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It follows that

1 1»
limsup( : f {w(P)}”dP) <ce
koo \ Bl

k&
except for a set of points @, of harmonic measure at most . Since the
constant ¢ depends only on the nontangential cone at @, and not on @,
itself, it is a simple matter to complete the proof of Theorem 1.
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R. M. BROOKS (Salt Lake City, Ut.)

This paper is devoted to a further study of the commutative locally
convex algebra A of all complex-valued functions which are defined and
holomorphic in the open unit disc U of the complex plane, where the
ring multiplication is convolution (the Hadamard product), the other
operations are the usual ones, and the topology is the compact-open.
Specifically, we investigate the spectra of elements of this algebra and
the operations of inversion and exponentiation.

In Section 2 we give simple proofs of the two main results of [2]
whose proofs (in [2]) depended on an incorrect theorem (2.3 of [2]).

Section 3 consists of one theorem which gives a means for relating
convergence in the compact convergence topology of 4 to certain prop-
erties of the corresponding sequences of Maclaurin coefficients.

Section 4 is concerned with the spectrum of an element of A. The
algebra A may be identified algebraically with a certain subalgebra A
of C(N), since the space N of non-negative integers (usual topology)
is in a natural way homeomorphic to the space of non-zero continuous
homomorphisms of A onto C (with the usual Gelfand topology). For
z ¢ A, we let # be the corresponding element of C(N). Then £(n) = @,,
the mth Maclaurin coefficient of the holomorphic function z. We show
that the spectrum o () of » is between the range R(4) of £ and its closure
and give examples to show that in general one cannot say any more about
o (). Since A is not locally m-convex, the functional calculus developed
for such algebras by Michael is useless here and one is induced to look
at & spectrum. defined for general locally convex algebras by Allan (and
others) for which there is an applicable functional caleulus. We identity
first the set of (Allan) bounded elements of A, and show that Sp(s)
= R(#)*, where Sp(z) is the spectrum defined in terms of having or not
having an (Allan) bounded inverse and “x” indicates the closure in the
Riemann sphere. Thus, Sp(z) is easily computable, once R(£) is known,
whereas o () is not.

* Research partially supported by NSF Grant GP 8346.
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Section 5 is concerned with the group A~' of invertible elements
of A and with a densely defined expomential function. The mapping
@ —> a7 of A7! onto itself is nowhere continuous. The exponential fune-
tion is only densely defined. Its domain is computed in terms of the Gel-
fand transform. Exponentials need not be invertible, and the exponential
function is nowhere continuous. Also, we characterize the range of the
exponential function, and using this we show that

A7 = exp*[Dom (exp*) N~ Dom (exp*)],

where exp* is the exponential function defined in terms of the convolu-
tion product “#”,

We wish to-acknowledge here an invaluable discussion with Pro-
fessor C. A. McCarthy of the University of Minnesota which led to the
formulation and proof of Theorem 3.1.

1. Preliminaries. In this paper U will denote the open unit disc in
the complex plane € and A will denote the set of all complex-
valued functions which are defined and holomorphic in U. The set 4,
endowed with the usual pointwise operations and the compact-open
topology, is a Fréchet space. We define a ring multiplication in 4 by
the following procedure: if @, bed, then

a*xb(2) = (2ni)™ [a(0)b(tA) L1 de,
k4

where 1e U and y is a suitable cloged curve in U which encloses 0 and 1.

With this multiplication 4 becomes a locally convex, complete,
metrizable topological algebra with identity e, where 6(1) = (1—a)~%
Hence, 4 is a By-algebra (see [71); but A is not locally m-convex. There
are many ways to show this; but it is a direct consequence of Example
5.1 below, since in a locally m-convex algebra inversion is continuous.

Each w4 determines a sequence {#nli-o of complex numbers, the
coefficients of its Maclaurin expansion: @, = (n!)"'4™(0). We shall
regard elements of A either as functions on U or as complex sequences
{#n}re=e Which satisfy

Imsup |z, ' < 1,
n

or equivalently,
limsupn~log|x,| <0.

Thus, we shall write “g = {a,}eA”. When a and b are elements of A,
then a+b = {a,b,}, a somewhat eagier situation to work with than the
given multiplication.

