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On a class of absolutely p-summing operators

by
TIN KIN WONG (Detroit, Mich.)

§ 1. Introduction. In thiy note we use the conventions and notation
of A. Persson [4]. A normed linear space is denoted by F, and F' is its
topological dual with the strong dual topology. ‘We use {f, f’> to indicate
the action of & veetor f in B and a funetional f'in B'. For 1<p < oo,
p and p’ are the usual conjugate numbers. IP(X, u; E') is the Banach
space of equivalent classes of strongly w-measurable B'-valued functions
K such that [[[K(2)ifdu < oo. In case E' is ¢ — the complex numbers,

x

we simply write I”(X, ps) instead of I”(X, p; O). All the measures in
this note are countably additive and positive, and all the operators are
bounded. '

We aim to investigate a class of linear operators T: B - IP(X, p)
and their adjoint T%: I* (X, p) — B’ such that

IZf ()] < ¥ (@) If]

for some y in I?(X, u). When E is a reflexive Banach space or E' i3 sepa-
rable, it turns out that each of them can be represented by a unique
K in I?(X, u; B) in the following way:

Tf(@) = {f, K@) a.e. and T'g= [g@)E(@)ap
X

for f in B, g in I” (X, u) where the integral is taken to be the Bochner
integral. In this ease, T' is an operator of type —N, and T* is of type —N?
([4], Theorem 1 and 2). They are all completely continuous operators.
Our result is quite similar to Dunford-Pettis Theorem in which they
obtained a representation for any operators T: B - L*°(X,s) and
8: IMX, p) — B’ by a bounded weakly measurable E'-valued function
under the hypotheses that B is a separable Banach space (see [6], p. 469).
As a consequence of our result, we obtain an alternative proof for a the-
orem of Shields—Wallen-Williams which asserts that if operator T': H
—IP(X, u) satisties |Tf(x)] < p(@)|lf]l for some y in IP(X, p), then T
is absolutely p-summing. In case B = I” (X, »), our result also includes
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some work of A. Persson ([4], Theorem 3) which gives a characteriza-
tion of Hilbert-Schmidt operators on L*-spaces.

TeEOREM 1. Let B be a Banach space which is either reflexive or its
dual B is separable. For linear operators T:E — ILP(X,u), 1< p < oo,
the following conditions are equivalent:

(a) There is a unique K in IP(X, u; EB') such that

If(z) = <f, K(@)) a-e.

() 1T (@)l < y (@) [f]| @ e. for some y in L*(X, u).

Note. The exceptional set of measure zero may depend upon f.

TueoreEM 2. Let B be as im Theorem 1. For linear operaiors

’ 1 1
S: IF (X, u) —~ E’,—I; + T =1,1<p < oo, the following conditions are

equivalent:
~ (a) There is & unique K in IP(X, u; B') such that

fy ) K (2)d,

for g in TP (X, u).
(b) 8 is the adjoint of a linear operaior T; B — ILP (X, u) such that

ITf (@) <y (@)]If] @ e.
for some y in LP(X, u).
Note. The integral in condition (a) is Bochner integral.
Remark. It is not difficult to see the equivalence of Theorem 1
and Theorem 2. We shall only prove Themem 1. Moreover, if there are
K and K, in I”(X, u; B') such that <f, K(z)> = {f, E;(x)> a.e. for

each f, where the exceptional y-null set depends on f. Then if g in IP (X, u),
we have

([ 9@ E@as) = [, E@)g@)dn = [{f, Ey(@)g(@)d
~(#, f 9(@) Er (@) du )
for all f in E, therefore
Jo@ K@) au = [ 9(0) Ky (@) au
for all g in I¥' (X, p). In particular

J(E (@)~ Ey(@)du =0
A

for all p-measurable set A with u(d) < +oo. Since |K(-)— K, (-)|f
is in L' (X, u), the support of K— K, is o-finite. Using localization method,
we see that K (z)—K,(#) = 0 almost everywhere. Thus K = K,. This
Proves the uniqueness assertion in Theorem 1 and Theorem 2.
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§ 2. Some measure-theoretic preparation. Let (X, z) be a finite mea-
sure space. Let 7: I™(X, u) — C(L2) be the Gelfand isomorphism f—>f,
where Q is the Gelfand space of L”(X, u). Let i be the Radon measure
on @ such that Jj{.fd,u =] fdji for all f in I° (X, p).

