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Addendum. In a paper soon to appear in Math. Annalen, Professor 8. Saxon
has introduced the notion of a Baire-like locally convex space; a loeally convex space
E is said to be Baire-like whenever B cannot be written as the union of an increasing
sequence of nowhere dense, closed, balanced, convex sets. Theorem 2.10 of the paper
(entitled “Product spaces, Baire-like spaces and the strongest locally convex topology™)
states that every countably co-dimensional subspace of a Baire-like space is Baire-like.
Our Theorem 1 therefore can be strengthened to: V21(%) is a meager, uncountadly
codimensional linear subspace of V%2(%). Indeed, the Sy’s are an inereasing sequence
of closed, convex, balanced, nowhere dense sets, | J Sy = V1(%).

%
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The chi function in generalized sammability
by
L. W. BARIC (Carlisle, Penn.)

1. INTRODUCTION

In 1949 Wilangky; [11], introduced the conull and coregular clagsi-
fieation of sealar summability matrices by the use of the chi functional.
Yurimyae in [12] and Snyder in [8] and. [9] showed that these properties
can. be characterized without the use of matrices.

Other anthors, see [17, [4], [5], [6], and [7], have considered the topic
of generalized summability and, in particular, have obtained analogues
of the Silverman-Toeplitz and the Kojima—Schur conditions.

In this paper, we extend the concept of the chi function to the genera-
lized situation, in a certain setting, and obtain an analogue of Snyder’s
result, Theorem 1, p. 378 of [9]. We also show that some of the usual
summability methods utilizing the chi function carry over to this new
setting.

2. FK-SPACES

Let F be a Fréchet space, i.e., a locally convex complete linear
metric space. Recall, p. 217 of [10], the topology of F may be generated
by @ sequence of continuous seminorms, {p;}. We shall use the following
notation:

B(s) is the space of all sequences in ¥ with pointwise addition and
scalar multiplication ;

"E(m) is that subspace of E(s) consisting of bounded sequences,

i.e., {z,} is in B(s) and {m,| n ¢ o} is a bounded subset of &;

E(c) is that subspace of E(m) consisting of convergent sequences;

E(c,) is that subspace of H(c) consisting of sequences convergent
to zero.

If X is any one of the above spaces, let C,: X — F be defined by
C,(2) = 2,.
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2.1. PROPOSITION. H(s) is & Fréchet space wilth seminorms

{Pulicow and new} where Py, (z) = P;o 0, (2) = py(,).

Moreover, each O is continuous.

Proof. It is clear that {P;} gives a total collection of seminorms
on F(s) and so H(s) is a linear metric space with the topology
so generated. Let {z"} be a Cauchy sequence in E(s). It then follows that
for a fixed m, {zp}n., is Cauchy in H. Let ,, = liglw% and let = {,,}.

Tt is now easy to see that {#"} converges to = in E(s).

Now let 2" — 0 in E(s). So for fixed ¢ and k Py (+") =
verges to zero in B, i. e., 0, (#") converges to zero. ’

We shall call any subspace of E(s) that possesses a Fréchet topology
stronger than that of E(s) an FK-space. Thus the coordinate functiong
are continuous on any FK-space. Notice also that an FK-space is an FH
subspace of F(s) in the sense given by definition one page 202 of [10].
Consequently, smaller FK-spaces. have stronger topologies, (Corollary 1
page 203 of the same reference).

2.2 PROPOSITION. H(m) is an FK-space with seminorms given by
{Pi} where Py(2) = S‘]}PP@(%)-

p;(2%) con-

Proof. This is clear except perhaps for the completeness. From
Theorem 8.6, page 71 of [3], E(m) is complete with the uniform topology.
The uniform topology has a subbase for the neighborhoods of zero given
by all sets of the form

¥iw, () (<] = {f] flo) = () (o< o)

k(3
={o| #ye N (p; < &) for all k}
=1
= {x| supp;(z,) <e for i =1,...,n}
k

= {z| Py(w) <efor ¢ =,...,n}.

But these sets are a subbase at zero for the seminorm topology. Thus
the topologies are identical.

