

STUDIA MATHEMATICA, T. XXXVIII. (1970)

Colloquium on Nuclear Spaces and Ideals in Operator Algebras

Produits tensoriels d'espaces de Banach et classes d'applications linéaires

\mathbf{par}

PIERRE SAPHAR (Paris)

Introduction

En 1956, Grothendieck a écrit un article fameux [5] sur la théorie métrique des produits tensoriels d'espaces de Banach. Dans cet article, Grothendieck déduit de la norme projective π , quatorze normes tensorielles, ou \otimes normes, "naturelles", et étudie les propriétés des topologies associées. En fait, sauf pour la norme projective π , Grothendieck ne donne pas de formule explicite pour les normes introduites.

Dans [13] nous avons défini et étudié deux normes tensorielles d_2 et g_2 et conjecturé qu'elles étaient équivalentes à deux des quatorze normes tensorielles de Grothendieck.

Par ailleurs, Pietsch a introduit dans [10] la notion d'opérateur k absolument sommant et donné des propriétés fondamentales. D'autres propriétés importantes des opérateurs k absolument sommants ainsi que leur liaison avec celles de Grothendieck [5] étaient alors mises en évidence par Lindenstrauss et Pelczynski dans [8]. Enfin, Pietsch et Persson dans [12] ont présenté quatre classes d'opérateurs plus ou moins reliés aux opérateurs k absolument sommants. Des relations diverses entre ces classes d'opérateurs sont démontrées dans [12]. Il est parfois nécessaire pour les obtenir de faire des hypothèses d'accessibilité (cf. n° 4) sur les espaces étudiés. Ces articles [10], [8], [12] ne font pas intervenir la notion de produit tensoriel.

Dans ce travail, nous introduisons une famille de normes tensorielles, les normes g_k et d_k pour $1 \leq k \leq +\infty$, qui généralisent g_2 et d_2 et nous en faisons une étude systématique. Cette étude nous permet d'expliciter huit des quatorze \otimes normes de Grothendieck et d'apporter une réponse positive à la conjecture de [13], p. 140. On montre aussi des propriétés de dualité parfois assez voisines de certaines obtenues dans [12] mais sans qu'il soit nécessaire d'utiliser des hypothèses d'accessibilité sur les espaces étudiés. Enfin, pour des espaces de Banach particuliers, on obtient des propriétés d'équivalence des \otimes normes g_k et d_k qui mènent à des applications diverses.

Les principaux résultats de cet article ont été présentés dans trois notes aux Comptes Rendus de l'Académie des Sciences [14], [15], [16]. Enfin, il faut préciser que S. Chevet a introduit indépendamment les \otimes normes g_k et d_k dans [3] et donné d'autres applications.

Cet article est organisé ainsi:

Dans le §1, on rappelle la notion de \otimes norme. Certains résultats sont donnés sans démonstration. Pour les démonstrations le lecteur pourra consulter [1] ou [5].

Dans le § 2, on met en évidence quelques propriétés nouvelles des \otimes normes.

Dans le § 3, on introduit et étudie la famille des \otimes normes g_k et d_k . Dans le § 4, on étudie des cas particuliers et on donne des applications.

Notations

Les espaces de Banach considérés sont, soit tous réels, soit tous complexes. Soient E et F deux espaces de Banach et $\mathscr{L}(E, F)$ l'espace des applications linéaires continues de E dans F. Si x est un élément de E et T un élément de $\mathscr{L}(E, F)$, on note ||x|| la norme de x et ||T|| la norme usuelle de T.

L'application identique de E dans E est notée $\mathbf{1}_{E}$. Si u est un élément de $E \otimes F$ et α une norme sur $E \otimes F$, la norme de u dans $E \otimes F$ muni de α est notée $\alpha(u; E, F)$ et s'il n'y a pas ambiguité $\alpha(u)$ ou $|u|_{\alpha}$.

On dit que E est de type C s'il est isomorphe en tant qu'espace normé à l'espace de Banach des fonctions continues définies sur un espace compact K et à valeurs scalaires. On dit que E est de $type L^{p}(1 \leq p \leq +\infty)$ si E est isomorphe en tant qu'espace normé à l'espace de Banach des classes de fonctions de puissance $p^{\text{ième}}$ intégrables définies sur un espace localement compact muni d'une mesure de Badon positive et à valeurs scalaires (pour p = 1 on dit de type L). On sait d'après Kakutani, [7] et [7 bis], que le dual topologique d'un espace de type L est de type Cet que le dual topologique d'un espace de type L.

Nous aurons parfois besoin de la propriété d'extension des espaces de type $L^{\infty}(\text{cf. [9]})$: soient E un espace de Banach, M un sous-espace fermé de E, F un espace de type L^{∞} , T_1 une application linéaire continue de M dans F. Alors, il existe une application linéaire continue T de Edans F, dont la restriction à M est T_1 .

Enfin, si k est un nombre réel tel que $1 \le k \le +\infty$, on note k' le nombre conjugué de E défini par 1/k+1/k' = 1.

De plus, on note $\mathscr{C}(E, F)$ l'espace des applications compactes de *E* dans *F* considéré comme sous espace de Banach de $\mathscr{L}(E, F)$ et $\mathscr{L}^1(E, F)$ l'espace de Banach des applications nucléaires de *E* dans *F*.

§ 1. RAPPELS SUR LES NORMES TENSORIELLES

1. Normes raisonnables. Soient E et F deux espaces de Banach. Une norme a sur $E \otimes F$ est dite *raisonnable* si on a les deux conditions suivantes:

$$a(x \otimes y) = ||x|| \cdot ||y||, \quad x \in E, y \in F$$

Si $x' \in E'$ et $y' \in F'$, la norme de $x' \otimes y'$ considérée comme forme linéaire continue sur $E \otimes F$ est $||x'|| \cdot ||y'||$.

L'espace $E \otimes F$ muni de a est noté $E \otimes_a F$ et son complété $E \otimes_a F$.

2. Normes tensorielles. On dit que α est une \otimes norme si on a les deux propriétés suivantes:

 α est une norme raisonnable sur $E\otimes F$ dès que E et F sont de dimension finie.

Si E_i et F_i (i = 1, 2) sont quatre espaces de Banach de dimension finie et A_i des éléments de $\mathscr{L}(E_i, F_i)$, alors $A_1 \otimes A_2$ est une application linéaire continue de $E_1 \otimes_a E_2$ dans $F_1 \otimes_a F_2$ de norme inférieure ou égale à $||A_1|| \cdot ||A_2||$. Cette application est notée $A_1 \otimes_a A_2$. Elle peut être étendue de $E_1 \otimes_a E_2$ à $F_1 \otimes_a F_2$. On note $A_1 \otimes_a A_2$ l'extension.

On étend alors une \otimes norme a à des espaces de Banach quelconques E et F de la manière suivante: soient $u \in E \otimes F$, M et N des sous-espaces vectoriels de dimension finie de E et F tels que $u \in M \otimes N$. On désigne par a(u; M, N) la norme de u considérée comme élément de $M \otimes_a N$ et l'on définit

 $|u|_{a} = \alpha(u; E, F) = \inf (\alpha(u; M, N)),$

la borne inférieure étant prise sur l'ensemble des couples M et N. On vérifie que $|u|_{\alpha}$ est une norme. Il existe un isomorphisme de symétrie de $E\otimes F$ dans $F\otimes E$, noté $u \to {}^{t}u$. Si α est une \otimes norme, on définit ${}^{t}\alpha$ par la formule ${}^{t}\alpha(u) = \alpha({}^{t}u)$ et l'on vérifie que ${}^{t}\alpha$ est une \otimes norme appelée \otimes norme transposée de α .

