- [3] J. L. Kelley, I. Namioka, et al, Linear Topological Spaces, Princeton 1963.
- G. G. Lorentz and M. S. Macphail, Unbounded operators and a theorem of A. Robinson, Trans. Roy. Soc. Canada (Series III) 44 (1952), pp. 33-37.
- [5] H. Melvin-Melvin, Generalized k-transformations in Banach spaces. Proc. London Math. Soc. (second series) 53 (1951), pp. 83-108.
- [6] M. S. Ramanujan, Generalized Kojima-Toeplitz matrices in certain linear topological spaces, Math. Ann. 159 (1965), pp. 365-373.
- [7] A. Robinson, On functional transformations and summability, Proc. London Math. Soc. (second series) 52 (1947), pp. 132-160.
- [8] A. K. Snyder, On a definition for conull and coregular FK spaces, Notices Amer. Math. Soc. 10 (1963), p. 183.
- [9] Conull and coregular FK spaces, Math. Zeitschr. 90 (1965), pp. 376-381.
- [10] A. Wilansky, Functional Analysis, New York 1964.
- [11] An application of Banach linear functionals to summability, Trans. Amer. Math. Soc. 67 (1949), pp. 59-68.
- [12] E. I. Yurimyae, Einige Fragen über verallgemeinerte Matrixverfahren. Eesti NSV Tead, Akad, Toim, Tehn, Füüs-Mat, 8 (1959), pp. 115-121.

DICKINSON COLLEGE CARLISLE, PENNSYLVANIA

Recu par la Rédaction le 20.3, 1970

On a class of absolutely p-summing operators

by

TIN KIN WONG (Detroit, Mich.)

§ 1. Introduction. In this note we use the conventions and notation of A. Persson [4]. A normed linear space is denoted by E, and E' is its topological dual with the strong dual topology. We use $\langle f, f' \rangle$ to indicate the action of a vector f in E and a functional f' in E'. For $1 \leq p < \infty$, p and p' are the usual conjugate numbers. $L^p(X, \mu; E')$ is the Banach space of equivalent classes of strongly μ -measurable E'-valued functions K such that $\int \|K(x)\|^p d\mu < \infty$. In case E' is C — the complex numbers, we simply write $L^p(X, \mu)$ instead of $L^p(X, \mu; C)$. All the measures in this note are countably additive and positive, and all the operators are

bounded. We aim to investigate a class of linear operators $T \colon E \to L^p(X, \mu)$ and their adjoint $T^*: L^{p'}(X, \mu) \to E'$ such that

$$|Tf(x)| \leq \gamma(x)||f||$$

for some γ in $L^p(X, \mu)$. When E is a reflexive Banach space or E' is separable, it turns out that each of them can be represented by a unique K in $L^p(X, \mu; E')$ in the following way:

$$Tf(x) = \langle f, K(x)
angle$$
 a. e. and $T^*g = \int\limits_X g(x)K(x)d\mu$

for f in E, g in $L^{p'}(X, \mu)$ where the integral is taken to be the Bochner integral. In this case, T is an operator of type $-N_n$ and T^* is of type $-N^p$ ([4], Theorem 1 and 2). They are all completely continuous operators. Our result is quite similar to Dunford-Pettis Theorem in which they obtained a representation for any operators $T \colon E \to L^{\infty}(X, \mu)$ and $S \colon L^1(X, \mu) \to E'$ by a bounded weakly measurable E'-valued function under the hypotheses that E is a separable Banach space (see [6], p. 469). As a consequence of our result, we obtain an alternative proof for a theorem of Shields-Wallen-Williams which asserts that if operator T: E $\to L^p(X, \mu)$ satisfies $|Tf(x)| \le \gamma(x) ||f||$ for some γ in $L^p(X, \mu)$, then Tis absolutely p-summing. In case $E = L^{p'}(Y, p)$, our result also includes some work of A. Persson ([4], Theorem 3) which gives a characterization of Hilbert-Schmidt operators on L^2 -spaces.