PrOPOSITION 1. For each 1< p < oo, there exists a linear isomelry
7, of IP(X, u) onto I (L, j) that extends the Gelfand isomorphism v. More-
over, this family of isometries {r,; 1< p < oo} has the following proper-
ties:

(1) For 1<p <q < oo, 1, extends z,.

(ii) If f, g ond fg are all in LP(X, p), then

%)) = ()59 and () =10
where f is the complex eonjugate off Hence ©,(If1) = |7 (-
(iif) ffdy —frp(f)d,u for f in IP(X, u). Hence A{fd” =‘;rp(f)d,u

where A is the compact open subset of Q such that y4 = xz and x, is the
characteristic function of A.
Proposition 1 is well known (cf. [2] p. 18 for the existence of ).
The properties (i)—(iii) requires only routine checking.
The following proposition plays a key role in the proof of our the-
orems.
PROPOSITION 2. Notations as above, let B be o Banach space. For
1< p < oo, there exists a linear isometry o, of IP (2, pyE) onto I (X, p; H)
such that
[o® @)= [K()d
a 3

jor K in IP(Q, ji; B) and A p-measurable set with ¥4 = x.4.

Proof. We know that the formal identity I: O(R) —IL®(%, p) is
a linear isometry of C'(£2) onto L* (£, f) (cf. [2], . 18). Thus Tor: I*(X, )
—I®(Q, p) is an isometric isomorphism. Since y, = xz in I®(X, u)
if and only if A and B represent the same element in the measure ring
of (X, u). This gives rise to an isomorphism between the measure rings

of (X, u) and (2, p). For any step-function .
K= 14fi
4=1

in IP(Q, u; B), we may regard Ai as an element in the measure ring
of (2, u) with the compact open set Am as a representative. Let

n
GpK = Z XA{fi
i=1

where 7.4 = 24,
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Then ¢, K is a step function in IP(X, u; F) and |lo, K = K] Beeé,use
of the measure ring isomorphism, we have

Oy (K, +K,) = Op (Ky)+ Op (H,)

for K, and K, step-functions. Thus ¢, is a linear isometry on the dense
linear manifold of the step-functions in L”(4, u; B) into I?(X, u; B).
Therefore o, can be extended to a linear isometry of I?(R2, u; B) into
IP(X, u; B). Since the mnge is' dense, hence, o, maps I7(2, i; B) onto

I?(X, u; B). For K = 2 2.4,f; & step-function, and 4 y-measurable set,
we see that

fK(cu)d/} = fO'ﬂK(OS)d/J
4

Since f Yap: IP(Q, u; B -~ B is a bounded operator, and since the

step- functlons are dense in LP(, u; F), then

I d#_f% ) du
A

for all K in IP (9, u; B). The proof is complete.

§ 3. The proof of Theorem 1 hings on the implication (b) = (a),
because condition (a) implies (b) clearly. We may assume that the set
A = {xeX; y(x) = 0} has measure zero. If u(4) were positive, then
we can write I7(X,pu; B) as IP(4° plse; B)LP(4, uly; E) for any
Banach space E, since the multiplication by x4 is a projection (idempotent)
on IP(X, u; B). We use A° to denote the complement of 4 in X, and
tlac 18 the measure p restricted to'A4°. The condition |Tf(@)| < y(2)|fl
a. e. Implies that T'(H) is contained in IP(A°, u|.c). Hence T factors as

BT I7(4° plae) > I7 (X, ).
Now y is in I? (4°, p|4e) and y >0 on A°,

ITaf (@) < v (2} £

z)) f01 some K, in I® A°, plac; B'), using the natural
E')into I” (X, u; B') we obtain K in I? (X s 15 )
w)) 2. e.. Therefore we can and do assume that

Tt T.f(a) = (f, Ky (
injection ¢ of I” (A%, | e;
such that Tf(z) = {f, K
(@) >0a. e.