In [2] we studied the ideal structure of the algebra. 4. We summarize
here the relevant results from that paper. Let # denote the maximal

A ring of analytic functions, 1T 201

ideal space of A with the hull-kernel topology, .#, the subspace of closed
maximal ideals, and § the space of all non-zero continuous homorphisms
of A to C with the relative weak*-topology. Then (1) .#, and § are in
a natural one-to-one correspondence which is topological, (2) § and N
(the non-negative integers with the discrete topology) are in a natural
one-to-one correspondence n«> @,, where ¢,(z) = #, (wed, ne N). This
map is topological. Also, (3) M, = {zeA: @, = 0} is the corresponding
element of ., (4) .# is homeomorphic to AN(M, « p), and (5) every
C-valued. homomorphism of A is eontinuous.

- We shall identify § and N and define the Gelfand transform & of
an element x of 4 to be a function on N; specifically, #(n) = ¢,(z) = =,
for ne N. Thus, the sequence of coefficients of an element of 4 is just
its Gelfand transform, and

A = {{a,}30 ¢ CV: limsup a,|'" < 1}.
n

2. The maximal ideal space of A. Section 2 of [2] was devoted to
a study of the maximal ideal space of A. The proofs of several of the
theorems of that section were based on Theorem 2.3 of [2]. D. L. Plank
has shown that this theorem is false [6]. The theorem purported to charac-
terize the maximal ideals M,, p<fN—N. He has shown that the points
for which the characterization holds are exactly the P-points of pN—N
([6], Theorem 7.6). In this section we shall give proofs of Corollary 2.3.1
and Theorem 2.4 of [2] which do not depend on Theorem 2.3 of that
paper; since these are the only places where Theorem 2.3 is used directly
(most of the applications being of Corollary 2.3.1).

LuMma 2.1. For pefN, let J, = {acA: a’(p) <1}, where & is defined
by @(n) = |a,]"™ (neN) and @° is the continwous extension of @ to PN.
Then

(1) Jyp is @ prime ideal in A and

(2) N{Jp: peN—N} = M{M,: p<fN—N}.

Proof. Fix a,bed,. Let » =a°(p) and s = b%(p). Then each of r
and s is less than one. Let { = max(r, s). There exists neighborhoods
U, V, and W of p such that (i) if n e UN N, then @(n) <27 (r-+1), (i)
if n ¢ VN N, then b(n) < 27 (s+1), and (iil) if n ¢ WN N, then 2V < 1+,
where & < (3(1+1%))7 (1—1).

¥ neUnVnWn N, then

a+b(n) = |a,+b,["" < 2" max (@ (n), b(n))
< (1-+e) max (271 (r 1), 27 (s +1)) = (14 £)27 (1)
<3712+t < 1.
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Hence, (a+ b)ﬁ (p) <1, and a+beJ,. The remaining verifications of part
(1) are easy. Part (2) is Lemma 20.8 of [5].
THEOREM 2.2. (COROLLARY 2.3.1 of [2].) M {M,: pefN—N} = 4,,
the set of elements of A with radius of convergence greater tham one.
Proof. In view of Lemma 2.1 it suffices to show that 4, = N {Jy:
pefN—N}. If acd,, then limsup@(n) =r <1, and there is an integer
n

m such that if #>m, then @(n) <27'(r41) =s. Fix pefN— N, and
let V be a neighborhood of » which misses {0, 1, ..., m}. Hence, if neV,
then @(n) <s. Since pe VNN we must have @’(p)<s <1, and aeJ,.

