5.5 implies that the right side is contained in the
left. Let aeA™'. Then limn~'logla,] = 0. For e> 0, there exists n,eN
n “

such that if % > n,, then [log|a,|| < me. But then
logllog|a,|| <logne and n~"log(log|a,|)) <~ logn-+n~"loge.

The larger sequence converges to 0 as n —oo. Hence, a has a 19ga.rithm
in A: ¢ = exp*(z). Since exp*(z)ed™!, Lemma 5.5 implies that
x e DN (—D).
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Factorization in Fréchet spaces*
by
W. H. SUMME RS (Fayetteville, Ark.)

1. Introduction. Let 4 be a Banach algebra with a bounded left
approximate identity. In 1959, P. J. Cohen [2] established that each
element in 4 could be factored, and the utility of factorization as a tool
in the study of Banach algebras and Banach A-modules has become
apparent in the intervening decade. One fruitful approach (e.g., see
Rieffel [11], Sentilles and Taylor [13], and Collins and Summers [4]
has been to use the factorization theorem due to Hewitt [7] in conjunction
with the device of introducing auxiliary essential left Banach A4-modules
in order to factor certain “large” subsets of a given essential left Banach
4-module (for a definition, see [107), and it is this procedure which will
concern. us in the sequel.

There are at least three natural suxiliary left 4-modules that one
can consider for a fixed left Banach A-module E; namely, the space
O(X; B) of all continuous functions from a topological space X into H,

‘the space 0, (X ; H) of bounded functions in ¢ (X ; ), and the space C)(X; F)

of functions in ((X; B) which vanish at infinity, each with respect to
the obvious pointwise action. If X is a locally compact- Hausdorff space,
then Cy(X; E) with the uniform topology [15] becomes an essential left
Banach 4-module and the above approach is valid (see Section 3). How-
ever, the situation is less obvious in the other two cages, and there seems
little likelihood of realizing either (/(X; E) as a left Banach A-module
or 0,(X; E) as an essential left Banach A-module (however, see Section. 4)
unless X is compact. Consequently, the following question arises (see
[41): can Hewitt's factorization theorem be emtended to include the action
of A on a dlass of locally convew spaces more general than Banach spaces ?

An affirmative answer has been announced by Ovaert [9], but it
appears that a proof of Ovaert’s result will entail a recasting of the tech-
nique used by Craw [5] in extending the work of Cohen to Fréchet al-
gebras. In our context, however, it is possible to give a relatively simple

* This research was supported in part by National Science Foundation grant
GP-11762. . ’ ’ !
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210 W. H. Summers
proof ba.éed on Hewitt’'s theorem, and this is dqne in Sfaetion 2. An
eﬁample is also given which shows that our resylt is essen?‘l’a]ly the best
possible in this direction. In Section 3, we eonlmde_r the auxiliary modules
0y(X; E) and C(X; E) in light of this factorization theorem (Theorem 2.1),
and our work in this setting contains not only the known resplts but a
somewhat surprising new one (Corollary 3.5). Finally, in Section. 4, we
congider the problem of factorization in the auxiliary madule. Oy (X; T),
and we show that there is an intimate connection between this and the
property (WDF) infroduced by Collins and Dorroh [3].

2. The factorization theorem. Let E be a Fréchet space which ig
a left A-module in the algebraic sense, and let {p,}n-, be a.n_inerea.sing
sequence of semi-norms on B such that if U, = {.C.L‘GE PP, () < 1), t,hen
{U,}n=: is 2 neighborhood base at zero in B. We will call B a left Fréchet
A-module if there exists a real number ¢ > 1 so that for each »

Pulo-2) < oflal|p,(2)

for all acd and x<B. It is readily seen that we may assume ¢ =1 by
considering )
Pa(®) = Max[p, (2), Sup{p,(a-2): [la] <1}]

for each natural number . Further, B will be called essential if for each
ze¢F we have that ¢,» - where {¢,} is the left approximate identity
for 4. Assuming that d = sup{fle,[}, we have the following extension
of the Hewitt factorization theorem ([7], p. 151).

