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Differential equations in a linear ring
by
BARBARA MAZBIC-KULMA (Warszawa)

The purpose of this paper is to solve linear differential equations with
coefficients in a linear ring, in particular ordinary linear differential
equations with variable coefficients, using the definition of algebraic
derivative given by D. Przeworska-Rolewicz [3].

Definition 1. Let X be a commutative linear ring (over a field ¥)
with the unit e.

If for a linear operator D acting in X there is a linear operator B
defined on X such that RX is contained in the domain 2, of D and
1° DR =1,
2° the operator I+ Rp is invertible for any p < X (%),
3° D(ay) = (Do)y+a(Dy) for @, ¢ Dp,
then D will be called algebraic derivative and R — algebraic integral on X,
the kernel Zp = {# ¢ Zp: Dz = 0} is called the space of constants.
In particular, it follows from 2° that the operator I— iR is invertible
for any A eF. .
- Indeed, I—AR = I4 R(— Ze).
PROPOSITION 1. '
(i) D(%e) =0 for any ieF.
(ii) Da"™ = na™ ' Dw for n =1,2, ...
(iii) D*R* =1 for k =1,2, ...
(iv) There is @ ¢ such that Dg = ¢, namely ¢ — Re.
(v) (D+pI)(I+Rp)™" =D for any p < X.
Proof. (i) For all A« F and # « Zp
Dz = D(ex) = (De)z+¢(Dz) = (De)x+ Dz.

Hence (D) =0 and arbitrariness of # imply that De = 0. Therefore
D(ie) = ADe = 0.

(*) By Rp we will mean always the superposition of the operator R and of the
opetator of multiplication by an element peX.
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(ii), (iii) follows by an easy induction. _
(iv) Dg = DRe = ¢ (compare with Theorem 3.4 of [3]).
(v) Since D+pI =D+Ip = D+ DRp =.D(I+ Rp), we find

(D+pI)(I+Rp)™ = D(I+Rp)(I+EBp)™ = D.

Now we will consider the following equation:
a) Dra+p, D o+ p, DF w49y Dot-pio = y
where yeX and p;eX for 4 =1,2,...,k We denote D"p = p™ for
n=20,1,...

LevMMA 1. We have

. k
ik —i( (]

@) aDFo =§(—1) (%) D* (a9 )
Sfor all positive integers k and for an arbitrary aePp.

Proof, by induction. For %k =1 the formula (2) is true because
aDy = D(ax)— (Da)x. We assume that (2) is true for ¥ =n and we
shall prove that (2) is true for k¥ = n+1, i. e. that ‘

n+1 7 .
Do = 3 (1 (") 2ot (a0,
Since
aD"'p — aD(D"a) = D (aD"s)— (Da) D"a,

the induction assumption implies that

aD*lg =D [Zn‘ (—1)f (1») Dn—i(a(i)m)] _y (—1) (;b) Dn;j(a(f+l)m) |
. =0

=0 g

=2 (— 1 (;) Dty + Py () 2@+

) _ j=0
= j (—=1y (‘:’) Dt (gl g) 1 S’l (—1) (iﬁl) D (g )
=0 =i
= D" (ag) 1+ 2 (—1)¢ [(’:) + (11)] D (o) gy -

M 1l v
1\l p(ntl) e i (n+1 YIRS T AV (3
+ (-1 m_.Z(_ly( ! )D‘” (a® )

i=0

what was to be proved.
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THEOREM 1. The general form of a solution of the equation (1) is
E %1
r = (I+ Z Rff)j)'l(Rky-l— Z Rmzm)
i=1 m=0
where .
1. 2,€Zp for m =0,1,..., k-1,
. i=1 Btw—i\
2. 7 = 3 (—10(* 0 )i
w=0 %
3. the operator (I++ 3 F'D;) is invertible (%),
j=1
4o p Dy forj=1, 2, ..., k.
Proof. Applying Lemma 1 to the left side of (1) we obtain:
k-1 k-2
i(k—1 1 [ (& 3 [b—2 TN .
Dot Y (—1F (F7Y) Do) + 3 (— o (V77 D)+
=0 =0

1 .
oty (—1)1'(2) D (pfha) + 4w =y
=0

Tf we order the left side of the equation with respect to the powers of D,
‘we obtain

Dot 0[5 ) pao] 4 0 (47 2o (1) 0] o+
+[Prt+ (— 1)} Pra@ + oon (=1 9% 0] =g
In, virtue of Proposition 1 (iii) we have

Dfp4-DFR(p.a)+ ... +DFRF [t ... A (=1 1pa] =y,

Hence finally:
koo -1 i
D"(I—l—ZR”pj)m:g/, where ;= 2 (—1)“’( f‘) )pj(l",),,.
i=1 w=0

Basing on the assumption (3) we obtain
13
Degp = (1+ > ng”:,.)“y.
j=1

From the Corollary 2.5 ir [3] we have @
x k—1 '
2= (1+ ZRjﬁj)_l(R"y—{— > Rmz,,,)
J=1 m=0

where 2, ¢ Zp for m = 0,1, ..., k—1 what was to be proved.

(*) This assumption does not limit us essentially because it is equivalent to
the assumption that the respective Volterra integral equation is solvable uniq\uely,
what is satisfied.
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Exawrrm 1. Let us consider the space C[0, 1] and an ordinary differ-
ential equation:
@' +pr'+gw =y,

where p, ¢, p’, 5 « C[0, 1].
Then, as follows from Theorem 1 we obtain:

[I+Bp-+ R g—p")]o = R*y+Rey+2,
what implies
it
3) s+ [[p(s)+ (t—s)a(s)—2' (9))]a(s)ds =y, (1),

where
y1(t) = Rz?/‘}"-Rzl‘]‘zz-

Solving a corresponding Volterra integral equation (see [1]) we obtain:

2
a(t) = 40+ [ A (t, $)y,(s)ds,
0
where the kernel

(6 s) = Nty 8)+ D N,(t ),

n=1

N(t, 5) = p(s)+(t—3)(g(s)—p" (),
t
No(,8) = [Nt w)N,_,(w,s)dw, N, =XN.

It is easy to check that the solution & (1) defined by the formula (3) is
twice differentiable.
‘We denote now

() = (I+Bp) e for peX.

As follows f,Iom. Theorem 1, v,(2) is a solution of the equation
(Db—l-pI)m = 0. v,(2) is a linear family with respect to 2, because for all
a,bel -

2 eZp;

vﬁ(azlﬂ—wbzz) = 00y (21) 4 b, (2).
From the definition we have '
(D+p1)v,(2) = (D+pI)v,(2) = D(I+Ep)v,(e) = Ds = 0.
For a fixed p « X let us denote
Vp = {0,(2): 2 <Zp).

The definition implies that the set V_;e is the éigenspdce corresponding
to the eigenvalue —j, .

icm
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PROPOSITION 2. For all p,qe X
Vo Ve Virg-

Proof. By the assumption we have: Dv,(z) = pv,(2), Dv,(2) = qv,(z)
and Dv,, . (2) = (p+q)vp.,(2), for all 2 ¢ Z;,. Hence

D[0,(2)2,(2)] = (D, ()}, (2)+ 5, (2){ D, (2)) = (p+0) 7, (2)2,(2).
This implies that :
VoVe < Vg

‘We do not know if the opposite inclusion holds or not.
I wish to express my gratitude to Professor D. Przeworska-Role-

wicz for her valuable help when this work has been written.
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