If aed—4,, then there exists a subsequence {n,}, such that
lima(n,) = 1. If p is any point of AN— N which lies in the closure of
E

{1, Mg, ...}, then a@’(p) =1. Hence, a¢J,. »

We now prove Theorem 2.4 of [2]: “The maximal ideal space of

4, endowed with the hull-kernel topology, is homeomorphic to BN.»
_Let f: M — BN be the map f(M,) =p. We know that f is one-to-one
and onto, that . is compact, and that AN is a Hausdorff space. Thus,
it suffices to establish the continuity of f. Recall that a base for the
closed sets of ./ is {Il(a): acA}, where B(a) = {M e#: ¢ « M}, and that
g: BN - My (: -/”(O(N))) given by g(p) = M is a homeomorphism
(Gelfand-Kolmogoroff Theorem; [3], Theorem 7.3). We have also, ([2],
Theorem 2.2), that MSn 4 = M, for each p in AN. Let b = gof: M M,
Fix yeC(N). We show that h~'(Ey(y)) is closed in 4, where By(y)
= {Mge My: ye MS}. Let » be the characteristic function of N— % ().
Then Z(2) = Z(y), so w< M7 if, and only if, y « MS. Thus, () = Hy(y).

But wed, and M{eEy(2) if and only if w e MCN A4 = M,. Thus,

W B (y)) = v (Bo(2)) = B (w)
which ig closed.

3. A convergence theorem., Since the convolution multiplication

icm°®

defined in the set 4 is most easily thought of in terms of the coefficient

sequences we establish a criterion for compact convergence in A in terms
of the corresponding sequences. ’

o0
TEeoREM 3.1. Let {f,(2) = 3 @,,#°)}, be o sequence in A. Then
p=0
{falner converges to 0 in A (compact convergence) if and only if
(1) for each peN we have lima,, = 0, and
n
(2) for each 7, 0 <r <1, sup 3 [y |17 < 00,
nT 5o

Proof. Necessity. Since compact convergence of {f,} implies the
same convergence for each of the sequences { fon, peN, we have (1). To
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prove (2) we fix 7, 0 <7 <1, and let ¢ =27'(r41). For each neN we
have

2 |97 = Z ] (27 (1) 77757

» D

< [2 {2 (r+ 1)—1}2;;]1/2[2 [am)]gszp]x/z
v »

by the Cauchy-Schwarz inequality. Call the first factor C,. The second
factor is the square root of

1 b
0115
77 | etssIPae

which is dominated by M,, the supremum of the sequence {f,} on the
disc of radius 27! (r+1). Thus, sup D [a,,|r" < C.M, < co.
n »

Sufficiency. We first show that if sup ' |a,,[*? = M, < oo, then

n D R
for each pair (e, 6) of positive real numbers with é < r there exists ge N
so that

(3.1) sup D) lay,lr— o <.

If geN, then for each n>1 we have

=)

Dl (r— 01 = > layy|r? (™" (r— 0)P.

) p=g 13
But r Y (r—8) <1, so [r{r— )P < (r*(r—8))? for each p>g. Thus,
(3.2) is dominated by
(F r—8)7 D) laglr? < M (r— 8))
p=q
So, if ¢ is chosen sufficiently large, then the conclusion follows (since

M, is independent of == 1).
We now fix r, 0 <r <1, e>0, 6>0 so that é§ <, and choose

geN so that (3.1) holds. Now

(3.2)

_

-

q—-1 a—
Dl (r— 67 < 3 gy
p=0 p=0
For 0 < p < g—1 there exists N, such that if n> N, then |a,,] < ¢ 'e.
Let N = max (¥, ..., N,_;). Then for each n > N we have

(3.3) Dl (r— 0P < e,
=g ot
(3.4) Dl (r— 0P < D L] <e.
p=0 p=0
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Hence, for n> N we have

(3.5) Dty (r— 8)7 < 26.
p=0
Thus, for n > N we have

(3.6) sup{Ifu(2)|: o < 7— 8} <2,
and the sufficiency is established. i

4. Spectra of elements of A. In [2] we gave a criterion for inverti-
bility in A: zed is invertible (wed™") if, and only if, (1) for each neN
we have z, # 0, and (2) lim|z,[" = 1. Hence, if zed, then the range

of £, B(#), is contained in the spectrum () of » ( = {heC: m—2¢471}).
We wish (1) to see how much larger than R(#) the set o(z) can be and
(2) to compare this spectrum with the one defined for general locally
eonvex algebras by Allan [1].

Lmyma 4.1, If wed, then R(4) < o(w) < R(4)".

_Proof. Fix 1e C—R(#)". Then dist(4, B(4)) = 6 >0 and
lw,— A" > 8" for each meN.