LEMMA 1. Let H be a normed linéar space. Let y > 0 a. e. be in IP (X, p).
I_Jefine the finite measure v = % u. Let ¢: IP(X,v) - IP(X, u) be the
tinear isometry f—yf. For operators T,: B —»IP(X,u) and T,: B
— IP(X, p) such that 9T, = T,, then
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i) L@ <y @)Ifil a e (0) if and only if |T.f(@)] <] fH @ 6. (v).

11) T.f(w) =<f, K,(#)> a.e for some K, in L’(X,p;E) if and
only if T,f(z) = <, K, (os)) a. e. for some K, in Iﬂ"(X »; E’)

The proof is trivial, we omit if.

LeMMA 2. Let E be a normed linear space. Let (X, u) be a finite measure
space. Let (Q, u) be the measure space obtained in § 2. For linear operators
T: B —IP(X, y) and T: B —~IP(Q, i) such that T =z, T, where 7, is
the isometric extension of the Gelfand isomorphism © of L™ (X, p) onto G( )s
then

@) 1Tf(@)] < Ifl @. 6. () if and only if |Tf ()] < If} @ - (n)-

(ii) Tf(a) = (f,K(w} a. 6. for some & in I7(Q a3 B if and only
if Tf(@) = <{f, K(®)) a.e. for some K in LP(X, y; B').

Proof.

[1Zf ()i = [ |5 Tf@)dp = [ (T (w)dk = [ |Tf(@)|ds
4 4 4 4

and u(A) = i(4d). We have used Propesition 1 in this argument. It
follows that ]f’f(w)] < |Ifll & e (u ) 1f and only if |Tf( w)< Il & e (u)-
This proves (i). Now we prove ( Ii Tf(cu) =<f, K(w)y a. e. (@) for
some K in IP(Q , 3 B'). Let K = crp where o, is the linear isometry
of IP(Q; u; B') onto IP(X,u; E') (see Proposition 2). If A is any
u-measurable set, then

[Tf@an = [ o Bf@an = [ Tfw)di = [, K(o)di
A A4 A 4
= [<f o K@)yap = [{f, E(@)>du.
4 A

Hence Tf(z) = {f, K(x)) a.e. The above argument makes use of Prop-
osition 1 and 2. By a similar argument one proves the converse. This
concludes the proof of Lemma 2.

LEMMA 3. Let B be a normed linear space and let (2, i) be the measure
space obtained in §2. If 7. B — IP(Q, i) 48 o linear operator such that
{Tf ©)] < |Ifll @. 6., then there ewists o bounded function P: 0Q — B defined
everywhere on Q, such that for each f in B, the complex valued function
o — {f, D(x)) is continuous and Tf (o) = (f, D (w)) a.e.

Proof. The hypotheses 1mphes that Tf is in I®(Q, p) for all f in
F, and that [|Tfl, < |Ifl. Let Ty: B - I®(Q, i) be defined by T.f = Tf.
Then ]|T1|[ < 1. For each o in 2, let 8,: O(R) ~C be the evaluation
functional. We know that the formal identity mapping I: €(£) - L(&, )
is a linear isometry of G(2) onto L™ (R, u). Then &(w) = 6m1'1T1 is
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in 7', and [|®(w)] <1 for o in 2. Let g be in 0(Q2) such that ¢ = I*Ii’]j_
Then for any measure set 4 in 2

[Tf(@)dp = [ Tof(0)dp = [ glw)di = f<f, () dj.
4 4 4
Therefore i’f(co) = {f, ?(w)) a.e. The proof is complete.

