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Some remarks on subspaces of Orlicz spaces
of vector-valued finitely additive functions*

by
JOSEPH DIESTEL (Gainesville, Fla.)

In recent years, renewed efforts have been expanded in the study
of spaces of finitely additive set functions (a good bibliography may
be found in [10]). The present paper presents several results concerning
subspaces of certain classes of finitely additive functions. These results
have been obtained in somewhat different circumstances in [3] and ate,
of course, motivated by the analogous results of [5] and [9].

We shall assume throughout that Q is any set, X a field of subsets
of ©Q and p is & non-negative, real-valued, finitely additive function with
domain X. Thus, in particular, x(R)< co. We also assume familiarity
with the work in [10] and shall use the notation and results of that paper
throughout.

We start with the following observation the proof of which is com-
pletely contained in Temma 13 of [10]: Suppose F, V? (%) forn =0, 1,2;...
Then, if F, — F, (in Ny-norm) ¥, — Fy in V(%) norm and thus 7, (F) -
— Fy(F) uniformly for FeX.

TemorEM 1. Suppose @;, B, are Young’s fumctions and that V°1(Z)
is properly contained in V°2(%). Also suppose that @, is continuous. Then
V2L(%) is meager in VO ().

Proof. Consider the sets §;, for & > 0 defined by

8 = {0 V™2 (2)[ N4, (0) < 7.

We will show that these sets S, are closed in V®2(%) whence V%1(%)
becomes an F, — subset of V”2(%) and we can apply Theorem 1,p. 36
of [1] to conclude to the desired result.

Let us prove Sp’s closed. Suppose v,¢8; for » =1,2,...; and let
No, (v,—10) — 0
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where v, e V?2(&). Then by the preceding remarks,
(*) 0 (B) — 0, (B)
for each HeZX the convergence being uniform for FeX. That
No(v,) <
for all # (> 1) is equivalent to
Ty, (oaf1) <1

for all # > 1; which in turn is the same ag saying that for any partitioﬁ
I ={F,..,F,}c 2o Qwehaveforn=1,

mn

D) OulllonF /e w(EY) < 1

which by continuity of @, and (*) yields

Z By ([loo(F)|[ /T~ u(Fy)) < 1

and, of course, it follows immediately that
0, VPL(Z)  with No (v) < k.

Thus, 8§, is closed in V*2(%) and Theorem 1 is proved.

Our next result is a bit more delicate than the preceding one. We
assume for convenience that all Young’s functions are continuous. Recall
from [8], that the space V(%) denotes the collection of - -valued, fini-
tely additive functions v defined on X, vanishing on u-null sets for which

olles = sup{Jlo (B)||/u(B): BeZ} < oo,

(where the usual limitations on the involved quotients are employed).
Note that we have the relationship

Ve(#) = VH(E) = THE)

fo,r any (conif;inuous) @ and any Banach space . Moreover, if @ is dom-
Inated by @'(i.e., if O(w)< M (u) for u3>0) then V> (Z) = V°(%),
aI;nB( ;) topology of V* (%) is stronger than the relative @-topology on

With these comments in mind recall that if & is any reflexive Banach
space _a,nd © and its conjugate Young’s function ¥ both satisfy the A,-
condition, then V®(%) is similarly a reflexive Banach space with dual
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space identifiable as V¥ (Z™). This is particularly true in the case of &
being any finite-dimensional Banach space. If, in particular, ' = K" (K
= sealars), then Leader’s proof — with only trivial modifications —
shown that V!(H™* is none other than V*(K™). This allows us to prove
the following analog to Theorem 1 of [5]:

THEOREM 2. Suppose H is a linear subspace of V°(K™) which is closed
in V2(H™ for some (continuous) Young's function @ which is dominaied
by a @, satisfying @,, Pied,. Then H is @ finite dimensional linear space.

Proof. We start with the following result which might be of inde-
pendet interest:

THEOREM 3. Let H be any linear subspace of V(%) (¥ —any Banach
space) and suppose H is closed in V®(Z) for some (continuous) Young's
function @. Then H is closed in V°(Z) and, in fact, is closed in all inter-
mediate Orlicz spaces V' (X).