2.1. THROREM. If H is an essential left Fréchet A-module, if xR,
and if U is any neighborhood of x, then there ewist a.c A, y « B with the following
properties:

1) 2 = a-y;

(2) y e (4 m);

(B)yeT;

(4) Jell < 4

The proof depends on the following lemma discovered independently
by Varopoulos [14] and Johnson [8] which, as is pointed out by Rieffel
[11], is an immediate consequence of the Hewitt factorization theorem.

2.2. LEMMA (Varopoulos—Johnson). If F is an essential left Banach
A-module, if feco(F), and if ¢ > 0, then there ewist aeA and g eCo(F) with
the following properties:

(@) f = a-g (the action being defined pointwise);
(i) g < el(4-1) (in oo (F));
(i) f—glle < ¢;
(iv) Jlall < @.

icm®
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Proof of Theorem 2.1. Let I7,: & — B[p;*(0) for each natural
number n, be the natural projection; define II, for 1<k<n by
1|11, (2)) = IT(2), and. let B, denote the completion of (E/p;*(0), |-|I,)
where ||IZ,(2)||, = p,(z), while 1L, B, - H, for 1<k<n will denote
the extension of I7;,. In this case, F iy the projective limit PLIL, E, of
the sequence {F,}° . of Banach spaces with respect to the mappings
L, 1< k< w2, ([12], D. 53). Now each %, can be considered as
a left 4-module by first defining a-Il,(2) = IT,(a2) and then extending.
This action is well-defined, and since F is an essential left Fréchet
d-module, it is clear that each E, is an essential left Banach A4-module.
So we may apply Hewitt’s factorization theorem to each E, to obtain
A and 2, B, satistying 17, (#) = @2, and |la,|| < d. Taking a, = % a,,
and 2, = nz, for each =, we have that {851 18 in ¢y(4); Lemma 2.2
now permits us to choose a sequence {bu}ne1 In ¢o(A) and an aed such
that Jlal| < d, an = @b, for each n, {b,), ccl(4-{a,}=,), and lan—b,ll < &
for each n where ¢ is a positive number (depending on U). Now define
Yn = b2, for each =, let 5 > 0, fix the natural numbers %;, ¢ =1, ..., m,
and choose bed 3o that

sup{fby—b-ayll: ¥ =1,2,...} < 77[1+S11P{l]2killki= =1,..., m}]L
In this case, we have for ¢ =1, ..., m that

Y5, — b Ll (@), < 10— e, 1= i e, < 1,
and so {y,}7., is in the closure of 4-{IT, (@)1 in [T . But
k=1

Al (@), € PLIT, B,,

and from this it follows that there is a yeB such that I7,(y) =y, for
every n. To conclude the proof it suffices to show yeU, and this easily
follows from the fact that

Pul@—Y) = T, (&) — Yol < 1t — B, el

_As in the case for left Banach A-modules ([10], p. 453), we have
the following equivalent formulations for when a left Fréchet A-module
is essential.

2.3. TeroREM. If B is a left Fréchet A-module,
equivalent:

(a) B is essential; .

(b) the linear span of A-F is dense in B ;

(c) A-E = B.

Proof. It is evident that (e) implies (b), while the fact that (a) implieg
(¢) is immediate from (1) of Theorem 2.1. Tt remaing to show (b) implies

then the following are
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(a), and this follows from a straightforward modification of the argument
in the case of Banach modules.

It would be natural to ask if a version of Theorem 2.1 would hold,
for example, when ¥ iz only assumed to be a complete locally convex
space. As we show below, this is not the cage.