THEOREM 1. Let E be a Banach space which is either reflexive or its dual E' is separable. For linear operators $T: E \to L^p(X, \mu), \ 1 \leqslant p < \infty$, the following conditions are equivalent:

(a) There is a unique K in $L^p(X, \mu; E')$ such that

$$Tf(x) = \langle f, K(x) \rangle$$
 a. e.

(b) $|Tf(x)| \leq \gamma(x)||f||$ a. e. for some γ in $L^p(X, \mu)$.

Note. The exceptional set of measure zero may depend upon f. Theorem 2. Let E be as in Theorem 1. For linear operators $S\colon L^{p'}(X,\mu)\to E', \frac{1}{p}+\frac{1}{p'}=1, 1\leqslant p<\infty,$ the following conditions are equivalent:

(a) There is a unique K in $L^p(X, \mu; E')$ such that

$$Sg = \int_{X} g(x)K(x)d\mu$$

for g in $L^{p'}(X, \mu)$.

(b) S is the adjoint of a linear operator $T; E \to L^p(X, \mu)$ such that

$$|Tf(x)| \leq \gamma(x) ||f|| \ a. \ e.$$

for some γ in $L^p(X, \mu)$.

Note. The integral in condition (a) is Bochner integral.

Remark. It is not difficult to see the equivalence of Theorem 1 and Theorem 2. We shall only prove Theorem 1. Moreover, if there are K and K_1 in $L^p(X,\mu;E')$ such that $\langle f,K(x)\rangle=\langle f,K_1(x)\rangle$ a.e. for each f, where the exceptional μ -null set depends on f. Then if g in $L^{p'}(X,\mu)$, we have

$$\left\langle f, \int g(x) K(x) d\mu \right\rangle = \int \langle f, K(x) \rangle g(x) d\mu = \int \langle f, K_1(x) \rangle g(x) d\mu$$

$$= \left\langle f, \int g(x) K_1(x) d\mu \right\rangle$$

for all f in E, therefore

$$\int g(x) K(x) d\mu = \int g(x) K_1(x) d\mu$$

for all g in $L^{p'}(X, \mu)$. In particular

$$\int_{A} (K(x) - K_1(x)) d\mu = 0$$

for all μ -measurable set A with $\mu(A) < +\infty$. Since $\|K(\cdot) - K_1(\cdot)\|^p$ is in $L^1(X, \mu)$, the support of $K - K_1$ is σ -finite. Using localization method, we see that $K(x) - K_1(x) = 0$ almost everywhere. Thus $K = K_1$. This proves the uniqueness assertion in Theorem 1 and Theorem 2.

§ 2. Some measure-theoretic preparation. Let (X,μ) be a finite measure space. Let $\tau\colon L^\infty(X,\mu)\to C(\Omega)$ be the Gelfand isomorphism $f\to \hat f$, where Ω is the Gelfand space of $L^\infty(X,\mu)$. Let $\hat\mu$ be the Radon measure on Ω such that $\int f d\mu = \int \hat f d\hat\mu$ for all f in $L^\infty(X,\mu)$.

PROPOSITION 1. For each $1 \leqslant p < \infty$, there exists a linear isometry τ_p of $L^p(X,\mu)$ onto $L^p(\Omega,\hat{\mu})$ that extends the Gelfand isomorphism τ . Moreover, this family of isometries $\{\tau_p;\ 1\leqslant p<\infty\}$ has the following properties:

- (i) For $1 \leq p < q < \infty$, τ_p extends τ_q .
- (ii) If f, g and fg are all in $L^p(X, \mu)$, then

$$\tau_p(fg) = \tau_p(f)\tau_p(g) \quad \text{and} \quad \tau_p(\bar{f}) = \overline{\tau_p(f)}$$

where \bar{f} is the complex conjugate of f. Hence $\tau_p(|f|) = |\tau_p(f)|$.