3. Norme duale. Soit a une \otimes norme. Si E et F sont deux espaces de Banach de dimension finie, le dual topologique de $E' \otimes_a F'$ est $E \otimes F$. On note a' la norme sur $E \otimes F$ considéré comme dual de $E' \otimes_a F'$. On vérifie immédiatement que a' est une \otimes norme. On a la formule (a')' = a. Donc, si E et F sont de dimension finie la norme a peut être considérée comme la norme sur $E \otimes F$ identifié au dual topologique de $E' \otimes_a F'$. Il n'en est plus de même si E et F sont quelconques. L'espace $E \otimes F$ peut alors être plongé canoniquement dans le dual de $E' \otimes_{a'} F'$ et l'on note $\tilde{\alpha}$ la norme de ce plongement (1). On a, pour tout α , $\tilde{\alpha} \leq \alpha$, ce qui entraîne qu'il existe une application linéaire continue canonique de $E \otimes_{\alpha} F$ dans $(E' \otimes_{a'} F')'$. L'espace $(E \otimes_a F)'$ peut être identifié à un espace d'applications bilinéaires continues sur $E \otimes F$, ou à un espace d'applications linéaires continues de E dans F', les applications de type α' .

On a le résultat suivant:

Soit A une application linéaire continue de E dans F', i l'injection canonique de F' dans F''', $A_1 = i A$. Alors, pour que A soit de type a' il faut et suffit que A_1 soit de type a'. De plus, les normes de A et A_1 considérés comme éléments de $(E \otimes_a F)'$ et $(E \otimes_a F'')'$ sont les mêmes.

On peut, partant de là, obtenir le résultat suivant:

PROPOSITION 1.1. La norme \tilde{a}' peut s'interpréter ainsi:

sur $E \otimes F$ comme induite par $(E' \otimes_{a} F')'$;

sur $E' \otimes F$ comme induite par $(E \otimes_a F')'$ ou par $(E'' \otimes_a F')'$; sur $E \otimes F'$ comme induite par $(E' \otimes_a F)'$ ou par $(E' \otimes_a F'')'$;

sur $E' \otimes F'$ comme induite par $(E \otimes_a F)'$ ou par $(E'' \otimes_a F'')'$.

4. Accessibilité. Une \otimes norme α étant donnée, il est important de savoir si l'on a, ou non, la relation $\alpha = \tilde{\alpha}$. On dit que α est accessible si $a = \tilde{a}$ sur $E \otimes F$ dès que E ou F sont de dimension finie. On dit que l'espace de Banach E est accessible (resp. métriquement accessible) si l'application identique de E dans E est limite uniforme sur tout compact de E d'applications de rang fini (resp. et de norme inférieure ou égale à 1)(²). On a alors le résultat suivant:

PROPOSITION 1.2. Soit a une \otimes norme, E et F deux espaces de Banach. Si E et F sont métriquement accessibles, $a = \tilde{a}$ sur $E \otimes F$.

Si a est accessible et E ou F métriquement accessible, $a = \tilde{a} sur E \otimes F$.

Par ailleurs, if faut noter que tout espace de Banach de type C ou de type $L^p(1 \leq p \leq +\infty)$ est métriquement accessible.

5. Injectivité-Projectivité. Soient E et F deux espaces de Banach et M un sous espace vectoriel fermé de E. On dit que la \otimes norme a est injective a gauche si l'injection de $M \otimes_a F$ dans $E \otimes_a F$ est une isométrie, quels que soient les espaces E, F, M. On dit que a est projective à gauche si a' est injective à gauche. De même, on dit que a est injective (resp. projective) à droite si la norme transposée, t_{α} , est injective (resp. projective) à gauche. Une \otimes norme α étant donnée, il existe:

une plus grande ⊗ norme injective à gauche (resp. à droite) majorée par α ;

(2) On dit aussi que E vérifie l'hypothèse d'approximation (resp. l'hypothèse d'approximation métrique).

une plus petite \otimes norme projective à gauche (resp. à droite) minorée par a.

Ces \otimes normes sont notées respectivement a, a, a, a/a. On démontre aisément les formules:

 $(\angle \alpha)' = \backslash \alpha', \quad (\backslash \alpha)' = \angle \alpha' \quad \text{et} \quad \angle (\alpha \backslash) = (\angle \alpha) \backslash = \angle \alpha \backslash.$

Soit C un espace de Banach de type C et L un espace de Banach de type L. On montre alors, que sur $E \otimes C$, $a = a \land$ et que sur $E \otimes L$, $a = a \checkmark$. De plus, on sait qu'un espace de Banach quelconque F est un sous espace vectoriel fermé d'un espace C de type C et un quotient d'un espace Lde type L. Alors:

 $E \otimes F$ est un sous espace vectoriel de $E \otimes C$ et la norme $\alpha \setminus sur E \otimes F$ est celle induite par $E \otimes C$;

 $E \otimes F$ est un espace quotient de $E \otimes L$ et la norme a/ sur $E \otimes F$ est la norme quotient induite par $E \otimes L$.

Par ailleurs, il est important de noter que les injections canoniques de $E \otimes_a F$ dans $E \otimes_a F''$ et dans $E'' \otimes_a F''$ sont des isométries pour tout a.

6. Exemple de \otimes norme. Grothendieck a introduit dans [5] et [6] la norme π (notée Λ dans [5]) de la manière suivante:

Si E et F sont deux espace de Banach et $u = \sum_{i=1}^n x_i \otimes y_i$ un élément de $E \otimes F$, on pose:

$$|u|_{\pi} = \inf \sum_{i} ||x_i|| \cdot ||y_i||,$$

la borne inférieure étant calculée sur l'ensemble des représentations de u de la forme $u = \sum x_i \otimes y_i$.

On démontre aisément que π est une \otimes norme pour laquelle

 $(E\otimes_{\tau} F)' = \mathscr{L}(E, F').$

Ce résultat sera retrouvé comme cas particulier du théorème 3.2. Il en découle que π est la plus grande des \otimes normes.

Nous noterons dans la suite ε la norme duale de la norme π : $\pi' = \varepsilon$. On constate immédiatement que la norme π est égale à sa transposée. Il en est alors de même de ε . On dit que les normes π et ε sont symétriques.

§ 2. QUELQUES RÉSULTATS SUR LES \otimes NORMES

LEMME 2.1. Soient E un espace de Banach, F un espace de Banach métriquement accessible, a une \otimes norme injective à gauche. Alors, sur $E \otimes F, a = \tilde{a}.$

⁽¹⁾ La norme $\tilde{\alpha}$ est notée || ||_{α} dans [5].

Démonstration. Soient K' la boule unité de E', munie de la topologie faible de E', C = C(K') l'espace de Banach des fonctions continues sur K', à valeurs scalaires, i l'injection canonique de E dans C. Considérons le diagramme commutatif:

$$\begin{array}{c} E \otimes_a F \xrightarrow{i \otimes_a 1_F} C \otimes_a F \\ A_a \downarrow & B_a \\ (E' \otimes_{a'} F')' \xrightarrow{t(t_{i \otimes_{a'} 1_F'})} (C' \otimes_{a'} F')' \end{array}$$

Les applications A_a et B_a sont des applications linéaires continues canoniques.

L'application B_a est une isométrie puisque C et F sont métriquement accessibles (Proposition 1.2). L'application $i \otimes_a 1_F$ est une isométrie puisque α est injective à gauche. Puisque α' est projective à gauche, l'application ${}^{t}i \otimes_{\alpha'} 1_{F'}$ de $C' \otimes_{\alpha'} F'$ sur $E' \otimes_{\alpha'} E'$ est un homomorphisme d'espace normé. On déduit que ${}^{t}({}^{t}i \otimes_{\alpha'} 1_{F'})$ est une isométrie. Donc, A_a est une isométrie. C'est le résultat voulu.