It then follows that E(c) is an FK-space with the same collection
of seminorms as above. This results from the fact that B(c) is a closed
subspace of E(m). Moreover, we have the following:

2.3. PROPOSITION. lim: E(¢) — F is continuous.

Proof. Since H(c) and ¥ are Fréchet spaces, it suffices to show that
lim is & bounded function. Let B be a bounded subset of E(c). Then for
‘any fixed ¢ there is a number M such that P,(z) < M for all z in B.

icm
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Thus
p(lime) = p;(lim,z,) = lmyp;(2;) < Pyw) < M

for any # in B. Thus im [B] is a bounded subset of H.

‘Notice, then, that #(c,) is also an FK-space with the same seminorms
as E(c) and E(m) since H(c,) is the null space of lim.

Before introducing the concept of a conservative matrix and its
agsociated summability space, we need some technical results.

2.4. PROPOSITION. Let X be an FK-subspace of E(s) and let F be a Fré-
chet space. If u: X — F(s) is & continuous linear map and if ¥ is an FK-
subspace of F(s), then w—1[X] is an FE-subspace of E(s) with seminorms
{P;} v {Q;0u} where {P;} gives the X-topology and {Q;} gives the Y-topology.
Moreover, u is continuous from uw—2[Y] with this topology into Y with the
{@:} topology.

Proof. Similar to that of Theorem 1, page 226 of [10].

2.5. LEMMA. Let X be a linear topological space and f a linear map
from X into B(s). Then f is continuous if and only if P,of is continuous
for each i and each n.

Proof. Suppose P;,of is continuous for each 4 and each n. Let
2 =g in X. Then Pin(f(w”)—f(m)) 0. Thus f(2*) - f(z) in E(s) and
fis continuous. The other direction is even more elear.

2.6. COROLLARY. Let ¢ be a linear map from X, a Fréchet space, into
Y, an FE-subspace of E(s). Then g s continuous if and only if Py,0g is
continuous for all i and all n.

Proof. Use the above lemma and Theorem 1, page 203 of [10].

We are now ready to begin our study of conservative matrices.
Unless otherwise mentioned, throughout this paper the term infinite
matrix will always mean a matrix A = (4,,) where each A4,, is a con-
tinuous linear map from a Fréchet space F, which will be called the base
domain space, into a Fréchet space F, which will be called the base range
space. We will use the notation ¥ = A=« as in [6], i. e., y is the sequence
given by vy, = > A,;®;, assuming that the series involved are conver-

gent in F. The ;ext result shows that matrix maps between FHK-spaces
are always continuous.

2.7. PROPOSITION. Let A be am infinite matriz which takes X, an F(8)
FK-space, into ¥, an F(s) FK-space. Then A is continuous from X into Y.

Proof For each n and each » in X, let T (w) hmZ’ = A (%)
= lim Z A0 Cy(»). Bach T, is thus continuous by the Ba,na,ch—Stemha,us

m k=1
closure theorem. Now note that PmoA( z) =

tion follows from 2.6.

(T, (x)) and our proposi-
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For any infinite matrix 4, let ¢, denote the linear space of all sequen-
ces @ such that Aw is in ¥ (c) and let d, denote the linear space of all
sequences # such that Az is defined. We will call 4 conservative if ¢ »
containg #(c). Ramanujan has given necessary and sufficient conditiong
for 4 to be conservative, [6]. Using the technique to be found on pages
227 and 228 of [10], one may prove the following:
2.8. PROPOSITION. Let 4 be an infinite matriz, then dy is K with
SEMANOTING

Pl teo and new}U{R,,]| icw and n o},
where Ry, (%) = s1:p qi(jé; Am-wf). ¢4 18 FE with seminorms
{Pin} VB,V {H}},
where H,(z) = S%PQi(ji Agwy). In this notation, {g} is the sequence of

seminorms which generates the topology on F, the base range space.
For each » in H(s), let U, (2) be the nth section of @, 1. e.,

U,(z) = {@1) #s, ceey Ty, 0,0,0, ...
Then for each » in H(c,), U, (%) >z in B (¢,) since for any 4,