(iii) $\int\limits_X f d\mu = \int\limits_\Omega \tau_p(f) d\hat{\mu}$ for f in $L^p(X,\mu)$. Hence $\int\limits_A f d\mu = \int\limits_{\hat{A}} \tau_p(f) d\hat{\mu}$ where \hat{A} is the compact open subset of Ω such that $\hat{\chi}_A = \chi_{\hat{A}}$ and χ_A is the characteristic function of A.

Proposition 1 is well known (cf. [2] p. 18 for the existence of τ_p). The properties (i)–(iii) requires only routine checking.

The following proposition plays a key role in the proof of our theorems.

PROPOSITION 2. Notations as above, let E be a Banach space. For $1 \leq p < \infty$, there exists a linear isometry σ_p of $L^p(\Omega, \hat{\mu}; E)$ onto $L^p(X, \mu; E)$ such that

$$\int\limits_{\mathcal{A}}\sigma_p(K)(x)\,d\mu=\int\limits_{\hat{x}}K(\omega)\,d\hat{\mu}$$

for K in $L^p(\Omega, \hat{\mu}; E)$ and A μ -measurable set with $\hat{\chi}_A = \chi_{\hat{A}}$.

Proof. We know that the formal identity $I: C(\Omega) \to L^{\infty}(\Omega, \hat{\mu})$ is a linear isometry of $C(\Omega)$ onto $L^{\infty}(\Omega, \hat{\mu})$ (cf. [2], p. 18). Thus $Iot: L^{\infty}(X, \mu) \to L^{\infty}(\Omega, \hat{\mu})$ is an isometric isomorphism. Since $\chi_A = \chi_B$ in $L^{\infty}(X, \mu)$ if and only if A and B represent the same element in the measure ring of (X, μ) . This gives rise to an isomorphism between the measure rings of (X, μ) and $(\Omega, \hat{\mu})$. For any step-function

$$K = \sum_{i=1}^{n} \chi_{\hat{A_i}} f_i$$

in $L^p(\Omega, \hat{\mu}; E)$, we may regard \hat{A}_i as an element in the measure ring of $(\Omega, \hat{\mu})$ with the compact open set \hat{A}_i as a representative. Let

$$\sigma_p K = \sum_{i=1}^n \chi_{A_i} f_i \quad \text{where} \quad \hat{\chi}_{Ai} = \chi_{\hat{A_i}}.$$

185

Then $\sigma_p K$ is a step function in $L^p(X, \mu; E)$ and $\|\sigma_p K\| = \|K\|$. Because of the measure ring isomorphism, we have

$$\sigma_p(K_1 + K_2) = \sigma_p(K_1) + \sigma_p(K_2)$$

for K_1 and K_2 step-functions. Thus σ_p is a linear isometry on the dense linear manifold of the step-functions in $L^p(\Omega,\hat{\mu};E)$ into $L^p(X,\mu;E)$. Therefore σ_p can be extended to a linear isometry of $L^p(\Omega,\hat{\mu};E)$ into $L^p(X,\hat{\mu};E)$. Since the range is dense, hence, σ_p maps $L^p(\Omega,\hat{\mu};E)$ onto $L^p(X,\mu;E)$. For $K=\sum_{i=1}^n \chi_{\hat{A_i}}f_i$ a step-function, and A μ -measurable set, we see that

$$\int_{\hat{x}} K(\omega) d\hat{\mu} = \int_{A} \sigma_{p} K(x) d\mu.$$

Since $\int_{\hat{A}} (\cdot) d\hat{\mu}$: $L^p(\Omega, \hat{\mu}; E) \to E$ is a bounded operator, and since the step-functions are dense in $L^p(\Omega, \hat{\mu}; E)$, then

$$\int_{\hat{A}} K(\omega) \, d\hat{\mu} = \int_{A} \sigma_p K(x) \, d\mu$$

for all K in $L^p(\Omega, \hat{\mu}; E)$. The proof is complete.