COROLLAIRE. Si $a = a \le et$ si E est métriquement accessible, alors pour tout espace de Banach F, $a = \tilde{a}$ sur $E \otimes F$.

LEMME 2.2. Si a = a et si F est métriquement accessible, alors pour tout espace de Banach E, $a = \tilde{a}$ sur $E \otimes F$.

Démonstration. Supposons tout d'abord que F est de dimension finie. La norme a' est injective à gauche. Donc $E' \otimes_{a'} F'$ s'envoie isométriquement et bijectivement sur $(E \otimes_a F)'$. Donc, $(E \otimes_a F)''$ s'envoie isométriquement dans $(E' \otimes_{a'} F')'$ et il en est de même de $E \otimes_a F$. Alors, $a = \tilde{a}$ sur $E \otimes F$.

Supposons maintenant que F soit métriquement accessible.

$$\text{Soit } \eta > 0 \ \text{et} \ u = \sum_{i=1}^n x_i \otimes y_i \ \text{un élément de} \ E \otimes F \ \text{avec} \ |u|_a > 1.$$

Il existe une application linéaire continue de rang fini, A, de F dans F, de norme inférieure ou égale à 1 vérifiant $||y_i - A(y_i)|| \leq \eta$, $1 \leq i \leq n$. On a alors:

$$\begin{split} & u - (\mathbf{1}_E \otimes A) \, u \, = \, \sum_{i=1}^n x_i \otimes \big(y_i - A \, (y_i) \big), \\ & |u - (\mathbf{1}_E \otimes A) \, u|_a \leqslant |u - (\mathbf{1}_E \otimes A)|_a \leqslant \sum_{i=1}^n \, ||x_i|| \, \eta. \end{split}$$

Donc, si η est assez petit, $|(1_E \otimes A) u|_a > 1$. Posons $\vartheta = (1_E \otimes A) u$ et $F_1 = \text{Im } A$. En fait, $\vartheta \epsilon E \otimes F_1$. Puisque F_1 est de dimension finie on a:

$$\tilde{a}(\vartheta; E, F_1) = a(\vartheta; E, F_1) > 1.$$

 $\text{Il existe alors } \vartheta' \, \epsilon \, E' \otimes_{a'} F'_1 \, \, \text{avec } \, |\vartheta'|_{a'} = 1 \, \text{ et } \, |\langle \vartheta, \vartheta' \rangle| > 1.$

Désignons par A_1 l'application de F dans F_1 qui prend les mêmes valeurs que A.

L'élément de $E' \otimes_{a'} F', \vartheta'_1 = (1_{E'} \otimes^t A_1) \vartheta'$ est de norme inférieure ou égale à 1. On a de plus

$$\langle u, \vartheta'_1 \rangle = \langle (1_E \otimes A_1) u, \vartheta' \rangle$$

ou encore

Donc

 $|u|_{\tilde{a}} > 1$.

 $|\langle u, \vartheta'_1 \rangle| = |\langle \vartheta, \vartheta' \rangle| > 1.$

Puisque $\tilde{a} \leqslant a$, en général, on conclut que $a = \tilde{a}$ sur $E \otimes F$.

COROLLAIRE. Si $a = a \checkmark et$ si E est métriquement accessible, alors pour tout espace de Banach F, $a = \tilde{a}$ sur $E \otimes F$.

On a alors le résultat suivant:

PROPOSITION 2.1. Soit a une \otimes norme. Considérons les conditions:

1) a est accessible et injective à gauche (resp. à droite);

2) il existe une \otimes norme β telle que $a = \angle(\beta \angle)$ (resp. $a = (\backslash \beta) \backslash, a = \angle \beta \backslash$).

Alors 1) ou 2) entraîne $a = \tilde{a} \setminus$.

Démonstration. Prenons l'hypothèse 1) et considérons de nouveau le diagramme utilisé dans la démonstration du Lemme 2.1. L'application B_a est ici une isométrie puisque C est métriquement accessible et a accessible. La démonstration se poursuit alors comme dans le Lemme 2.1.

Prenons, par exemple, l'hypothèse $a = \checkmark (\beta \checkmark)$. Elle donne $a' = \backslash (\beta' \land)$. Donc, sur $C \otimes F$, $a = \beta \checkmark$ et sur $C' \otimes F'$, $a' = (\beta \checkmark)'$.

Le diagramme précédent peut alors s'écrire:



 B_a est ici une isométrie d'après le corollaire du Lemme 2.2. La démonstration se poursuit alors comme dans le Lemme 2.1.

La démonstration dans les deux autres cas est analogue. Elle s'appuie sur le Lemme 2.2 (cas $\alpha = (\backslash \beta) \backslash$) ou le corollaire du Lemme 2.1 (cas $\alpha = \langle \beta \rangle$).

1. Définition, propriétés élémentaires. Soient E un espace de Banach. $(x_i)_{i\in I}$ une famille d'éléments de E, k un nombre réel tel que $1 \leq k \leq +\infty$, k' le nombre conjugué (1/k+1/k'=1).

On désigne par N_k $((x_i)_{i \in I})$, ou $N_k(x_i)$ s'il n'y a pas ambiguité, le nombre réel, fini ou non:

$$egin{aligned} N_k(x_i) &= \Bigl(\sum_i \|x_i\|^k\Bigr)^{1/k}, & ext{ si } k ext{ est fini}, \ &N_\infty(x_i) &= \sup_i \|x_i\|. \end{aligned}$$

Par ailleurs, on dit que la famille (x_i) est:

de puissance $k^{i \ell m e}$ sommable si $N_k(x_i)$ est fini;

scalairement de puissance k^{ieme} sommable, si, pour tout x' de E'. $N_{k}(\langle x_{i}, x' \rangle)$ est fini.

On désigne alors par $M_k((x_i)_{i \in I})$, ou $M_k(x_i)$ s'il n'y a pas ambiguité, l'expression:

$$M_k(x_i) = \sup_{\|x'\| \leq 1} N_k(\langle x_i, x' \rangle)$$

et on vérifie que $M_k(x_i)$ est fini.

Soient E et F deux espaces de Banach, u un élément de $E \otimes F$, $u = \sum x_i \otimes y_i$. On pose alors

$$g_k(u) = |u|_{g_k} = \inf N_k(x_i) M_{k'}(y_i),$$

la borne inférieure étant prise sur l'ensemble des représentations de u de la forme $u = \sum x_i \otimes y_i$.

On pose aussi:

$$d_k(u) = |u|_{d_k} = \inf M_{k'}(x_i) \cdot N_k(y_i).$$

On a alors le résultat suivant:

THÉORÈME 3.1. Pour tout k, g_k et d_k sont des normes sur $E \otimes F$.