Pie—TU,(@) = S‘;P%(Gk(ﬂﬁ—— Un(x))) = sup p; ()
zn+1

which ig smgx.ll f:_)lt n sufficiently large. Of course, it follows immediately
that Uff (@—1)+1 - for any » in B (c¢) where ! is the sequence of constant
value limz. (In the remainder of thig paper, # will mean the sequence
of constant value z.) ‘

The convergence of U, (x) to  is also valid in d 45 A an infinite matrix.
For consider '

Py lo— U, () =pi(0k(-’v— Un(m))) =0 for a>=k
and

Ry fo— U, (@) =8111pq®-(. Ay (00— U, (@)))) = supg, Z Aay).

j=1 . j=n+1
. 0 = »
Since the series _Z;A,dm,- 18 ‘convergent in I, the above value is small for

=
n sufficiently large. Thus for any @ in d 4> Up(®) »win d,.

Still another class of functions will be useful in the future. These
are the insertion functions. For each and for each # in E, '1et I, (z)
= {0, 0, S 0,2, 0,...} where x is in the 7th place. Then I; is continutous
from F into E(e,) and thus into any FK-space containing X(c,). For
let @, -2 in E. Then "

Pi{Tslan)—1L,@) = sups;(04(L,(@,) I, ()) = py(a,—2)
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and the latter tends to zero as n increases. Actually, I, is also continuous
into d,, even if A is not conservative.

~ Let us now turn to the question of representing the continuous linear
functionals on these spaces. We shall begin with #(c,), but first consider
the following. If X is any locally convex space with topology generated
by the family of seminorms &, then a linear functional, f, on X is contin-
uous if and only if there exists a finite subset of @, say 9y, 95, ..., D,
and a number M such that

1f(@)] < M Y py()
k=1

for all #in X, see page 216 of [10]. This may be reworded as f is continuous
n
on X if and only if f is continuous on X under the seminorm p = 3 p,,
F=1
which in turn is the case if and only if ||f]|, is finite, (page 65 of same refer-
ence), where [|f], is the supremum of |f(x)| taken over all # such that

@) <1
2.9, PROPOSITION. Let G be a continuous linear functional on E(c,).
Then there exists a umique sequence {g;} in B such that G(z) = > 9:(;)
7

for all » in E(c,). Conversely, any such sequence for which the series is con-
vergent for all = in E(c,) defines an element of H(c,)*. Moreover, there esists
a finite collection of seminorms, Py, ..., D, from the sequence defining the
topology of E such that

%2 g, < |jG]lP<Z lgdlps where p = ; Py, and P = ng.

Proof. Let -G be as above and for each n let g, = Gol,. Then for
any « in E(e,) we have

G(2) = Gim T, (2)) = nma(fj L) = 3 gu(@)-
n n k=1 k=1

If also G(z) = 3 Ty (wy,), then for any p and any » in B g, () = & (I,(2))
: k

= h, (). Thus the representation is unique. The converse mentioned
above follows from the Banach-Steinhaug closure theorem.

It remains to show the norm condition is satisfied. Since G iz con-
tinuous, there exist Py, ..., P,, where P;(z) = su’%op,- (@), such that G

m n
is P = 3P, continuous. For each n, let T,,(x) = > g;(%;) for & in H(e,).
Then *! . =1 .
T (@) =| > g:(a)
s

Thus [|7,]p < [|@lp for all x.

= (U, (@))| < |@1pP (U, (@) < [6]P (@)
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. 1 & m
We will now show that [|7,/[p 2—7;% l94ll, Where p = Zl' P, and it
< =

. 13
will follow that %Z l1g:ll, < IGlp. (Note that each g, is p-continuous.
=1
For let p(x,—x) — 0. Then for any i,

P(L(z)—Iy(@) = D) pr(@,—a) = p(w,~w) > 0.
k=1
Thusg
gi(@,—2) = G(I;(®@,)— Li(2)) - 0.)

Forl € z(l (;hoose Biyeey & In B such that p(a;) <1 and |g;(z)| > llg:ll
—efn. Let 6; = signumg,;(2;), y; = 0,2, andy = {y,, y,, ...