§ 3. The proof of Theorem 1 hings on the implication (b) \Rightarrow (a), because condition (a) implies (b) clearly. We may assume that the set $A = \{x \in X; \ \gamma(x) = 0\}$ has measure zero. If $\mu(A)$ were positive, then we can write $L^p(X, \mu; E)$ as $L^p(A^c, \mu|_{A^c}; E) \oplus L^p(A, \mu|_A; E)$ for any Banach space E, since the multiplication by χ_A is a projection (idempotent) on $L^p(X, \mu; E)$. We use A^c to denote the complement of A in X, and $\mu|_{A^c}$ is the measure μ restricted to A^c . The condition $|Tf(x)| \leq \gamma(x)||f||_{a}$ a. e. implies that T(E) is contained in $L^p(A^c, \mu|_{A^c})$. Hence T factors as

$$E \stackrel{T_1}{\longrightarrow} L^p(A^c, \mu|_{A^c}) \stackrel{i}{\longrightarrow} L^p(X, \mu)$$
.

Now γ is in $L^p(A^c, \mu|_{A^c})$ and $\gamma > 0$ on A^c ,

$$|T_1 f(x)| \leqslant \gamma(x) ||f||.$$

If $T_1f(x)=\langle f,K_1(x)\rangle$ for some K_1 in $L^p(A^c,\mu|_{A^c};E')$, using the natural injection i of $L^p(A^c,\mu|_{A^c};E')$ into $L^p(X,\mu;E')$ we obtain K in $L^p(X,\mu;E')$ such that $Tf(x)=\langle f,K(x)\rangle$ a. e.. Therefore we can and do assume that $\gamma(x)>0$ a. e.

LEMMA 1. Let E be a normed linear space. Let $\gamma>0$ a. e. be in $L^p(X,\mu)$. Define the finite measure $\nu=\gamma^p\cdot\mu$. Let $\varphi\colon L^p(X,\nu)\to L^p(X,\mu)$ be the linear isometry $f\to\gamma f$. For operators $T_\mu\colon E\to L^p(X,\mu)$ and $T_\nu\colon E\to L^p(X,\mu)$ such that $\varphi T_\nu=T_\mu$, then

(i) $|T_{\mu}f(x)| \leq \gamma(x) ||f|| \ a. \ e. \ (\mu) \ if \ and \ only \ if \ |T_{\nu}f(x)| \leq ||f|| \ a. \ e. \ (\nu).$

(ii) $T_{\mu}f(x) = \langle f, K_{\mu}(x) \rangle$ a.e. for some K_{μ} in $L^{p}(X, \mu; E')$ if and only if $T_{\nu}f(x) = \langle f, K_{\nu}(x) \rangle$ a.e. for some K_{ν} in $L^{p}(X, \nu; E')$.

The proof is trivial, we omit it.

LEMMA 2. Let E be a normed linear space. Let (X, μ) be a finite measure space. Let (Ω, μ) be the measure space obtained in § 2. For linear operators $T \colon E \to L^p(X, \mu)$ and $\hat{T} \colon E \to L^p(\Omega, \hat{\mu})$ such that $\hat{T} = \tau_p T$, where τ_p is the isometric extension of the Gelfand isomorphism τ of $L^\infty(X, \mu)$ onto $C(\Omega)$, then

(i) $|\hat{T}f(\omega)| \leq ||f|| \ a. \ e. \ (\hat{\mu}) \ if \ and \ only \ if \ |Tf(x)| \leq ||f|| \ a. \ e. \ (\mu).$

(ii) $\hat{T}f(\omega) = \langle f, \hat{K}(\omega) \rangle$ a. e. for some \hat{K} in $L^p(\Omega \hat{\mu}; E')$ if and only if $Tf(x) = \langle f, K(x) \rangle$ a. e. for some K in $L^p(X, \mu; E')$.