Proof of Theorem 1. As we have pointed out earlier that we
only need to prove the implication (b) = (a). In view of Lemma 1 and
the remark at the beginning of § 3, we may assume that (X, u) is a finite
measure space and Y= 1 a.e. Let (2, ) be the measure space obtained
in §2. We define 7: B —I”(Q, 2) by T =17, T where 7, is the linear
isometry of L”(X, p) onto LP(£, i) as in Proposition 2. By Lemma 2,
[Tf(w)] < |Ifll @ e. By Lemma 3, Tf(w) = {f, ®(w)> a.e. for a E'-va,lued
function @: 2 - B’ defined everywhere on, 0, a.nd the complex valued
function w — {f, @ (w)) is continuous for each fin F. Now, we suppose that
E’ is separable. We claim that @ is strongly measurable. We first show
that @ is weakly measurable. That is, the function o — {f", ®(w)) is
measurable for each f in E". Indeed, for each f' in the unit ball of B,
there exists a sequence {f,}>.; in the unit ball of ¥ such that (f,,f">

= f", f'> for all f in H'. Hence the sequence of continuous functions
{Lfny @(*))}n-1 converges pointwise to the function <f”, &(-)>. Hence
Lf, D(- )> is measurable for all f in B". Using the separability of B’
aga,m, we conclude that @ is strongly measurable. Let K — . We have
Tf(w = {f, K(co)) a. e. and K is in IP(Q, iu; B'). In case that H is reflex-
ive, then the function @ is weakly measurable. It follows from a theorem
of Grothendieck ([3], Theorem 5, p. 104) tha,t there exists a strongly
measurable function X: 2 — B’ such that {f, K ={f, ( )> a. e., where
the exceptional set of measure zero may depend upon f.. K is essentla,]ly
bounded (that is the function w — [}K )| is essentially bounded). Indeed,

since K is strongly - mea,surable, there are compact subsets X; of @,

such that u(Q\ U = 0 and the restriction of X to each Xy i contln-

uous. Fm each f m B, there is a p-null set N, such that (f,
=<{f, ®(w)) for all v not in N,. In pa.rtlcular <f,K(w »=<Lfo
for all w in X nN : The contmulty of {f, K(-)) and {f, ®(-)> on ea,ch 2
implies that <f, K (o)) = <f, o)y for all o 1n Z;. Therefore {fy K(w)y

= {f, D(w)> for all » in U 2} Hence K (UZ is a weakly bounded
subset of F’, henoe is a strongly bounded subset of E'; and ||K <1
for all w in U Z; with p(@\ UZ} == 0. This proves the essentl&]ly bound-
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edness of K. So K iz in IP(Q, ji; B'), and Tf(w) = , K(o)> a.e. We
summarize what have been already established as follows: If F is reflex-
ive or E' is separable, then ff(cu) = {f, K(w)> a. e. for some K in
IP(Q, i; B'). By Lemma 2 again, we have Tf(x) = {f, K(»)) for some
K in I* (X, p; F'). The proof of Theorem 1 is complete, as the uniqueness
of K has been proved in the remark of § 1.

For theory of absolutely p-summing operators and operators of
type N, and type N®, the reader is referred to [4] and [5].

COROLLARY 1 (Shields—Wallen—Williams {71). Let E be a normed linear
space. If the linear operator T: B — 1P (X, u), 1< p < oo, is such that
1Tf(@)| < y (@) |f| a.e., for some y in IP(X, u), then T is absoluiely p-
summing.