Démonstration. Soient u_1 et u_2 deux éléments de $E \otimes F$. On peut écrire:

$$u_j = \sum_{i=1}^n x_{i,j} \otimes y_{i,j}, \quad j = 1, 2.$$

Soit $\eta > 0$. On peut choisir les représentations de u_1 et u_2 telles que

$$egin{aligned} &N_k((x_{i,j})_i)\leqslant (g_k(u_j)+\eta)^{1/k}, \quad j=1,2,\ &M_{k'}((y_{i,j})_i)\leqslant (g_k(u_j)+\eta)^{1/k'}, \quad j=1,2. \end{aligned}$$

On en tire immédiatement:

$$N_k((x_{i,i})_{i,j}) \leqslant (g_k(u_1) + g_k(u_2) + 2\eta)^{1/k},$$

$$M_{k'}((y_{i,j})_{i,j}) \leqslant (g_k(u_1) + g_k(u_2) + 2\eta)^{1/k'}.$$

Puis:

$$N_k((x_{i,j})_{i,j}) \ M_{k'}((y_{i,j})_{i,j}) \leqslant g_k(u_1) + g_k(u_2) + 2\eta.$$

Done

$$g_k(u_1 + u_2) \leq g_k(u_1) + g_k(u_2)$$

Il est aisé de montrer que $g_k(\lambda u) = |\lambda| g_k(u)$ pour tout scalaire λ . Par ailleurs, on sait que $E\otimes F$ et $E'\otimes F'$ sont en dualité. Si $u\,\epsilon E\otimes F$ $\text{et} \quad u' \, \epsilon \, E' \otimes F', \quad \text{on vérifie que} \quad |\langle u, \, u' \rangle| \leqslant |u|_{g_k} |u'|_{d_{k'}}. \quad \text{Donc} \quad |u|_{g_k} = 0$ entraîne u = 0.

Ainsi g_k est une norme sur $E \otimes F$ et il en est de même de d_k .

Remarque. On vérifie immédiatement que g_1 et d_1 sont égales à la norme π de Grothendieck (cf. §1, n° 6).

PROPOSITION 3.1. Les normes g_k et d_k sont des \otimes normes.

Démonstration. Montrons que g_k est une norme raisonnable. Soient E et F deux espaces de Banach, $x \in E, y \in F, x' \in E'$ et $y' \in F'$.

Il est clair que
$$|x \otimes y| g_k \leq ||x|| ||y||$$
.

 $\text{Par ailleurs, si } u \in E \otimes F \text{ et } u' \in E' \otimes F', \text{ on a facilement } |\langle u, u' \rangle|$ $\leqslant |u|_{a_k} |u'|_{a_k}$. Donc la norme de $x' \otimes y'$ considérée comme élément de $(E\otimes_{d_k} F)'$ est inférieure ou égale à $|x'\otimes y'|_{d_{k'}}$.

 $ext{Par}$ ailleurs, on a aussi $|x'\otimes y'|_{d_{k'}} \leqslant \|x'\|$

Enfin, on peut écrire:

$$\langle x \otimes y, x' \otimes y' \rangle = \langle x, x' \rangle \langle y, y' \rangle$$

Utilisant la dualité entre $E\otimes F$ et $E'\otimes F'$ et le théorème de Hahn-Banach, on déduit que $|x \otimes y|_{g_k} = ||x|| ||y||$ et que la norme de $x' \otimes y'$ considérée comme élément de $(E \otimes_{g_k} F)'$ est $||x'|| \cdot ||y'||$.

Ainsi, g_k est une norme raisonnable.

Des vérifications immédiates montrent alors que g_k est une \otimes norme.

Il en est de même de d_k .

Remarque. Les \otimes normes g_k et d_k sont transposées l'une de l'autre. LEMME 3.1. Soient $(x_i)_{i\in N}$ une suite de E, $(y_i)_{i\in N}$ une suite de F telles

 $N_k(x_i) < +\infty, \text{ et de plus } \|x_i\| o 0 \text{ si } i o +\infty \text{ dans le cas où } k = +\infty;$ $M_{k'}(y_i) = \alpha < +\infty.$

Alors la famille $x_i \otimes y_i$ est sommable dans le complété $E \, \hat{\otimes}_{g_k} F$ de $E \otimes_{g_k} F$. Démonstration. A $\eta > 0$, on peut faire correspondre une partie

B de l'ensemble N des entiers positifs ou nuls tels que pour toute partie

PROPOSITION 3.2. Soient E et F deux espaces de Banach, u une élément de $E \hat{\otimes}_{q_k} F$.

Alors il existe une suite (x_i) de E, une suite (y_i) de F vérifiant:

 $egin{aligned} &\mathcal{N}_k(x_i)<+\infty \mbox{ et de plus } \|x_i\| o 0 \mbox{ si } i o\infty \mbox{ dans le cas où } k=+\infty; \ &\mathcal{M}_{k'}(y_i)<+\infty; \end{aligned}$

 $u = \sum_{i=0}^{\infty} x_i \otimes y_i$, la série convergeant dans $E \otimes_{y_k} F$.

De plus, $|u|_{g_k} = \inf N_k(x_i) M_{k'}(y_i)$ la borne inférieure étant prise sur l'ensemble des représentations de u de la forme $\sum_{i=0}^{\infty} x_i \otimes y_i$, (x_i) et (y_i) ayant les propriétés indiquées ci-dessus.

Démonstration. Soit $u \in E \otimes_{g_k} F$. Alors, il existe une suite (u_n) d'éléments de $E \otimes_{g_k} F$, telle que $|u_n - u|_{g_k} \to 0$. On peut écrire

 $u = u_0 + (u_1 - u_0) + (u_2 - u_1) + \dots,$

et aussi

$$u_n - u_{n-1} = \sum_{i=1}^{k(n)} x_{i,n} \otimes y_{i,n}$$

Quitte à remplacer la suite (u_n) par une suite extraite, on peut supposer que:

$$|u_n - u_{n-s}|_{g_k} \leqslant \frac{1}{2n^2}$$
, si *n* est assez grand,

$$N_kig((x_{i,n})_iig) \leqslant rac{1}{n}, ext{ si } n ext{ est assez grand},$$

$$M_{k'}ig((y_{i,n})_iig) \leqslant rac{1}{n}, ext{ si } n ext{ est assez grand.}$$

Done,

$$N_k((x_{i,n})_{i,n})<+\infty \quad ext{et} \quad M_{k'}((y_{i,n})_{i,n})<+\infty.$$

On peut alors écrire:

$$u = \sum_{i=0}^{\infty} x_i \otimes y_i,$$

les suites (x_i) et (y_i) ayant les propriétés indiquées dans l'énoncé. On peut écrire

$$u_n = \sum_{i=0}^n x_i \otimes y_i.$$

On a

$$u_n|_{g_k} \leqslant N_k((x_i)_{0 \leqslant i \leqslant n}) M_{k'}((y_i)_{0 \leqslant i \leqslant n}) \quad \text{ pour tout } n.$$

Donc, par passage à la limite,

$$|u|_{g_k} \leqslant N_k(x_i) \ M_{k'}(y_i) \,.$$

Soit alors $\eta > 0$. On peut choisir les (x_i) , les (y_i) et n tels que:

$$\begin{split} \left| |u_n|_{g_k} - N_k((x_i)_{0 \leqslant i \leqslant n}) \ M_{k'}((y_i)_{0 \leqslant i \leqslant n}) \right| &\leq \eta \,, \\ \left| N_k((x_i)_{0 \leqslant i \leqslant n}) \ M_{k'}((y_i)_{0 \leqslant i \leqslant n}) - N_k(x_i) \ M_{k'}(y_i) \right| &\leq \eta \,, \\ \left| u_n - u \right|_{g_k} &\leq \eta \,. \end{split}$$

On obtient alors

$$\left|N_{k}(x_{i}) \ M_{k'}(y_{i}) - |u|_{g_{k}}\right| \leqslant 3 \eta$$

On en conclut le résultat voulu.

2. Les applications k nucléaires à gauche et à droite. On a le résultat suivant:

PROPOSITION 3.3. Soient E et F deux espaces de Banach. Alors l'injection naturelle de $E' \otimes_{g_k} F$ dans $\mathscr{L}(E, F)$ est continue et se prolonge en une application linéaire continue de norme inférieure ou égale à 1 de $E' \otimes_{g_k} F$ dans $\mathscr{L}(E, F)$ notée $u \to \tilde{u}$.