It is clear that z—1e A%

ExameLe 4.2. We give three examples:
(a) o(z) = R(#),
. (b) o(@) = R(#),
and
(¢} o(») is neither extreme.
. (a) wis defined by @, = (n+1)"" for neN. Here, R(#)™ = R(£)u{0}.
It is easily verified that med ™! (0 ¢o(a)).
(b) @ is defined by @, = 2" for neN, Again, R(4)” = R(8)uU{0}.
But, in this case Oea(m).n ’ ) A
(¢) # is defined by @, =1+ (m+1)" = (n+1)"'(n-+2) for even
r.bel\( and lmn =27" for odd neN. Here, R(£)~ = R(£)u {0, 1}. Sinee
hin inf |@,/"" =271 0 ¢ ¢(2). But Hminf [, ~1" = 1. So 1 ¢ o(a).
n

In.these examples it was still easy to compute o(z) even though it
was 'nelther R(#) nor R(#)". One can construct examples where R(#)
consists of the points in C with rational real and imaginary parts, R(£)~ =C,
‘a,nd o(x) can be almost anything in between. The diﬂicfxlty of comput-
ing o(z) except in the simplest examples iz one reason for considering
the spectrum, defined by Allan (and others) for locally convex a;lge]iras.
Anfsthejr reason is that there is a functional calculus for such a,lgebra.s
which uses this spectrum. Michael’s functional caleulus (Whioh uses the
spectrum o (x)) is useless here because the algebra A is not locally m-
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convex and Michael’s development requires the inverse limit decompo-
sition peculiar to those algebras (see [4]).

An element we 4 is said to be (Allan) bounded (xeA;) provided there
exigts 1¢(0, co) such that {(A7'»)"};, is bounded in 4 (in the TVS sense).
The infimum of all such 2 is denoted f(#) and is the same as inf{A > 0:
(A% >0 (n — oo)} ([1], Proposition 2.14). Let C* be the one-point
compactification of C. If 1C*, then AeSp(») (Allan’s spectrum) if and
only if (1) 2 = oo and @ ¢4,, or (2) 2 # oo and &— 1 has no inverse belong-
ing to 4,.

The first problem is to identify the (Allan) bounded elements of A.

THEOREM 4.3. If wed, then z<d, if and only if o(x) is a bounded
subset of C (equivalently, R(£) or R(£)~ 4s bounded in C).

Proof. If zed;,, then Sp(x) is bounded in C ([1], Theorem 3.12),
and o(z) < Sp(2).

Conversely, suppose ¢(z) is bounded in C, and is contained in the
dise about 0 of radius M. Fix 1> M. Then (A @)* - 0 (n — o). We use
the criterion of Theorem 3.1. For peN we have ((A~'x)"), = A ™af.
Since for each peN the complex number z, belongs to ¢(x) we must have
|27 s,| < 1. Thus, ]irrtn[(l‘lw)p]” — 0. Also, for each neN we have

Dz, < 3" < oo,
p=0 p=0
THEOREM 4.4. If we A, then Sp () is the closure of R(£) in C*.
‘P,_roof. In this proof “~” will denote closure in C and “*” will denote
closure in C*. We know already:

R(#) < o(z) = R(#)~ = R(#)* = R@#)~U{c}, and o(z) < Spla).

Also, Sp(x) = Sp(x)*, since A is complete ([1], Corollary 3.9). Hence,
R(£)* = Sp(w).

Fix A eC*—R(£)*. If 1= oo, then Ae<R(£)* implies that R(#)~ is
bounded in €. By Theorem 4.3 zed, and oo ¢ Sp (#). If 1¢C, then (z— )"
exists in 4 and

o(@—27") = {(p—D7": weo(@).

This set iz clearly bounded in C so (z—2)"ed, and A¢Sp(»). Thus,

Sp(z) = R(£)*. Also, R(#)* = R(£)” if and only if R(#) is bounded.
In the other case, R(£)* = R(£)” U {o0}.