Proof.

$$\int\limits_{\hat{A}} |\hat{T}f(\omega)| \, d\hat{\mu} \, = \, \int\limits_{\hat{A}} |\tau_p Tf(\omega)| \, d\hat{\mu} \, = \, \int\limits_{\hat{A}} \tau_p(|Tf|)(\omega) \, d\hat{\mu} \, = \, \int\limits_{A} |Tf(x)| \, d\mu$$

and $\mu(A) = \hat{\mu}(\hat{A})$. We have used Proposition 1 in this argument. It follows that $|\hat{T}f(\omega)| \leq \|f\|$ a. e. $(\hat{\mu})$ if and only if $|Tf(x)| \leq \|f\|$ a. e. (μ) . This proves (i). Now we prove (ii). If $\hat{T}f(\omega) = \langle f, \hat{K}(\omega) \rangle$ a. e. $(\hat{\mu})$ for some \hat{K} in $L^p(\Omega, \hat{\mu}; E')$. Let $K = \sigma_p \hat{K}$ where σ_p is the linear isometry of $L^p(\Omega, \mu; E')$ onto $L^p(X, \mu; E')$ (see Proposition 2). If A is any μ -measurable set, then

$$\begin{split} \int\limits_{\mathcal{A}} Tf(x)\,d\mu &= \int\limits_{\mathcal{A}} \tau_{p}^{-1}\hat{T}f(x)\,d\mu = \int\limits_{\hat{A}} \hat{T}f(\omega)\,d\hat{\mu} = \int\limits_{\hat{A}} \langle f,\,\hat{K}(\omega)\rangle\,d\hat{\mu} \\ &= \int\limits_{\mathcal{A}} \langle f,\,\sigma_{p}\hat{K}(x)\rangle\,d\mu = \int\limits_{\mathcal{A}} \langle f,\,K(x)\rangle\,d\mu\,. \end{split}$$

Hence $Tf(x) = \langle f, K(x) \rangle$ a.e. The above argument makes use of Proposition 1 and 2. By a similar argument one proves the converse. This concludes the proof of Lemma 2.

LEMMA 3. Let E be a normed linear space and let $(\Omega, \hat{\mu})$ be the measure space obtained in § 2. If $\hat{T} \colon E \to L^p(\Omega, \hat{\mu})$ is a linear operator such that $|\hat{T}f(\omega)| \leq ||f||$ a.e., then there exists a bounded function $\Phi \colon \Omega \to E'$ defined everywhere on Ω , such that for each f in E, the complex valued function $\omega \to \langle f, \Phi(x) \rangle$ is continuous and $\hat{T}f(\omega) = \langle f, \Phi(\omega) \rangle$ a.e.

Proof. The hypotheses implies that $\hat{T}f$ is in $L^{\infty}(\Omega, \hat{\mu})$ for all f in E, and that $\|\hat{T}f\|_{\infty} \leqslant \|f\|$. Let $\hat{T}_1 \colon E \to L^{\infty}(\Omega, \hat{\mu})$ be defined by $\hat{T}_1 f = Tf$. Then $\|\hat{T}_1\| \leqslant 1$. For each ω in Ω , let $\delta_{\omega} \colon C(\Omega) \to C$ be the evaluation functional. We know that the formal identity mapping $I \colon C(\Omega) \to L^{\infty}(\Omega, \hat{\mu})$ is a linear isometry of $C(\Omega)$ onto $L^{\infty}(\Omega, \hat{\mu})$. Then $\Phi(\omega) = \delta_{\omega} I^{-1} \hat{T}_1$ is

in E', and $\|\Phi(\omega)\| \leq 1$ for ω in Ω . Let g be in $C(\Omega)$ such that $g = I^{-1}\hat{T}_1f$. Then for any measure set \hat{A} in Ω

$$\int\limits_{\hat{A}}\hat{T}f(\omega)d\hat{\mu} = \int\limits_{\hat{A}}\hat{T}_1f(\omega)d\hat{\mu} = \int\limits_{\hat{A}}g(\omega)d\hat{\mu} = \int\limits_{\hat{A}}\langle f,\Phi(\omega)\rangle d\hat{\mu}.$$

Therefore $\hat{T}f(\omega) = \langle f, \Phi(\omega) \rangle$ a. e. The proof is complete.