Démonstration. Soit $u \in E' \otimes_{g_k} F$, $u = \sum_{i=1}^{n} x'_i \otimes y_i$. On a, pour tout x de E,

$$ilde{u}\left(x
ight)=\sum_{i=1}^{n}\left\langle x,\,x_{i}^{\prime}
ight
angle \,y_{i}.$$

On vérifie immédiatement que $\|\tilde{u}\| \leq |u|_{g_k}$.

Le résultat découle.

COROLLAIRE. Il existe une application linéaire continue naturelle de $E' \hat{\otimes}_{d_2} F$ dans $\mathcal{L}(E, F)$.

D'éfinition 3.1. On dit qu'un élément T de $\mathscr{L}(E, F)$ est k-nucléaire à gauche (resp. à droite) si T appartient à l'image de $E' \hat{\otimes}_{q_k} F$ (resp. $E' \hat{\otimes}_{d_k} F$) dans $\mathscr{L}(E, F)$. L'ensemble des applications k-nucléaires à gauche (resp. à droite) est noté $\mathscr{L}_g^k(E, F)$ (resp. $\mathscr{L}_d^k(E, F)$). Si N_k est le noyau de l'application $E' \hat{\otimes}_{q_k} F \to \mathscr{L}(E, F)$, $\mathscr{L}_g^k(E, F)$ peut s'identifier à l'espace quotient $E' \hat{\otimes}_{q_k} F/N_k$. On le munit de la norme quotient qui en fait un espace de Banach.

Si $T \in \mathscr{L}^k_{\mathfrak{g}}(E, F)$, on note cette norme $g_k(T)$ ou $|T|_{\mathfrak{g}_k}$. On a $||T|| \leq |T|_{\mathfrak{g}_k}(^3)$.

F).

(3) Puisque
$$g_1 = d_1 = \pi$$
, on a $\mathscr{L}^1_g(E, F) = \mathscr{L}^1_d(E, F) = \mathscr{L}^1(E, F)$

Studia Mathematica XXXVIII

80

Remarque. Si E' ou F sont accessibles, on sait (cf. Grothendieck [6], chap. I, p. 95) que l'application de $E' \otimes_{g_k} F$ (resp. $E' \otimes_{d_k} F$) dans $\mathscr{L}(E, F)$ est injective. On ne peut rien dire en général. Toutefois, nous montrerons un peu plus loin (Théorème 3.3) que l'application de $E' \otimes_{g_2} F$ (resp. $E' \otimes_{d_2} F$) dans $\mathscr{L}(E, F)$ est injective, quels que soient les espaces de Banach E et F.

PROPOSITION 3.4. Soit $u \in E' \otimes_{g_k} F$. Si l'on pose

$$u = \sum_{i=0}^{\infty} x'_i \otimes y_i,$$

la série ayant les propriétés indiquées dans la proposition 3.2, on a pour tout x de E,

(2)
$$\tilde{u}(x) = \sum_{i=0}^{\infty} \langle x, x'_i \rangle y_i$$

De plus, $|\tilde{u}|_{g_k} = \inf N_k(x'_i)M_{k'}(y_i)$, la borne inférieure étant prise sur l'ensemble des représentations de la forme (2).

Démonstration. Ces résultats découlent immédiatement de la Proposition 3.2.

3. Le dual topologique de $E \otimes_{d_k} F$. Notre but dans ce paragraphe est d'étudier $(E \otimes_{d_k} F)'$. Introduisons pour cela la définition suivante:

Définition 3.2. Soient E et F deux espaces de Banach, T un élément de $\mathscr{L}(E, F)$, k un nombre réel tel que $1 \leq k \leq +\infty$. On dit que l'application T est k absolument sommante s'il existe une constante A > 0, telle que, pour toute suite (x_i) finie de E on ait $N_k(Tx_i) \leq AM_k(x_i)$.

L'ensemble des opérateurs k absolument sommants de E dans F sera noté $S^k(E, F)$. On pose, si $T \in S^k(E, F)$,

$$\pi_k(T) = \inf A = \sup_{M_k(x_i) \leqslant 1} N_k(Tx_i)$$

Les opérateurs k obsolument sommants ont été introduits par Pietsch dans [10]. Pietsch a mis évidence les principales propriétés des opérateurs k absolument sommants.

Rappelons les ici:

(a) $S^k(E, F)$ est, pour tout k, un sous espace vectoriel de $\mathscr{L}(E, F)$.

(b) L'expression $\pi_k(T)$ est une norme. L'espace $S^k(E, F)$ muni de cette norme est complet. Dans toute la suite $S^k(E, F)$ sera muni de la norme π_k .

(c) On a les relations: $S^{\infty}(E, F) = \mathscr{L}(E, F)$ et $\pi_{\infty}(T) = ||T||$.

(d) Pour que T soit k absolument sommant $(k < +\infty)$, il faut et suffit qu'il existe une mesure de Radon positive μ , de masse totale unité,

sur la boule unité K' de E', munie de la topologie faible et une constante A > 0, telle que pour tout x de E on ait:

$$\|Tx\|\leqslant A\left(\int\limits_{K'}|\langle x\,,\,x'
angle|^{k}d\mu\left(x'
ight)
ight)^{1/k}.$$

La meilleure constante A possible est alors $\pi_{k}(T)$.

(e) Si $1 \leq k_1 \leq k_2 \leq +\infty$, on a $S^{k_1}(E, F) \subset S^{k_2}(E, F)$ et, pour tout $T \epsilon S^{k_1}(E, F), \ \pi_{k_2}(T) \leq \pi_{k_1}(T).$

(f) Soient E, E_1, F, F_1 quatre espaces de Banach. Si $T \in S^k(E, F)$, $A \in \mathscr{L}(E_1, E), B \in \mathscr{L}(F, F_1)$, on a alors $BTA \in S^k(E_1, F_1)$ et $\pi_k(BTA) \leq ||B|| ||A|| \pi_k(T)$.

(g) Soient $T \in \mathscr{L}(E, F)$, *i* l'injection canonique de F dans F'' et $T_1 = i \circ T$. Alors, pour que T appartienne à $S^k(E, F)$ il faut et suffit que T_1 appartienne à $S^k(E, F'')$. On a alors $\pi_k(T) = \pi_k(T_1)$.

Nous avons pu démontrer le résultat suivant:

THÉORÈME 3.2. On peut identifier le dual topologique de $E \otimes_{d_k} F$ à l'espace $S^{k'}(E, F')$ (cette identification étant une identification d'espaces de Banach).

Démonstration. Soit $B \in (E \otimes_{d_k} F)'$. Si $x \in E$ et $y \in F$, on a $|B(x \otimes y)| \leq ||B|| ||x|| ||y||$, puisque $|x \otimes y|_{d_k} = ||x|| ||y||$.

Donc, *B* peut être identifié à une forme bilinéaire continue sur $E \otimes F$ ou encore à une application linéaire continue *T* de *E* dans *F'*. On peut écrire:

$$B(x \otimes y) = \langle Tx, y \rangle.$$

Notons $p_k(T)$ la norme de T en tant qu'élément de $(E \otimes_{d_k} F)'$. On a

$$p_k(T) = \sup_{\substack{N_k(y_i) \leqslant 1 \\ M_k(x_i) \leqslant 1}} \left| \sum_{i=1}^n \langle Tx_i, y_i
angle
ight| \quad ext{avec } x_i \epsilon E, \; y_i \epsilon F'.$$

Notons $l^k(E)$ l'espace des suites (x_i) de E, telles que $N_k(x_i) < +\infty$, muni de la norme $N_k(x_i)$ qui en fait un espace de Banach. Si $k < +\infty$, on sait que le dual topologique de $l^k(E)$ est $l^{k'}(E')$. Donc si $k < +\infty$, on a

$$p_k(T) = \sup_{M_{k'}(x_i) \leq 1} N_{k'}(Tx_i) = \pi_{k'}(T).$$

Si $k = +\infty$, le dual topologique de $l^{1}(F')$ est $l^{\infty}(F'')$.