Exampere. Let X be a locally compact Hausdorff space which is
not compact, let y(X) denote the Banach algebra of all complex valued
continuous functions on X which vanish at infinity with the uniform,
topology, and let C,(X) be the space of all complex valued bounded
continuous functions on X endowed with the strict topology B (see Buck
[11). C4(X) is a (left) Oy (X)-module with respect to pointwise multiplica-
tion, and it is known that C,(X) has a bounded (left) approximate iden-
tity {e,} with the property that .f — f(B) for every fe0,(X) ([3], p. 159);
i e., 0p(X) is essential. Moreover, 0, (X)is a non-metrizable complete locally
convex space ([1], p. 98), and since the semi-norms on O, (X) are given
by f — [l¢flls = IIfll, for @Gy (X), we have that.

My < e llo 11,

for peQ,(X) and feCy(X). It is eclear, however, that the conclusion (1)
of Theorem 2.1 fails to hold in this case.

3. Auxiliary left Fréchet 4-modules. Assume F is an essential left
Fréchet A-module with the sequence {p,}>, of semi-norms discussed
in Section 2. In this section we will consider two examples of auxiliary
left Fréchet 4-modules and apply them to factor certain “large” sets
in E. The first example will yield the analogue of the Varopoulos—~Johnson
result (Lemma 2.2) for Fréchet modules, while both examples will enable
us to factor totally bounded subsets of X (it was the ability to factor
totally bounded sets in an essential left Banach A-module which provided
the impetus for the results in [4])- Finally, the second example will allow
us to show that any hemi-compact subset of B can be factored through
4; a new result even in the Banach module case.

For the first example, let X be a locally compact Hausdortf space and
let Cy(X; B) denote the space of all continuous functions from X into
E v:ihich vanish at infinity endowed with the topology generated by the
semi-norms

f = lfln = sup{p, (f(2)): = < X}.

Tt is known, of course, that Co(X;B) is a Fféchet space, while (a-f)(z)
= 6-f(@) for weX defines an action of 4 on Cy(X; E) with respect to
which Co(X; B) is easily seen to be a left Fréchet A-module. To see that
Co(X; B) is essential, fix feOy(X; B), a natural number k, and &> 0;
choose a compact set K < X so that ze X\K implies pk(f(a;)) < &/2d.
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Since f(K) iz compact, there exist g ef(K), 4 =1,..., » such that if
yef(K), then p,(y—=;) < ¢/3d for some ie{l, ..., n}. Choose a, so that
a2 o, implies py (e, 2;—2;) < /8 for ¢ =1, ..., n, and note that for z< X
and o> a, we have '

D (ea'f(w)—f(””)) < Py (oo fl@)— 8o ;) + Dp (602, — 2,) + 1y, (zi*f(”)) <s
while e X\K implies

Pulea (@) —F (@) < palea (@) + il f (@) < e
Thus le,;'f—fll < ¢ whenever a > a,, and we have proved the following
result.

3.1. THEOREM. If B is an essential left Fréchet A-module, then Cy(X ; B)
is an essential left Fréchet A-module.

The preceding theorem together with Theorem 2.1 enables us to
obtain the following extension of the Varopoulos—Johnson result for
Banach modules.

3.2. COROLLARY. Let B be an essential left Fréchet A-module and Tet
N denote the natural numbers with the discrete topology. If feCo(N; B)
= ¢ (B) and if U is any neighborhood of f, then there exist ac A and geco(H)
satisfying properties (1) through (4) of Theorem 2.1.

3.3. CoROLLARY. Let H be an essential left Fréchet A-module and let
X be a compact subset of B. If feCo(X; B) and if U is any netghborhood of
Jy then there ewist acA and geCy(X; E) satisfying properties (1) through
(4) of Theorem 2.1. In particular, if Z is a totally bounded subset of E, then
there ewists o totally bounded set Y < B and an acA so that Z = Y.

Proof. It suffices to verify the last statement, and this is done by
choosing X = ¢l(Z) and observing that the injection mapping ¢: X —F
belongs to Cy(X; H). Consequently, there is a geC,(X ; B) and an aed
such that ¢ = a-g, and from this it follows that ¥ = g(Z) is the desired
totally bounded set.