Proof of Theorem 1. As we have pointed out earlier that we only need to prove the implication (b) \Rightarrow (a). In view of Lemma 1 and the remark at the beginning of § 3, we may assume that (X, μ) is a finite measure space and $\gamma = 1$ a. e. Let $(\Omega, \hat{\mu})$ be the measure space obtained in § 2. We define $\hat{T} : E \to L^p(\Omega, \hat{\mu})$ by $\hat{T} = \tau_n T$ where τ_n is the linear isometry of $L^p(X, \mu)$ onto $L^p(\Omega, \hat{\mu})$ as in Proposition 2. By Lemma 2, $|\hat{T}f(\omega)| \leq ||f||$ a. e. By Lemma 3, $\hat{T}f(\omega) = \langle f, \Phi(\omega) \rangle$ a. e. for a E'-valued function $\Phi \colon \Omega \to E'$ defined everywhere on Ω , and the complex valued function $\omega \to \langle f, \Phi(\omega) \rangle$ is continuous for each f in E. Now, we suppose that E' is separable. We claim that Φ is strongly measurable. We first show that Φ is weakly measurable. That is, the function $\omega \to \langle f'', \Phi(\omega) \rangle$ is measurable for each f'' in E''. Indeed, for each f'' in the unit ball of E'', there exists a sequence $\{f_n\}_{n=1}^{\infty}$ in the unit ball of E such that $\langle f_n, f' \rangle$ $\rightarrow \langle f'', f' \rangle$ for all f' in E'. Hence the sequence of continuous functions $\{\langle f_n, \Phi(\cdot) \rangle\}_{n=1}^{\infty}$ converges pointwise to the function $\langle f'', \Phi(\cdot) \rangle$. Hence $\langle f'', \Phi(\cdot) \rangle$ is measurable for all f'' in E''. Using the separability of E'again, we conclude that Φ is strongly measurable. Let $\hat{K} = \Phi$. We have $\hat{T}f(\omega)=\langle f,\hat{K}(\omega)\rangle$ a. e. and \hat{K} is in $L^p(\Omega,\hat{\mu};E')$. In case that E is reflexive, then the function Φ is weakly measurable. It follows from a theorem of Grothendieck ([3], Theorem 5, p. 104) that there exists a strongly measurable function $\hat{K}: \Omega \to E'$ such that $\langle f, \hat{K}(\omega) \rangle = \langle f, \Phi(\omega) \rangle$ a. e., where the exceptional set of measure zero may depend upon f. \hat{K} is essentially bounded (that is the function $\omega \to ||\hat{K}(\omega)||$ is essentially bounded). Indeed, since \hat{K} is strongly $\hat{\mu}$ -measurable, there are compact subsets Σ_{j} of Ω , such that $\hat{\mu}(\Omega \setminus \bigcup_{j=1}^{n} \Sigma_j) = 0$ and the restriction of \hat{K} to each Σ_j is continuous. For each f in E, there is a $\hat{\mu}$ -null set N_f such that $\langle f, \hat{K}(\omega) \rangle$ $=\langle f, \Phi(\omega) \rangle$ for all ω not in N_f . In particular $\langle f, \hat{K}(\omega) \rangle = \langle f, \Phi(\omega) \rangle$ for all ω in $\Sigma_i \cap N_f^c$. The continuity of $\langle f, \hat{K}(\cdot) \rangle$ and $\langle f, \Phi(\cdot) \rangle$ on each Σ_i implies that $\langle f, \hat{K}(\omega) \rangle = \langle f, \Phi(\omega) \rangle$ for all ω in Σ_j . Therefore $\langle f, \hat{K}(\omega) \rangle$ $=\langle f, \varPhi(\omega) \rangle$ for all ω in $\bigcup_{j=1}^{\infty} \Sigma_j$. Hence $\hat{K}(\bigcup_{j=1}^{\infty} \Sigma_j)$ is a weakly bounded subset of E', hence is a strongly bounded subset of E', and $\|\hat{K}(\omega)\| \le 1$ for all ω in $\bigcup_{i=1}^{\infty} \Sigma_i$ with $\hat{\mu}(\Omega \setminus \bigcup_{i=1}^{\infty} \Sigma_i) = 0$. This proves the essentially bound-