5. Inversion and exponentiation. We show here that.the mapping
2 — 3~ of A7 onto A" is not continuous, that the exponential function
exp* is only densely defined and is nowhere continuous, that exp*(z)
need not be invertible (zed), but that A~ is the range of a suitable
restriction of the exponential function.
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ExsvprLE 5.1. The map 2 — 4! is not continuous at the identity
of A7! (hence, is nowhere continuous since A™' iy a group under multi-
plication). We define a sequence {w,}o, in A~ by @)y =1 if p #£n
and (z,), = n~" Then (z,—e), =0 if » #n and (z,—e), =n""—1.
This sequence clearly converges to 0 in A. But (z,"'—e), =0 if p % n
and (z;'—e), = n"—1. This sequence fails to converge in 4.
0
Let seA. We define exp*(z) to be the series D' (n!)~'a" when it
n=0
converges, where “z"” is the nth convolution power in 4.
The following lemma is an immediate consequence-of the applica-
tion of the continuous homomorphisms ¢, (neN).

Levua B.2. If wed and if 3 (k1)"'a* comverges in A (to exp*(x)),
: =0

then '(exp*m)n = exp(x,) for ea,ck_ neN.
Lemuma 5.3. Let D = {weA: limsupn'Rex, <0} If wed, then
n .

exp*(x) exists (in A) if and only if zeD.

Proof. If wed, we can formally define a power series y by setting
Yn = €xp(x,) for neN. This series corresponds to an element of A if and
only if ]j.}:nsupn"‘log]ynl <0 (equivalently, lim sup n-~ 'Rex, <0). Tf

exp*(z) exists, then it must be given by the sequence {y,} defined above
and zeD. The converse i clear.

We note that all the elements of 4 which have bounded spectra
(more generally, all elements « such that Res () is bounded above) belong
to D. Since this includes-all elements of A with radius of convergence
greater than one, the function exp* is densely defined.

That the existence of exp*(x) is not completely determined by o ()
or Sp(2) is shown by the following example.

Exawpre 5.4. We define two elements z, y of A such that (1) o(z)
= o(y), (2) Sp(») = Sp(y), but (3) exp*(») exists while exp*(y) fails to

- exist. The elements #, y are defined by

(a) =, = 0 if k¢ {20,2%, 22, .., %, =n for meN,

(b) ¥, = n for neN.

Clearly E(#) = R(§) = N; o(®) = o(y) = N; and Sp(z) = Sp(y)
= NU {oc}. However, )

lihmlc'lmk < 13L1112"‘m2,L =0.

Hence, #¢D; but y¢D.

Ledova 5.5. If we D and if exp* () e A7, then (exp* ()™ = exp*(—m).
Thus, exp*(z)eA™ if and only if zeDN(—D), this requirement being
equivalent o imn~'Rew, = 0.

icm
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Proof. Let # be as hypothesized. Then, for each neN we have
[[exp*(2)) 7], = [exp*(2),]™" = exp(—a,).
The element » = {—n};>_, of 4 is in D, but not in — D. Hence, not every

exponential iy invertible.

TeEEOREM 5.6. The mapping © — exp*(x) is discontinuous ai every
point of D.

Proof. Fix acD. We define a sequence {2,}>_; in D by x,, =0
if p #n and @,, = —a,+nlogn. Then, {x,} converges to 0 in A. Part
(1) of Theorem 3.1 is obviously satisfied; and for each re(0, 1) we have
that

sup Z [Typ]#? = sup|— a,+nlogn|r"
n 0 n

ig finite, since {—a,,-+nlogn}y., is the coefficient sequence of an element
of 4 (where we let the 0th coefficient be 0).
However, if ¢ (0,1) we have
%* _’ * P
sup ; [(exp*(a) exXP* (2,)),—(exp*(a)),|r

= S}'Llp lexp (a'n+ Bym) — exp (an)l 7"

Il

SUP [eXP (@, + @y, ) 1" — €XP (4, ) 77|

= ”{GXP (an + mnn) 'rn}:;l - {BXP (an) 7‘”}::1“00
2 [IH{oxP (@ + ) 7™} oo — [1{EXD (0,) 7"}

We consider the two terms separately. In the first term evaluation of
the ,,’s yields ||{n"r"};_,]lo, Which is clearly -+ oco. The second term
is supexp (Rea,)r" which is finite, since 3 exp(a,)7" is absolutely summa-
ble for 7¢(0,1). Thus, {exp*(a+4,)} fails to converge to exp*(a), while
{a+=,} converges to a.