For the second example of an auxiliary Fréchet module, let X be
a completely regular T',-space which is also a k-space and let {K,}2 ; be
an increasing sequence of compact subsets of X. Assume {K, 1o, forms
& base for compacta in X (X is hemi-compact) and let ¢ (X; B) denote
the space of all continuous functions from X into % endowed with the
topology generated by the semi-norms

= lfll = sup{p,(f(): weK,}.

CG(X; E) is known to be a Fréchet space, and is clearly a left Fréchet
A-module with respect to the obvious pointwise action. We wish to check
that 0(X; B) is essential, and to this end fix f<0(X; B), a natural number
k, and ¢ > 0. Since f(K},) is compact, we have as in the proof of Theorem.
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3.1 that there exists an a, so that o> a, implies ple, f(w)—f(2)) < ¢
for every wely; i e, |legf—fl < e for a> a, and we have the follow-
ing result.

3.4. THEOREM. If B is an essential left Fréchet A-module, then O(X s H)
8 an essential left Fréchet A-module.

It is clear, of course, that Corollary 3.3 would also follow from The-
orem 3.4. However, it is the following consequence of Theorem 3.4 that
iy intriguing, and an application of this result iy considered in the next
section.

3.5. COROLLARY. Let E be an essential left Fréchet A-module and let
X be a hemi-compact subset of B. If feC(X 5 B) and if U is any neighborhood
of f, then there exisi o € A and g<C(X; F) savisfying properties (1) through (4)
of Theorem 2.1. In particular, there exists o o-compact set ¥ = FH and an
acA so that X =qa-¥. :

Proof. X is a completely regular T,-space which is also a k-space
since ¥ is metrizable, and so the first statement is immediate from The-
orem 3.4 and Theorem 2.1. To conclude the proof, we note that the injec-
tion map ¢: X —F is in C(X; B), and hence there is a g<0(X; B) and
an acd such that ¢ =a-g; ¥ = g(X) is clearly the desired o-compact
set.

4. Bounded factorization; the property (WDF). As we mentioned
earlier, one would not in general expect the auxiliary module ¢,(X; E)
over an essential left Banach A-module B to be an essential left Banach
A-module unless X is compact. However, by restricting our attention
to the case C,(N; A) where N denotes the space of natural numbers
with the diserete topology and 4 — Co(X) (here, and throughout the
remainder of this section, X will denote a locally compact Hausdortf
space), it is possible to sharpen this result, and this permits us to show
that the property (WDF) for (C,(X), B) introduced by H. S. Colling and
J. R. Dorroh ([3], p. 163) is equivalent to (Cy(X), B) being a (DF) space.

4.1. THEOREM. The Jollowing are equivalent: ‘

(i) (C5(X), B) is a (DF) space; :

(i) (Cy(X), B) has property (WDE); i.e., each wniformly bounded
real sequence in Cy(X) has an upper bound in Cy(X);

(iii) @, (N 5 Co (X)) with the uniform topology ([15], p. 119) 4s an essen-
tial left Banach Cy(X)-module.

Proof. It is known that (i) implies (ii) (3], p. 163). Moreover,
C(V; ¢, X )) with the uniform topology is known to be a Banach gpace,
and it is easy to see that C,(N; C,y(X)) is a left Banach C,(X)-module
with respect to the action of ¢,(X) on Oy ; Co (X)) defined by (a-f)(n)