Then P(y) < m and s 39 Y Y15 Yay » Yny 0,0,....}

ITu®)l = D g (@)l = D lgall,— e

i=1 b=

==

Thus

1 n
17> Sludy end 101> M.

The other inequality follows readily and our result is established.
Due to the norm condition of the previous proposition, let us call
the space of all sequences of B* such that D 9:(z;) is convergent for # in
> ]

E(ey) 1,(E*). So the pfoposition says that H(e,)* is essentially I, (E*).
In the same way, B(c)" is I;(B*) in the sense for any & in B (e)* we have

¢(@) = go(lima)+ ' g;(2,— lima)

which follows from the fact that z — a:—-i+i where 1 is the sequence
of eopstant value lima. Since the series represents a continuous linear
functional on E(c,), the norm condition, applies, i. e., '

0

1Y <
w2 lads < 161D @l < Y il

i=1

This in turn shows that for any v in B, 3 .
formula vym ’t.g%(y) is convergent. Thus the

1w =gw)— ) a:(y)

icm°®
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defines a continuous linear functional on ¥ and we may write
G(z) = 7(g)(lima)+ D’ gi(y).
im1

‘We now turn to a consideration of d, and ¢,. Sinee {U,(x)} con-
verges to & for any @ in d, we see that any G in d’ is given by

G(n) =D gilm)
i
where {g;} is a sequence in B such that Y 'g;(#;) is eonvergent for all
i
x in d,. Moreover, the representation is unique and any such sequence

defines an element of d5. In order to study ¢%, we need the next result.

2.10. PROPOSITION. Let X be an FE-subspace of B(s) and ¥ an FK-
subspace of F(s). Let u: X — F(s) be a continuous linear map and let f
be a continuous limear functional on w=2[X¥]. Then there is an F in x*
and & G < X" such that f = F+Gou.

Proof. Same as that of Theorem 5 page 230 of [10].

2.11. PROPOSITION. Let A be a conservative matriz. For any f in ¢,
there emist {f;} amd {g;} in E* and F* respectively such that Dfilm;) s
comvergent for all © in dy, {g;} is in 1, (F*) and for all win ¢, *

fo) = fiwd+ (00— 3 01) Qime)+ 3 gs( 4w
1 i 1
In this notation, Hm x is the limit of Az and (Aw); is C;(Ax).
A

Proof. Use 2.10 with X = d, and ¥ = F(c).

3. THE CHI FUNCTION AND CONULL SPACES

Tet A be a conservative matrix where 4: H(c) — F(c). Ramanujan
has shown, in [6], that the columns of A are pointwise convergent over
F. Let us call the continuous linear functions so defined 4, i.e., for
each 2 in FH, A, (r) = ﬁfﬂAm(m)- He also asserts that for any # in. H(c)

we have
Iimz = l-llli—[- E A, (2 —1

where I = limgz. This is, of course, ta.ntg,]izingly close to the usual for-
mula

limz = ylimo+ Z g Ty,

4 )
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see page 93 of [10], where 4 is a conservative scalar matrix, z is a converg-
ent sequence of scalars and y = lim Y 'a,,— Y a,. We will now see that,
k k

n
in a certain sense, we can obtain the second formula.
3.1. LEMMA. Let A be a conservative matric and assume that 7, the
base range space, is weakly sequentially complete. Then for any = in E,
%‘Ak (%) is convergent in w (F, F¥), 4. e., in F under its weak topology. More-

over, the function so defined is continuous from B into F, F with its metric

topology.
Proof. Fix # in ¥ and f in F*. Congider the matrix

f(Au(w)) f(-Alz(m)) LT
B = [f(AM(m)) f(Azz (m)) J

An eagy check shows that B is a conservative scalar matrix. Thug for

any k, ].me(Ank(m)) = f(4(») exists and Df(44 (@) exists. So by our
. k '
completeness assumption, %’Ak(m) is convergent in w(F, F*). The con-

fuinuity of t?le function so obtained will follow from the next resuls which
sa generalization of Propcsition 1.4, page 201 of [1].
3.2. PROI?OSITION. Let {U,} be a sequence of continuous linear opera-
tors from o Fréchet space X to a Fréchet space Y and let U(x) = w—1lim U, (w)
(@
n