Proof. Case 1. 14 >0 a. e. Consider the opemtor T: B »LP(Q ),
where v = 9" u and T factors as E—»I}’( ) —e-L”(X v)—>IP(Q ).
Recall that ¢ is the isometry of L”(X,») onto I*(X, u), f —yf and 7,
is the extension of the Gelfand isomorphism of L°°(X w) onto C(Q). (See
Lemma 1 and Proposition 1.) Then, by Lemma 3 Tf(w) = {f, ®(o)) a.e.
with [|®(w)]] < 1 for all w in . If {f;}7, is any finite sequence in ¥, then

e

-,
[
—

IZf(@)F = 31K, Do) 2. e
But

(@) < sup 2 I<Fss F1P

DK @

F=1

for all w. Integrating, we have
D ITpip <3(2) sup { 315, 1P}

Hence, T is absolutely p-summing. Tt follows that T = gv,;'T is also
absolutely p-summing. :

Case 2. General case. If the set A4
positive measore then T factors as

T, %
B = IP(A° plae) > I (X, p),

where T,f = Tf and 4 is the natural embedding, A° is the complement
of A. Then [T.f(®)|< y(®)|fll a e, y>0 on A° and y in IP(4 %y ] ae)-
Then by Case 1 T, is absolutely p-summing. Hence T = 4-T; is also
absolutely p-summing. This completes the proof.

Note. In the proof of Case 1 7 admits a factorization T = jTl

= {mEX; y(») = 0} has

2B 120,52 172, 5)
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where § is the natural injection which is absolutely p-summing. In fact,
it is even p-integral [5]. Therefore T is absolutely p-summing. This gives
an alternative proof of Corollary 1. The original proof of Shields—Wallen—
Williams Theorem is very elementary. ‘

The following corollary follows immediately from Theorem 1 and
Theorem 2 and [4] (Theorem 1 and 2).

OOROLLARY 2. Let B be the Banach space such that either H is reflexive
or B’ is separable. For operator T: B — L7 (X, p), 1< p < oo, such that
[Tf (@) < v (@) If]l @ 6. with some y in IP(X, u). Then T is an operator of
type N,, and its adjoint T* is of type N®.

CoROLLARY 3. Let (¥, ») and (X, u) be o-finite measure spaces. For
operators T: LYY, ») - LP(X, p), 1< p, ¢ < oo, the following conditions
are equivalent: :

(@) 1Zf (@) <y @) fll e e. (p) for some y in IP(X, pu). .

(i) Tf (=) ~—~1er($, f(@)dv(y) a.e. (u) for a unique uXv-measurable

scalar function K (z,y) such that

J{ 1B @, )1 @ @) du(a) < + co.

X ¥
(In case ¢ =1, the condition on the kernel K (z, y) is modified in an
obvious way.)

Proof. The implieation (ii) = (i) is clear. We now prove that con-
dition (i) implies (ii). Without loss of generality we may assume that
(X, p) is finite and y =1 a.e. By Theorem 1, there is a unique K in
LI7(X, u; I¥ (¥, %)) such that Tf(z) = <f, K(2)) a.e. (u). Because (X, )
is finite measure space, K is also a Bochner integrable function. Since
(Y, ») and (X; u) are o-finite, there exists a unique (up to set of measure
zero) pXv-measurable K such that K(z,:) = K(z) a.e. (u) ([1], The-
orem 17, p. 198). Therefore

Tf(z) = I[ K(@,)f(@)d(y) a e. (u),

and

J { JIE @l b @) duto)

ig finite. This completes the proof.

Rema,rk: ;E‘o,r 1<p <400, g =29, Corollary 3 gives the equiva-
lence of conditions (¢) and (d) of Persson’s Theorem ([4], Theorem. 3).
In case p = g = 2, it gives a characterization of Hilbert-Schmidt opera-
tors in the LZ-spaces. '
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The author iz indebted to Professor Allen Shields for a stimulating
conversation, and to Professor James P. Williams for kindly showing
him their work on absolutely p-summing operators and his encourage-
ment during the preparation of this note.
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