edness of \hat{K} . So \hat{K} is in $L^p(\Omega, \hat{\mu}; E')$, and $\hat{T}f(\omega) = \langle f, \hat{K}(\omega) \rangle$ a. e. We summarize what have been already established as follows: If E is reflexive or E' is separable, then $\hat{T}f(\omega) = \langle f, \hat{K}(\omega) \rangle$ a. e. for some \hat{K} in $L^p(\Omega, \hat{\mu}; E')$. By Lemma 2 again, we have $Tf(x) = \langle f, K(x) \rangle$ for some K in $L^p(X, \hat{\mu}; E')$. The proof of Theorem 1 is complete, as the uniqueness of K has been proved in the remark of § 1.

For theory of absolutely *p*-summing operators and operators of type N_p and type N^p , the reader is referred to [4] and [5].

COROLLARY 1 (Shields-Wallen-Williams [7]). Let E be a normed linear space. If the linear operator $T\colon E\to L^p(X,\mu),\ 1\leqslant p<\infty$, is such that $|Tf(x)|\leqslant \gamma(x)\|f\|$ a. e., for some γ in $L^p(X,\mu)$, then T is absolutely psumming.

Proof. Case 1. $\gamma > 0$ a. e. Consider the operator $\hat{T} \colon E \to L^p(\Omega, \hat{\nu})$, where $\nu = \gamma^p \mu$ and \hat{T} factors as $E \xrightarrow{T} L^p(X, \mu) \xrightarrow{\varphi^{-1}} L^p(X, \nu) \xrightarrow{\tau_p} L^p(\Omega, \hat{\nu})$. Recall that φ is the isometry of $L^p(X, \nu)$ onto $L^p(X, \mu)$, $f \to \gamma f$ and τ_p is the extension of the Gelfand isomorphism of $L^\infty(X, \nu)$ onto $C(\Omega)$. (See Lemma 1 and Proposition 1.) Then, by Lemma 3 $\hat{T}f(\omega) = \langle f, \Phi(\omega) \rangle$ a. e. with $\|\Phi(\omega)\| \leq 1$ for all ω in Ω . If $\{f_j\}_{j=1}^n$ is any finite sequence in E, then

$$\sum_{j=1}^n |\hat{T}f(\omega)|^p = \sum_{j=1}^n |\langle f_j, \varPhi(\omega) \rangle|^p \ \text{a. e.}$$

But

$$\sum_{j=1}^{n} |\langle f_{j}, \Phi(\omega) \rangle|^{p} \leqslant \sup_{\|f'\| \leqslant 1} \sum_{j=1}^{n} |\langle f_{j}, f' \rangle|^{p}$$

for all ω . Integrating, we have

$$\sum_{j=1}^{n} ||Tf_{j}||^{p} \leqslant \hat{\mathbf{v}}(\Omega) \sup_{\|f'\| \leqslant 1} \left\{ \sum_{j=1}^{n} |\langle f_{j}, f' \rangle|^{p} \right\}.$$

Hence, \hat{T} is absolutely p-summing. It follows that $T = q\tau_p^{-1}\hat{T}$ is also absolutely p-summing.

Case 2. General case. If the set $A = \{x \in X; \ \gamma(x) = 0\}$ has positive measure then T factors as

$$E \stackrel{T_1}{\to} L^p(A^c, \mu|_{A^c}) \stackrel{i}{\to} L^p(X, \mu),$$

where $T_1f=Tf$ and i is the natural embedding, A^c is the complement of A. Then $|T_1f(x)| \leq \gamma(x) ||f||$ a. e., $\gamma > 0$ on A^c and γ in $L^p(A^c, \mu|_{A^c})$. Then by Case 1 T_1 is absolutely p-summing. Hence $T=i \cdot T_1$ is also absolutely p-summing. This completes the proof.