for every @ in X. Then {U,} is equicontinuous and U is continuwous.
Proof. Since {Un‘} is weakly pointwise convergent, it iz pointwise
bounded. T‘hus {.U,,} is equicontinuous, (18.7 page 171 of [3]). Then
{U}u{ 'Un} 1s equicontinuous into w (¥, ¥*) by 8,12 of the same reference.
In pa_rtleular., U is continuous into w(¥, ¥*). Thus U takes boﬁnded
slljﬂasets of X Lnto weakly bounded subsets of Y. Since Y is locally convex
preserves bounded sets and so U is contin ,
of o uous, (Theorem 4 page 188
The next example, which was sug; ; i
gested by Professor Albert Wilansk
shows that the weak sequential com: leteness h; sis in - o
e o D. ypothesis in 3.1 may not
3.3. ExAMPLE. Let ¥ and F be ¢, the B
A anach space of convergent
sia}ar sequences and let 2* = (—1)%8* for each positive integer %, Wiere
67 is the sequence of all zeroes except the Lth coordinate, which is one

m
Then for any m, ”Ié’lz’”“ =1 while %‘z" is not weakly convergent. For

the sake of this example only, let us use the following notation

Pr@(y) =y

The chi function in generalised summability 173

where 2 and y are in ¢. Now consider the following matrix:

| P, ® et 0 0 0 0 ..
P @7 —P, Q7 0 0 0 ...
2
A= |P1®F PR —~P1®kZZ’f 0 0 ...
=]
3
PR P,R:2 P,RF —P,®) % 0
=

A gimple check shows.that A4 satisfies the reguirements to be con-
servative, see [6] or [1]. Let 1 be the constant sequence of ones. Then

2 A4l) = Y Pedu) =3
% k ke

which is not weakly convergent.

3.4. DEFINITION. For A conservative, F weakly sequentially com-
plete, and z in E, let y(4)(z) = hma‘v—%’Ak(w).

It follows from 3.1 that x(AV) i; a continuous linear map from ¥ into .
¥, and we now have the promised formula.

3.5. THEOREM. For A and F as above, and » in E(c), with imz = I,
we may write

lima = 7(4) 1)+ 3] Ax(ay)-
k

Proof. Clear.
Let us now turn our attention to the relationship between this func-
tion and the conull-coregular dichotomy.
3.6. DEFINITION. Let X be an FK-subspace of H(s). We will call
X conservative if X contains E(c). If, in addition, {U, (#)} converges weakly
to @ for all # in B, we will call X conull. If A is & conservative matrix,
then 4 is conull if and only if ¢, is conull, otherwise A is coregular.
3.7. ProPOSITION. Let X and ¥ be FK-subspaces of H(s).
(i) If X = Y and X is conull, then ¥ is conull.
(i) If X ¢ ¥, Y s conull, X is closed in Y and X is conservative,
then X is conull.
(iii) If {X;} is a sequence of conull spaces, then QX" is conull.

Proof. (i) and (ii) are clear. To see (iii) first notice that the intersec-
tion is an FK-space, by Theorem 3 page 205 of [10], with the supremum
topology. Let f be a continnous linear functional on this space. Then
the absolute of f is a continuous seminorm and there exists an m such
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that l_ﬂ is contmuouq on ﬂXk under the relative topology of ﬂ xX,.
(6— U, (#))| converges to zero.

Reeallmg 3.1 and 3.3, we sha,]l now always assume that the base
range space i Fréchet and is weakly sequentially complete. Moreover,
the symbol > 4, (»,) will naturally mean the convergence is in the weak
topology. % ‘

3.8. DEFINITION. For conservative 4 and fin ¢%,let x(f) = x(g)ox(4)
where f = h+go 4, as in 2.11. It follows that yx(f) is in B*.

3.9. LemvA. Let A be conservative, then for any x in B and f in ¢

lim f(d— U, (#)) = x(f) ().