Lemma 5.7. An element a of A has a logarithm in A if and only if

H{nsnpn“‘log(]logi a,l]) < 0.

Proof. We fix acd and define z by 2, = log|a,|+-iPA(a,), where
PA(1) is the principal argument, which we take in (0, 2r]. For a complex
number A we let [A] denote the usual absolute value in C = R? and
we denote by |i|, the I®-norm on R’. We have [}, < |M<V/§]Mm~
Thus, limsup|z,|" <1 if and only if, liénsup o, <1 if and only if

n
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limsupnt1og |#,), < 0. We shall show that this last inequality is equi-
nico ™= B
v:,lent to the one in the statement of the lemma. Now

limsupn " log [max ([log|a, |, PA(a,)]
" = limsupn ! max [log (Jlog|a,||), logPA (a,)]
n
= max[limsupn~* log (liog |a,l]), lixglsup%“llogPA(%)]_
n

Since limsupn~! logPA(a,) < 0 we have
limsupn ! log (%,)e < 0
n

if and only if
lim sup n~* log ([log|a,|]) < 0.

Thus, if ¢ed, then the easiest way of defining a logarit]?rp for @ yields
an element « of A if-and only if a satisfies the stated condition. It is clear

that the constructed element z belongs to D.
THEOREM 5.8. A~ = exp*[Dn(—D)L
Proof. Lemma 5.5 implies that the right side is contained in the
left. Let aeA™'. Then limn~'logla,] = 0. For e> 0, there exists n,eN
n “

such that if % > n,, then [log|a,|| < me. But then
logllog|a,|| <logne and n~"log(log|a,|)) <~ logn-+n~"loge.

The larger sequence converges to 0 as n —oo. Hence, a has a 19ga.rithm
in A: ¢ = exp*(z). Since exp*(z)ed™!, Lemma 5.5 implies that
x e DN (—D).
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Factorization in Fréchet spaces*
by
W. H. SUMME RS (Fayetteville, Ark.)

1. Introduction. Let 4 be a Banach algebra with a bounded left
approximate identity. In 1959, P. J. Cohen [2] established that each
element in 4 could be factored, and the utility of factorization as a tool
in the study of Banach algebras and Banach A-modules has become
apparent in the intervening decade. One fruitful approach (e.g., see
Rieffel [11], Sentilles and Taylor [13], and Collins and Summers [4]
has been to use the factorization theorem due to Hewitt [7] in conjunction
with the device of introducing auxiliary essential left Banach A4-modules
in order to factor certain “large” subsets of a given essential left Banach
4-module (for a definition, see [107), and it is this procedure which will
concern. us in the sequel.

There are at least three natural suxiliary left 4-modules that one
can consider for a fixed left Banach A-module E; namely, the space
O(X; B) of all continuous functions from a topological space X into H,

‘the space 0, (X ; H) of bounded functions in ¢ (X ; ), and the space C)(X; F)

of functions in ((X; B) which vanish at infinity, each with respect to
the obvious pointwise action. If X is a locally compact- Hausdorff space,
then Cy(X; E) with the uniform topology [15] becomes an essential left
Banach 4-module and the above approach is valid (see Section 3). How-
ever, the situation is less obvious in the other two cages, and there seems
little likelihood of realizing either (/(X; E) as a left Banach A-module
or 0,(X; E) as an essential left Banach A-module (however, see Section. 4)
unless X is compact. Consequently, the following question arises (see
[41): can Hewitt's factorization theorem be emtended to include the action
of A on a dlass of locally convew spaces more general than Banach spaces ?

An affirmative answer has been announced by Ovaert [9], but it
appears that a proof of Ovaert’s result will entail a recasting of the tech-
nique used by Craw [5] in extending the work of Cohen to Fréchet al-
gebras. In our context, however, it is possible to give a relatively simple

* This research was supported in part by National Science Foundation grant
GP-11762. . ’ ’ !
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