Note. In the proof of Case 1 \hat{T} admits a factorization $\hat{T} = j\hat{T}_1$

$$E \stackrel{\hat{T}_1}{\to} L^{\infty}(\Omega, \hat{\nu}) \stackrel{j}{\to} L^p(\Omega, \hat{\nu})$$

189

where j is the natural injection which is absolutely p-summing. In fact, it is even p-integral [5]. Therefore \hat{T} is absolutely p-summing. This gives an alternative proof of Corollary 1. The original proof of Shields—Wallen—Williams Theorem is very elementary.

The following corollary follows immediately from Theorem 1 and Theorem 2 and [4] (Theorem 1 and 2).

COROLLARY 2. Let E be the Banach space such that either E is reflexive or E' is separable. For operator $T\colon E\to L^p(X,\mu),\ 1\leqslant p<\infty,$ such that $|Tf(x)|\leqslant \gamma(x)||f||$ a.e. with some γ in $L^p(X,\mu)$. Then T is an operator of type N_p , and its adjoint T^* is of type N^p .

COROLLARY 3. Let (Y, v) and (X, μ) be σ -finite measure spaces. For operators $T \colon L^q(Y, v) \to L^p(X, \mu), \ 1 \leqslant p, \ q < \infty$, the following conditions are equivalent:

- (i) $|Tf(x)| \leq \gamma(x)||f||$ a. e. (μ) for some γ in $L^p(X, \mu)$.
- (ii) $Tf(x) = \int\limits_Y K(x, y) f(y) dv(y)$ a. e. (μ) for a unique $\mu \times \nu$ -measurable scalar function K(x, y) such that

$$\int\limits_X \Big\{ \int\limits_Y |K(x,y)|^{q'} d\nu(y) \Big\}^{p/q'} d\mu(x) < +\infty.$$

(In case q = 1, the condition on the kernel K(x, y) is modified in an obvious way.)

Proof. The implication (ii) \Rightarrow (i) is clear. We now prove that condition (i) implies (ii). Without loss of generality we may assume that (X,μ) is finite and $\gamma=1$ a. e. By Theorem 1, there is a unique K in $L^p(X,\mu;L^{q'}(X,\nu))$ such that $Tf(x)=\langle f,K(x)\rangle$ a. e. (μ) . Because (X,μ) is finite measure space, K is also a Bochner integrable function. Since (Y,ν) and (X,μ) are σ -finite, there exists a unique (up to set of measure zero) $\mu\times\nu$ -measurable K such that $\overline{K(x,\cdot)}=K(x)$ a. e. (μ) ([1], Theorem 17, p. 198). Therefore

$$Tf(x) = \int\limits_{\mathcal{V}} K(x,y) f(y) \, d\nu(y)$$
 a. e. (μ) ,

and

$$\int\limits_{X}\left\{\int\limits_{Y}\left|K\left(x,y\right)\right|^{q'}d\nu\left(y\right)\right\}^{p/q'}d\mu\left(x\right)$$

is finite. This completes the proof.

Remark. For 1 , <math>q = p', Corollary 3 gives the equivalence of conditions (c) and (d) of Persson's Theorem ([4], Theorem 3). In case p = q = 2, it gives a characterization of Hilbert-Schmidt operators in the L^z -spaces.

The author is indebted to Professor Allen Shields for a stimulating conversation, and to Professor James P. Williams for kindly showing him their work on absolutely *p*-summing operators and his encouragement during the preparation of this note.

References

- [1] N. Dunford and J. Schwartz, Linear Operators, Part I, New York 1958.
- [2] T. Gamelin, Uniform Algebras, Prentice-Hall 1969.
- [3] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Am. Math. Soc. 16 (1955).
- [4] A. Persson, On some properties of p-nuclear and p-integral operators, Studia Math. 33 (1969), pp. 213-222.
- and A. Pietsch, p-nukleare und p-integrale Abbildungen in Banachräumen, Studia Math. 33 (1969), pp. 19-62.
- [6] F. Treves, Topological Vector Spaces, Distributions and Kernels, New York 1967.
- [7] A. Shields, L. Wallen, and J. Williams, Unpublished note (to appear).

DEPARTMENT OF MATHEMATICS
WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN

Reçu par la Rédaction le 21.4.1970