»

Proof. Let f = h+go A where & is'in dy and g is in F(e)* =1, (F*)
Then. 7 (&— U,(#)) tends to zero as r increases, see the discussion affer

2.8. Now suppose g corresponds to the sequence g, g1, ay --. in Iy (7).
Then
god(i— U.(@) = x(g )(hm(w U, (@ )+ ygl( 2 Awm)
1 J==r41
=29 (x(4) (#)+ A
arers 3 sl Zad 3 el

Since the series ]cZAk (z) is weakly convergennfi, the term y(g) ( 2 Ay (z)
goes to zero as r tends to infinity. Let ¢ = 3' ¢, correspond 1;;1?%}20 as
in 2.9, Sglce {0, #} is a bounded subset of Ek,=113here is a number K such
that q(j=%’rlAi,-(m)) < X for all r and all 4, see Theorem 1 page 366 of [6].

Choose @ such that 2 ”gi”q < ¢/K Thus

| p) gm( 4y@) <| ;Q‘ o h Ay(@))| + E lgall K

—1‘+ i=1 F=r+1 {=Q1

00

Q
<| Yol > 450) +-.
i=1 F=r+1
For any ¢ between 1 and @, jZ A;;(w) converges to zero as r tends to
o =741
infinity and our result follows.
We now obtain the analogue of Snyder’s theorem.

(A).‘.’a 100 THEROREM. A conservative matriz A is conull if and only if

icm°®
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Proof. Let A be a conull matrix and let z be in E. Consider

lim (5— U, (@) = 2(4) (@ Z Ayl

4 k=n+1
Since lim iy continuous frem ¢, into P(c), it is continuous when each

4
of these spaces is given its weak topology, confer problem 31 page 243
of [10]. By letting » tend to infinity, we obtain x(A)(a;) = 0 for any
» in E.

On the other hand, if x(4) = 0, we see by the lemma that for any
@ in B, {#— U,(#)} converges to zero in the weak topology of ¢,. Thus
A is conull.

4. SOME SUMMABILITY RESULTS

As in the usual situation, the question of associativity is quite often
crucial. We thus begin with a consideration of this problem.

4.1. ProPOSITION. Let A and B be infinile matrices of continuous
linear operators such that A: E(¢c) - F(c¢) and B: F(c) — G(m), where
E, ¥, and G are Fréchel spaces (not necessarily wsc). Then for any @ in
B(m) such that (BA)(w) and B(Az) are both defined, we have (BA)(x)
= B(Aw).

Proof. For any n, we will show that [(BA)(z)], =
weak topology on G and the proposition will follow.

Fix fin G*. Then for z in F(c), the function z —>Z‘f 0 B,;(#) is contin-

uous on F(c) and so on F(¢). It follows from 29 that we can find
q= Z g, such that lefoBm][q ig finite.
Now consider the double sequence {Z’ 2 foB,,0A (@)} Since

2 iy in E(m), the set of its coordinates is a bounded subset of ¥ and it
follows ﬁom Theorem 1 page 366 of [6] that there is a number K such

that q( 5’ Ay;(2;)) < K for all M and all k. Choose @ such that T'>8 >¢

[B(4%)], in the

1mp11es thafo
'y
D lifoBull, < e/K.
k=S
Then

Iy M
| 2} Dl seBuodu(a)|< 2 IfoBulo K <.

k=8 j=1
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Thus our double series is Cauchy in N uniformly with respect to M and
the equality of the iterated limits follows from the Moore theorem, see
page 28 of [2].

Before continuing we pause to note that if 4 is a conservative matrix

such that y(4) is invertible, i.e., one-to-one and onto, then the closed
graph theorem shows that y(4)~! is continuous.

4.2. PROPOSITION. If A s coregular and y(A) is invertible, then the
closure of H(ec) in ¢, contains ¢, N H(m). )

Proof. Let f be an element of ¢ that vanishes on E(c). Recall that
f may be written as in 2.11, i. e,

(=) Zfl llmoc + Z g; (Az);.

If o is in Z(c), this may be rewritten as

fl@) )f@ +xf><Z+xg)(}j v(@) + ) gu(da),

where I = lima and x(f) = x(g9)ox(4).