Proof. To show that H is closed in V*°(%) we will show that the
identity surjection iz of H onto itself is, in fact, a uniform isomorphism
of H in its relative V= (%) topology to H in its relative V*(Z) topology;
this being done, we ean conclude by the completeness of H in the latter
structure the completeness—hence closedness — of H in the former.
Note that we have immediately that the map ig: H, — Hg is contin-
uous. To see that iy is a uniform isomorphism, we need only apply
the comment preceeding Theorem 1, and the Closed Graph Theorem
and we can conclude H to be as claimed, i. e., H is closed in ¥V*(%). That
H is thereby closed in intermediate Orlicz spaces V¥'(%) is immediate.

Returning to the proof of Theorem 2; we note that V(%) (in the
case, of ¥ = K™ being a finite dimensional space) can readily be seen

to be an sbstract (L)-space (norm & with |[(z, -.., z,)| = 3, |%]) whence
1

V°(F) = V()" is equivalent to an abstract M-space (in fact, is such
3 space with correct norming of &) with unit (obviously, 4" = (g, ..., #)
is such a unit). Thus using the comments preceding Theorem, 2, we have
that H is a closed linear subspace of the Banach space V(%) (& space
which satisfies the strict Dunford Pettis property of [4] and of the refle-
xive space V®1(%). The situation is now identical to that of Theorem 1
of [5] and that proof ecan now be mimicked to complete the present
proof. : .

Of particular note in all the above theorems, especially Theorem. 1,
is the verification of Leader’s claim that “by consistently avoiding in-
tegrals, we reduce to a minimum the limiting processes necessary for
the theory of IP”. One need only refer to the proofs in [3] of the analo-
gous results for point functions to be convinced of the verity of the above
quofte.
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Addendum. In a paper soon to appear in Math. Annalen, Professor 8. Saxon
has introduced the notion of a Baire-like locally convex space; a loeally convex space
E is said to be Baire-like whenever B cannot be written as the union of an increasing
sequence of nowhere dense, closed, balanced, convex sets. Theorem 2.10 of the paper
(entitled “Product spaces, Baire-like spaces and the strongest locally convex topology™)
states that every countably co-dimensional subspace of a Baire-like space is Baire-like.
Our Theorem 1 therefore can be strengthened to: V21(%) is a meager, uncountadly
codimensional linear subspace of V%2(%). Indeed, the Sy’s are an inereasing sequence
of closed, convex, balanced, nowhere dense sets, | J Sy = V1(%).

%
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The chi function in generalized sammability
by
L. W. BARIC (Carlisle, Penn.)

1. INTRODUCTION

In 1949 Wilangky; [11], introduced the conull and coregular clagsi-
fieation of sealar summability matrices by the use of the chi functional.
Yurimyae in [12] and Snyder in [8] and. [9] showed that these properties
can. be characterized without the use of matrices.

Other anthors, see [17, [4], [5], [6], and [7], have considered the topic
of generalized summability and, in particular, have obtained analogues
of the Silverman-Toeplitz and the Kojima—Schur conditions.

In this paper, we extend the concept of the chi function to the genera-
lized situation, in a certain setting, and obtain an analogue of Snyder’s
result, Theorem 1, p. 378 of [9]. We also show that some of the usual
summability methods utilizing the chi function carry over to this new
setting.

2. FK-SPACES

Let F be a Fréchet space, i.e., a locally convex complete linear
metric space. Recall, p. 217 of [10], the topology of F may be generated
by @ sequence of continuous seminorms, {p;}. We shall use the following
notation:

B(s) is the space of all sequences in ¥ with pointwise addition and
scalar multiplication ;

"E(m) is that subspace of E(s) consisting of bounded sequences,

i.e., {z,} is in B(s) and {m,| n ¢ o} is a bounded subset of &;

E(c) is that subspace of E(m) consisting of convergent sequences;

E(c,) is that subspace of H(c) consisting of sequences convergent
to zero.

If X is any one of the above spaces, let C,: X — F be defined by
C,(2) = 2,.
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