Utilisant la densité, pour la topologie affaiblie de F, de la boule unité de F dans la boule unité de F'', on obtient:

$$\sup_{\substack{N \in \mathcal{O}(T) \\ \mathcal{P} \supset (T)}} \Big| \sum_{i=1}^n \langle Tx_i, \ y_i \rangle \Big| = N_1(Tx_i), \quad p_\infty(T) = \sup_{M_1(x_i) \leqslant 1} N_1(Tx_i) = \pi_1(T).$$

Donc, T est, dans tous les cas, un élément de $S^{k'}(E, F')$.

Il est par ailleurs aisé de vérifier que l'application $B \to T$ de $(E \otimes_{d_k} F)'$ dans $S^{k'}(E, F')$ est linéaire, bijective et isométrique. On peut donc identifier ces deux espaces en tant qu'espaces de Banach.

Remarque. Pour k = 1, on retrouve le résultat de Grothendieck cité dans le § 1 n° 6 sur la norme π .

COROLLAIRE. Soient k et k_1 deux nombres réels tels que $1 \le k \le k_1 \le +\infty$. Alors, on a $d_{k_1} \le d_k$ et $g_{k_1} \le g_k$.

Démonstration. Cela découle directement de la propriété (e) rappelée dans ce numéro sur les applications k absolument sommantes et du théorème 3.2.

PROPOSITION 3.5. On a pour tout k, $\tilde{d}'_k \leq g_{k'}$.

Démonstration. Soient E et F deux espaces de Banach, u un élément de $E \otimes F$. On peut écrire

$$u = \sum_{i=1}^n x_i \otimes y_i$$

Remarquons que $\tilde{d}'_k(u)$ est égal à la norme de u considérée comme élément de $(E' \otimes_{d_k} F')'$ (cf. Proposition 1.1) ou encore comme élément de $S^{k'}(E', F'')$.

Si k = 1, $\tilde{d}'_1(u)$ est donc la norme de u considéré comme opérateur de E' dans F'' et on a immédiatement $\tilde{d}'_1(u) \leq g_{\infty}(u)$.

Supposons k > 1 et soit (x'_p) une suite finie d'éléments de E'. On a, par un calcul facile:

$$ig(\sum_p \| u(x'_p) \| ig)^{1/k'} \leqslant N_{k'}(x_i) \; M_k(y_i) \, M_{k'}(x'_p) \leqslant g_{k'}(u) \, M_{k'}(x'_p) \, .$$

C'est le résultat voulu.

COROLLAIRE. Soient E et F deux espaces de Banach. Alors $\mathscr{L}_g^k(E, F)$ $\subset S^k(E, F)$ pour tout k. Si $T \in \mathscr{L}_g^k(E, F)$, on a $\pi_k(T) \leq g_k(T)$.

4. Propriétés d'injectivité et projectivité des normes g_k et $d_{k'}$. On a le résultat suivant:

PROPOSITION 3.6. On a pour tout k: $d_k = d_k /, g_k = \langle g_k \rangle$. De plus, $g_k = g_k \rangle$ et $d_k = \langle d_k \rangle$.

Démonstration. Les propriétés $g_2 = g_2 \setminus \text{et } d_2 = \angle d_2$ ont été démontrées dans [13], p. 134.

Montrons que $d_k = d_k \swarrow$.

Il existe un espace L de type L et un sous espace fermé M de L tel que F soit isomorphe en tant qu'espace normé au quotient L/M. On peut écrire F = L/M. Alors:

$$egin{aligned} &E\otimes_{d_k} F = E\otimes_{d_k} L/E\otimes_{d_k} M\,,\ &(E\otimes_{d_k} F)' = (E\otimes_{d_k} M)^{\mathrm{o}}, \end{aligned}$$

en désignant par $(E\otimes_{d_k}M)^{\rm o}$ l'orthogonal de $E\otimes_{d_k}M$ dans $(E\otimes_{d_k}L)'.$ On obtient

$$(E\otimes_{d_k}/F)'=\mathcal{S}^{k'}(E,\,M^{0}).$$

Par ailleurs,

$$(E \otimes_{d_k} F)' = S^{k'}(E, F') = S^{k'}(E, M^0).$$

Donc $(E\otimes_{d_k}F)'=(E\otimes_{d_k'}F)'$ en tant qu'espaces normés. On déduit que $d_k=d_{k'}.$

La propriété $g_k = g_k$ s'obtient alors par transposition.

THÉORÈME 3.3. On a $g_2 = \tilde{g}_2$ (resp. $d_2 = \tilde{d}_2$). De ce fait, l'application canonique de $E' \otimes_{g_2} F$ (resp. $E' \otimes_{d_2} F$) sur $\mathscr{L}^2_g(E, F)$ (resp. $\mathscr{L}^2_d(E, F)$) est bijective et isométrique.

Démonstration. En effet, on a $g_2 = g_2 \ge (\langle g_2 \rangle)$. Il suffit alors d'appliquer la proposition 2.1 pour obtenir le résultat $g_2 = \tilde{g}_2$.

La norme g_2 sur $E' \otimes F$ est donc la norme induite par $(E \otimes_{\sigma'_2} F')'$ qui est un espace d'opérateurs de E dans F''. On en déduit que l'application de $E' \hat{\otimes}_{\sigma_0} F$ dans $\mathscr{L}^2_{\sigma}(E, F)$ est injective et les autres résultats découlent.

Remarque. Le théorème 3.3 sera précisé par le corollaire 4 du théorème 3.4.

5. Les normes duales de d_k et g_k . Le but de ce numéro est de déterminer les normes duales d'_k et g'_k . Nous allons avoir besoin pour cela de quelques résultats préliminaires.

On désigne par U un espace compact, par C l'espace des fonctions continues sur U, à valeurs scalaires et par F un espace de Banach. Si μ est une mesure de Radon scalaire sur U, on note $|\mu|$ la mesure valeur absolue de μ (cf. Bourbaki [18], chap. 3, § 1, n°6). Si M est une mesure de Radon vectorielle de rang fini de C dans F, on note ||M|| la norme de M en tant qu'application linéaire continue et |M| la borne supérieure des mesures $|x'_{\alpha}M|$ avec $x' \in F'$ et $|x'| \leq 1$ (cf. Bourbaki [2], chap. 6, § 2, n°3). On sait que |M| est une mesure de Radon positive. Enfin, on désigne par \mathscr{C} le clan engendré par les parties compactes de U. Si $A \in \mathscr{C}$, on note φ_A la fonction caractéristique de A et on définit d'une manière classique, le produit de φ_A par une mesure de Radon positive v que nous noterons $\varphi_A v$.