Since y(4) is invertible, x(g) = x(f)lox(4)™". But from 3.9 x(f) =0
and 80 x(g) = 0. Thus for any « in ¢,

z) =2fi($i)+ Zgi(A-m)i'

If » is in ¢, n E(m), then an application of 4.1 using & as the scalars
and B as the diagonal matrix {g;} shows that f may be written as

= 2 Bi(=;),

where each §; is in B*. Fix 2 in , then for any p

0 =F(I,(2)) = (2.

Thus f vanishes on ¢, N B (m) and our result follows.

4.3. COROLLARY. A as above. If E(c) is closed in ¢, then A sums no
bounded divergent sequences.

We now obtain an analogue of a theorem due to Copping.

4.4. THEOREM. Let A be conservative with y(4) invertible. Suppose

A has a left inverse B which carries F(c) into B(m). Then A sums no bounded
divergent sequences.
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Proof. Let #* — xin ¢4 where each o™ is in E(¢).. Then B(Ax") - B(A4x)
in B(m), i.e., " — B(A#) in E(m). But H(e) is closed in E(m). Thus
2" = B(Az) in E(c) and so also in ¢;. Thus B(4dz) =z is in B(c). Now
use 4.3.

As a last example of this technique, we would like to consider a the-
orem due to Mazur. This, however, demands some preliminaries.

4.5. DEFINITION. Let A be conservative, A: ¢, — F(c). Call 4
reversible if A is one-to-one and onto as a mapping from e, onto F(c).

4.6. PROPOSITION. If A is reversible, the most general continuous linear
functional on ¢y 8

fl@) = g(4a) = (o) Qima) + D g;(4a),

where g = {go, g1, ...} 48 in L(F").

Proof. This follows from the fact that 4 is a congruence.

4.7. PROPOSITION. Let A be conservative and lot ¢ be in 1,(F™). Then
(tA)(w) is defined for each = in ¢4 N E(m) and (tA)(2) = t(4z).

Proof. An approach similar to that used in 4.1 shows that the net

n m

(35 wtute)

k=

-

over o X is Cauchy so that (¢4)(s) is defined. An application of 4.1
then gives the equality of (t4)(z) and t(4w).

4.8. DEFINITION. Let A be conservative. We will say 4 is of type
M if for any ¢ in I,(F*), t must be zero whenever tA vanishes on H(c).

4.9. DEFINITION. Call a conservative matrix 4 perfect if E(c) is dense
in 6.

Notice that if A is perfect and ¢z contains ¢, with hm hm on
H(c), then lun hm on ¢,. This, of course, follows from the fa.ct that

lim is contmuous on ¢4 (with the ¢4-topology).
B
We now obtain the Mazur theorem.

4.10. TEEOREM. Leét A be reversible, coregular and x(4) nvertible.
Then A is perfect if and only if 4 is of type M.

Proof. Let A be perfect and let ¢ be an element of 1,(F*) such that
1A vanishes on E(e). For @ in ¢, let f(z) = t(Az). Then f is continuous
and is zero on E(c). Since A is perfect, f i zero on o . Fix y in ¥; then
there is an # in ¢, such that Az = I,(y). Thus

0 = t(42) = 1L, @) = 1)
and so ¢t =0.
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Now suppose A is of type M. Let f be an element of ¢, that vanishes
on E(c). Recall that for any o in ¢4

f@) = 2(g)(imo) + 3 g;(4).
An argoment similar to that in 4.2 shows that y(g) = 0. So for any x
in E(c)
0= 2 g:(A2);,

and since A is of type M, we have g; = 0 for ¢ = 1,2, ... Thus f is zero
on ¢, and A is perfect.

5. THE IDEAL OF CONULL MATRICES

Ramanujan has shown that if B iz a Banach space, then the get
of all triangular (i.e., 4,, = 0 for k¥ >n) conservative matrices carrying
E(c) into E{c) is a Banach algebra with identity (page 372 of [6]). Let

us call this space T(¥). We shall also assume that ¥ is weakly sequen-

tially complete. Using L(¥) to denote the Banach algebra of all contin-
uous linear transformations from E into F with the usual norm, we
see that
x: T(B) - L(E).

THEOREM. 5.1. y 4s continuous, linear, multiplicative, and onto.