= a-f(n) for neN. Now assume (ii) holds, choose feQy(N; O’O(X)), and
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take aeCy(X) so that |f(n) < a for each neN. Since {a}u{f(n): n e N}
is a hemi-compact subset of (y(X), it follows from Corollary 3.5 that
there is'a beCy(X) and a sequence {b,)3, S Oo(X) for which a — b-b,
and f(n) =b-b,, neN. We can apply Corollary 3.5 again to obtain
¢eCo(X) and {c,}5, = Co(X) such that b = ¢-¢, and b, = ¢-¢, for neN.
In view of Theorem 2.3, if we can show the function g: N — (0y(X) de-
fined by g(n) = b-¢, for ne¥ is in C,(N; Cy(X)), then we will have that
(iii) holds since ¢-g(n) = f(n) for each neN. To see this, we first observe
that i )
leg(n)] = f(n)| < la| = |e<by e,
for any ne¥N, and since ¢(z) = 0 implies g(n)(x) = 0 for zeX, it follows
readily that

lg(n) (@)} < [by 65 (w)]
for each neN and any zeX. Consequently,, llg (M) < [bg: €]l for each neN;
L. e, g0, (N; Oo(X)).

(C4(X), B) always has a countable base for bounded sets ([1], p- 98),
and it therefore suffices to verify the following condition in order to
show (G, (X), 8) is a (DF) space: namely if H, is a f-equicontinuous subset
of the topological dual (Cy(X), f)* for each neN and if H = UH, is

n=1
strongly bounded, then H is p-equicontinuous. Now (Co(X), B)* is the
space M, (X) of bounded Radon measures on X ([11, p. 99), M, (X) with
the variation norm is an essential left Banach Co(X)-module with respect
to the obvious action ([4], p. 730), and from the Riesz—Markoy theorem
together with the fact that €,(X) is barrelled we have that the
ﬁ(M,, (X), G’b(X)) bounded set H is variation norm bounded. Moreover,
since each H,, is f-equicontinuous, it follows from results in [4] and The-
orem 2.1 that for each neN there exist a,¢Cy(X) and B, = M,(X) for
which |la,|| <1, |la, p— ul| <1 for ueB,, and H, = a,-B,, and thus the
function f: N — C,(X) defined by f(n) = a, is in Gy N; G, (X)). Assuming
(iii) is valid, choose ac(Cy(X) and geCy(N; Cy(X)) such that f = a-g,

and then let B = {J g(n)-B,. Now B is variation norm bounded since
n=1

a,-veH and
llg (m) - #I1 < llg (m)11- 11l < llgh (L= Nl #11) .

for neN and veB,, and hence a-B is f-equicontinuous ([6], p. 330). Con-
sequently, the fact that H = a-B completes the proof.

It is known, of course, that (Co(X), B) can be a (DF) space without
X being compact ([3], p. 163), and hence the above theorem tells us that
0y(¥; Cy(X)) with the uniform topology can be an essential left Banach
0y (X)-module when X is not compact. Moreover, Theorem 4.1 completely
answers the question posed by Collins and Dorroh [8] concerning the
relation between (DF) and (WDF) for (C,(X), B).
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A theorem on kernel in the theory
of operator-valued distributions
by
S. L. WORONOWICZ (VVaram.wa)

1. Introduction. Let S(R™) denote the topological vector space of
test functions for tempered distributions introduced by L. Schwartz [3].
For any two functions peS(R™), yeS(R™) we put

P ®v) (@, 9) Z o(@)p(),

where zeR", y < R™ and (2, y)e R**™. It is known that this formula defines
a continuous bilinear mapping

®: S(R") X S(R™) - S(R"™y.
Let L be a topological vector space. Any continuous linear mapping
A: S(R") -~ L

is called & L-valued distribution defined on R"™ For the special case
L = C* this definition coincides with the definition of tempered distri-
butions given by L. Schwartz. The second special case I = L(D), where
D is & dense linear subset of a Hilbert space H and L (D) denotes the
*- algebra of operators acting in D (the strict definition of L(D) is given
below), is of great importance in the quantum field theory [4]. L(D)-
valued distributions are often called operator-valued distributions.

We say that the topological vector space I satisfies the theorem on
kernel if for any separately continuous bilinear mapping

B: S(R*)X 8(R™) — L
there exists a continuous linear mapping
[
B: S(R"*™) - L

® .
such that B(g, ) = B(p®y) for any geS(R") and peS(R™).
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