On a alors le résultat suivant d'approximation de M:

LEMME 3.2. Soit $\eta > 0$. Alors, il existe:

une mesure de Radon positive v sur U, des $u_j \in F$, $1 \leq j \leq p$;

des éléments $A_j \in \mathcal{C}, \ 1 \leqslant j \leqslant p$, deux à deux disjoints avec $\nu(A_j) > 0$,

pour tout j, tels que si l'on pose $v_j = \varphi_{\mathcal{A}_j} v \ (1 \leq j \leq p)$ et $M_0 = \sum_{j=1}^{r} v_j \otimes u_j$, on ait

 $|M-M_0|_{\pi} \leqslant \eta.$

P. Saphar

Démonstration. On peut écrire

$$M = \sum_{i=1}^n \mu_i \otimes y_i,$$

les μ_i étant des mesures de Radon scalaires et les y_i des éléments de F, linéairement indépendants.

Posons v = |M|. D'après Bourbaki ([2], chap. 6, § 2, n° 4, Prop. 9) on a $\mu_i = h_i v$, pour tout *i*, les fonctions h_i étant définies sur *U*, bornées et v mesurables.

Il existe alors des $A_j \in \mathcal{C}$, $1 \leq j \leq p$, deux à deux disjoints vérifiant pour tout $j, \nu(A_j) > 0$ et des scalaires $\lambda_{i,j}(1 \leq i \leq n; 1 \leq j < p)$ tels que

$$\sum_{i=1}^{n} \nu\left(\left|h_{i}-\sum_{j=1}^{p} \lambda_{i,j} \varphi_{\mathcal{A}_{j}}\right|\right) \leq \eta.$$

 \mathbf{Posons}

$$M_0 = \sum_{i,j} \lambda_{i,j} \varphi_{A_j} \otimes y_i;$$

on a

$$M_0 = \sum_{j=1}^p \varphi_{\mathcal{A}_j} v \otimes u_j \quad \text{avec } u_j = \sum_i \lambda_{i,j} y_i.$$

Alors

$$\begin{split} |\boldsymbol{M} - \boldsymbol{M}_{0}|_{\pi} &= \Big|\sum_{i} \left(h_{i}\boldsymbol{v} - \sum_{j} \lambda_{i,j} \varphi_{\mathcal{A}_{j}} \boldsymbol{v} \otimes \boldsymbol{y}_{i}\right)\Big|_{\pi} \leqslant \sum_{i} \boldsymbol{v} \left(\left|h_{i} - \sum_{j} \lambda_{i,j} \varphi_{\mathcal{A}_{j}}\right|\right) \|\boldsymbol{y}_{i}\| \\ &\leqslant \eta \sup \|\boldsymbol{y}_{i}\|. \end{split}$$

Le résultat est obtenu.

COROLLAIRE. Pour tout k, $|M - M_0|_{g_k} \leq \eta$.

Le corollaire est immédiat puisque π est la plus grande \otimes norme. LEMME 3.3. Considérons la mesure vectorielle M_0 du Lemme 3.2. Alors, pour tout k, $\tilde{d}'_{k'}(M_0) = g_k(M_0) = \pi_k(M_0)$.

Démonstration. Rappelons que $\tilde{d}'_{k'}(M_0)$ est la norme de M_0 en tant qu'élément de $S^k(C, F)$. On a donc bien $\tilde{d}'_{k'}(M_0) = \pi_k(M_0)$. Supposons tout d'abord $k < +\infty$. D'après Pietsch et Persson [12], Satz 45, il existe une mesure de Radon positive ν_0 sur U telle que pour tout élément φ de C on ait

$$|M_0(\varphi)| \leqslant \left(\int\limits_U |\varphi|^k d\nu_0\right)^{1/k};$$

 M_0 peut donc être étendue, par continuité à $L^k(U, v_0)$. De plus, $\pi_k(M_0)$ = inf $(v_0(u))^{1/k}$, la borne inférieure étant prise sur l'ensemble des mesures v_0 ayant la propriété indiquée. Posons

$$\varphi = \sum_{j=1}^{p} \varrho_j \varphi_{\mathcal{A}_j},$$

les ϱ_i étant des scalaires arbitraires. D'après la propriété caractéristique de v_0 , on a

$$\left\|\sum_{j}\nu(A_{j})\varrho_{j}u_{j}\right\| \leqslant \left|\sum_{j}|\varrho_{j}|^{k}\nu_{0}(A_{j})\right|^{1/k}.$$

Définissons des scalaires a_j $(1 \leq j \leq p)$ et a_1 par les relations

$$egin{aligned} & v_0(A_j) = ig(v(A_j)ig)^k \sigma_j^k a_1, & 1\leqslant j\leqslant p\,, \ & \sum_j \sigma_j^k = 1, & \sigma_j > 0, \; 1\leqslant j\leqslant p\,. \end{aligned}$$

Alors

$$\left\|\sum_{j}\nu(A_{j})\varrho_{j}\sigma_{j}\frac{u_{j}}{\sigma_{j}}\right\| \leq \left(\sum_{j}|\varrho_{j}|^{k}\left(\nu(A_{j})\right)^{k}\sigma_{j}^{k}\right)^{1/k}a_{1}^{1/k}.$$

Puisque les ϱ_j sont arbitraires, on déduit que $M_{k'}(u_j/\sigma_j) \leqslant a_1^{1/k}$. Donc,

$$egin{aligned} g_k({M_0}) &\leqslant \Bigl(\sum_j ig(
u(A_j) ig)^k \sigma_j^k ig)^{1/k} \, {M_{k'}} \left(rac{u_j}{\sigma_j}
ight) \ &\leqslant \Bigl(\sum_j ig(
u(A_j) ig)^k \sigma_j^k \, a_1 \Bigr)^{1/k} \ &\leqslant \Bigl(\sum_j oldsymbol{v}_0(A_j) ig)^{1/k} \ &\leqslant ig(
u_0(U) ig)^{1/k} \ &\leqslant ig d'_{k'}({M_0}) \,. \end{aligned}$$

Par ailleurs, d'après la proposition 3.5 on a $\tilde{d}'_{k'}(M_0) \leqslant g_k(M_0)$. Le résultat est obtenu.

Supposons maintenant $k = +\infty$. Il faut montrer que $g_{\infty}(M_0) = ||M_0||$. On sait déjà que $||M_0|| \leq g_{\infty}(M_0)$. L'application M_0 peut être étendue, dans ce cas à $L^1(U, \nu)$ qui contient $L^{\infty}(U, \nu)$.

Définissons les scalaires s_i par les relations

$$s_j \nu(A_j) = 1, \quad 1 \leq j \leq p$$

On peut écrire

$$M_0 = \sum_{j=1}^p s_j v_j \otimes \frac{u_j}{s_j}.$$

 $\varphi = \sum_{i=1}^{p} \varrho_{i} \varphi_{\mathcal{A}_{j}}$

Posons

P. Saphar

avec des scalaires ϱ_j tels que $|\varrho_j| \leq 1$. Alors

$$egin{aligned} &M_0(arphi)\,=\sum_j\,arrho_j\,
u_j\,s_j\,rac{u_j}{s_j}, \ &\sup_{ec\iota_jec s_{ec s}} \|M_0(arphi)ec s)ec =\,M_1igg(rac{u_j}{s_j}igg) \geqslant g_\infty(M_0). \end{aligned}$$

En fait, on peut même trouver des scalaires r_i avec $|r_i| \leq 1$, tels que si l'on pose $\varphi_0 = \sum_i r_i \varphi_{A_i}$, on ait

$$|M_0(\varphi_0)| = M_1\left(rac{u_j}{s_j}
ight) \geqslant g_\infty(M_0).$$

Soit $\eta > 0$. Par une méthode classique (voir une démonstration analogue dans [4], p. 262) on montre qu'il existe des fonctions continues f_i $(1 \leq j \leq p)$, définies sur U, à supports disjoints, telles que $0 \leq f_i \leq 1$, vérifiant de plus les relations

$$|{M}_0|(|f_j-arphi_{\mathcal{A}_j}|)\leqslant rac{\eta}{p}, \quad 1\leqslant j\leqslant p\,.$$

Posons $f = \sum r_j f_j$. On a alors

$$|M_0(f-\varphi_0)| = \left|\sum_{j=1}^p r_j M_0(f_j-\varphi_{\mathcal{A}_j})\right| \leq \eta.$$

Done

 $|M_0(\varphi_0)| - \eta \leq |M_0(f)|, \quad g_\infty(M_0) - \eta \leq ||M_0||.$

Le résultat est obtenu.