Proof. The linearity of y is clear. To see that y is onto fix ¥ in L(B)
and let 4 be the diagonal matrix with all entries on the main diagonal 7.
Then 4 is clearly in T(E) and x(4) = F.

The norm. in T(E) is given by

4} = Lub ||}f AnkmkH.

legl " £=1
mn=1,2,..

For A in T(E), y(4) =limodol— > A4, where I takes E into E(c) by

I(z) = #. It follows that |I]| = 1. kLet G(2) = 3 A,(x) and recall that

@ iy continuous, 3.1. Moreover, it is clear that ||Glﬁ < [|4]. We then have
ll (AN = Jlimodol —@| < |Hm||J4]|+ 4] < {l4](|lim]|+1).

Thus ||| is finite and y is continuous.
It remains to show that y is multiplicative. Let 4 and B be elements
of T'(E) and ¢ = AB. Recall that for any z in E(c) we have

lima — 4(0)(lime)+- 2 ().

icm°
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Letting # = I, (¢) where z is in B, we see that
Cp(e) =1im(Z, (7)
= lim(B(L, )
= 4(4) (nglzp @)+ ; A (B(L,()))e
= 7(4) (1 (B) (im I, (2)) + B, (=)) + ; 45(Bep ()
= 1(4)(By (@) + D 4; Bip2)-
Fix # in B and consider :
#(0) () = limé— 2 0, (@)
= lim(Bé)— D) Gy(@)
= x(A)(li;ncé): b3 A,(Biy— 2 0, (a0)
= %(4) (X(B)(m)+;3p(w)) +; Ak(; B3 —; 0, (@)
' — g(d)ox(B)@)+x(4) 2 B, (@) + 2 Z 4By, (@)
—x(4) (;‘Bp(w)) —}; > 4:B1,(@)-

Bub 2 now familiar argument shows that the iterated sums appearing
in the above are equal (in the weak topology). Thus

2(AB) = yz(4)ox(B).
COROLLARY. 5.2. The sel of triangular conull matrices is @ closed ideal in
T(E).
Proof. This follows from 5.1 and 3.10.

Note added in proof In 4.2, 44 and 410 the hypothesis that x(4) is
invertible may be replaced by x(A) is onto.
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On a class of absolutely p-summing operators

by
TIN KIN WONG (Detroit, Mich.)

§ 1. Introduction. In thiy note we use the conventions and notation
of A. Persson [4]. A normed linear space is denoted by F, and F' is its
topological dual with the strong dual topology. ‘We use {f, f’> to indicate
the action of & veetor f in B and a funetional f'in B'. For 1<p < oo,
p and p’ are the usual conjugate numbers. IP(X, u; E') is the Banach
space of equivalent classes of strongly w-measurable B'-valued functions
K such that [[[K(2)ifdu < oo. In case E' is ¢ — the complex numbers,

x

we simply write I”(X, ps) instead of I”(X, p; O). All the measures in
this note are countably additive and positive, and all the operators are
bounded. '

We aim to investigate a class of linear operators T: B - IP(X, p)
and their adjoint T%: I* (X, p) — B’ such that

IZf ()] < ¥ (@) If]

for some y in I?(X, u). When E is a reflexive Banach space or E' i3 sepa-
rable, it turns out that each of them can be represented by a unique
K in I?(X, u; B) in the following way:

Tf(@) = {f, K@) a.e. and T'g= [g@)E(@)ap
X

for f in B, g in I” (X, u) where the integral is taken to be the Bochner
integral. In this ease, T' is an operator of type —N, and T* is of type —N?
([4], Theorem 1 and 2). They are all completely continuous operators.
Our result is quite similar to Dunford-Pettis Theorem in which they
obtained a representation for any operators T: B - L*°(X,s) and
8: IMX, p) — B’ by a bounded weakly measurable E'-valued function
under the hypotheses that B is a separable Banach space (see [6], p. 469).
As a consequence of our result, we obtain an alternative proof for a the-
orem of Shields—Wallen-Williams which asserts that if operator T': H
—IP(X, u) satisties |Tf(x)] < p(@)|lf]l for some y in IP(X, p), then T
is absolutely p-summing. In case B = I” (X, »), our result also includes
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