LEMME 3.4. Soit M une mesure de Radon de rang fini de C dans F. Alors $g_k(M) = \tilde{d}'_{k'}(M)$.

Démonstration. D'après la proposition 3.5, on sait que $\tilde{d}'_{k'}(M)$ $\leq g_k(M)$. Le résultat est alors immédiat à partir du lemme 3.3 et du corollaire du lemme 3.2.

THÉORÈME 3.4. On a, pour tout k, les formules $d'_k = \tilde{d}'_k = g_{k'} \\ \leftarrow et$ $g'_k = \tilde{g}'_k = \checkmark d_{k'}.$

Démonstration. Soient C un espace de type C et F un espace de Banach. Montrons tout d'abord que sur $C' \otimes F'$ on a $d'_k = \tilde{d}'_k = g_{k'}$.

Le lemme 3.4 indique que $\tilde{d}'_k = g_{k'}$ sur $C' \otimes F'$. De plus, la propriété $d_k = d_k \checkmark$ (Proposition 3.6) entraı̂ne $d'_k = d'_k$. Donc $d'_k = d^{\tilde{i}}_k$ sur $C' \otimes F'$ d'après le corollaire du Lemme 2.1.

Etudions maintenant $C \otimes_{d_k} F$ en supposant F de dimension finie. Alors $(C \otimes_{d_k} F)' = C' \otimes_{g_k'} F', \ (C' \otimes g_{k'} F')' = C'' \otimes_{g_{k'}} F, \ \text{car} \ C'' \ \text{et} \ F \ \text{sont}$ métriquement accessibles (on a $g'_{k'} = \tilde{g}'_{k'}$ sur $C'' \otimes F$).

La norme \tilde{d}_k sur $C \otimes F$ est la norme induite par $(C' \otimes_{d_k} F')'$ ou encore la norme induite par $(C' \otimes_{g_k} F')' = C'' \otimes_{g'_k} F.$

On déduit que $\tilde{d}_k = g'^{*}_{k'}$ sur $C \otimes F$. Par ailleurs, d'après le corollaire du lemme 2.2 on a aussi $d_k = \tilde{d}_k$ sur $C \otimes F$. Ainsi $g'_{k'} = d_k$ sur $C \otimes F$. Si Eest un espace de Banach de dimension finie, on a alors $arg'_{k'} = d_k \operatorname{sur}$ $E \otimes F$, ou encore, puisque $g'_{k'} = \swarrow g'_{k'}$, $\tilde{g}'_{k'} = \checkmark d_k$ sur $E \otimes F$.

On déduit que $g'_k = \checkmark d_{k'}$ en général. Mais alors, $g'_k = \checkmark (d_{k'})$. D'après la proposition 2.1, on conclut $g'_k = \tilde{g}'_k$. On a donc finalement $g'_k = \tilde{g}'_k = \checkmark d_{k'}$.

La relation $d'_k = \tilde{d}'_k = g_k \setminus$ s'obtient alors par transposition.

Le résultat est obtenu.

Les conséquences de cette formule sont très nombreuses :

COROLLAIRE 1. $d_k = (\langle d_k \rangle / et g_k = (\langle g_k \rangle)$.

Démonstration. On a $d'_k = g_k$. Donc $d_k = (g_k)' = g'_{k'} = (/d_k)/$.

La formule pour g_k s'obtient par transposition.

COROLLAIRE 2. On a les formules: $g'_2 = d_2$ et $d'_2 = g_2$.

Démonstration. D'après la proposition 3.6, $g_2 = g_2 \setminus$ et $d_2 = d_2$. Le résultat en découle.

COROLLAIRE 3. Soient E un espace de Banach et L un espace de type L. Alors, sur $E \otimes L$, $d_{\infty} = \varepsilon$.

Démonstration. En effet, on a $\varepsilon = g_1^{'} = d_{\infty}$. Or, d'après le corollaire 1, $d_{\infty} = (\checkmark d_{\infty}) \checkmark$. Done, sur $E \otimes L$, $\checkmark d_{\infty} = d_{\infty} = \varepsilon$.

COROLLAIRE 4. Si E et F sont deux espaces de Banach quelconques, la norme g_2 sur $E \otimes F$ (resp. sur $E' \otimes F$) est la norme induite par $S^2(E', F)$ (resp. $S^{2}(E, F)$).

On retrouve ainsi, en le précisant, un résultat de Pietsch [11].

COROLLAIRE 5. Les normes d_k et g_k sont accessibles.

Démonstration. La formule $d'_k = \widetilde{d}'_k$ indique que d'_k est accessible. Si E est un espace de Banach quelconque et F un espace de Banach de dimension finie, l'application canonique de $E'\otimes_{d_L} F'$ dans $(E\otimes_{d_L} F)'$ est alors une bijection isométrique. L'application transposée de $(\tilde{E} \otimes_{d_k} F)''$ dans $(E'\otimes_{d'_k}F')'$ est alors isométrique et on en déduit que $d_k = \widetilde{d}_k^{\sim}$ sur $E \otimes F$. On obtient le résultat pour g_k par transposition.

Puisque d_k est accessible et que $d'_k = \tilde{d}'_k$, on a le résultat suivant qui est utile dans les applications:

PROPOSITION 3.7. Soient E et F deux espaces de Banach, k et k_1 , deux nombres réels tels que $1 \leqslant k < k_1 \leqslant +\infty$. Considérons les relations:

1) Les normes d_k et d_{k_1} sont équivalentes sur $E \otimes F$ (resp. $E' \otimes F$, $E \otimes F', E' \otimes F').$

2) Les normes d'_k et d'_{k_1} sont équivalentes sur $E' \otimes F'$ (resp. $E' \otimes F$, $E' \otimes F, E \otimes F$).

$$|\boldsymbol{M}_{0}|(|f_{j}-\boldsymbol{\varphi}_{\mathcal{A}_{j}}|)\leqslant$$

Alors 1) implique 2). De plus, 2) implique 1) pourvu que l'un des espaces du produit tensoriel $E \otimes F$ (resp. $E' \otimes F$, $E \otimes F'$, $E' \otimes F'$) soit métriquement accessible.

Démonstration. 1) \Rightarrow 2). Supposons, par exemple, que d_k et d_{k_1} sont équivalentes sur $E \otimes F$. Alors, sur $E' \otimes F'$, les normes d'_k et d'_{k_1} sont les normes induites par $(E \otimes_{d_k} F)'$ et $(E \otimes_{d_k_1} F)'$. Le résultat en découle.

2) \Rightarrow 1). Supposons, par exemple, que d'_k et d'_{k_1} sont équivalentes sur $E' \otimes F'$ et que E soit métriquement accessible. Alors sur $E \otimes F$, on a, puisque d_k est accessible, $d_k = \tilde{d}_k$ et $d_{k_1} = \tilde{d}_{k_1}$. Les normes d_k et d_{k_1} sur $E \otimes F$ sont donc les normes induites par $(E' \otimes_{d'_k} F')'$ et $(E' \otimes_{d'_k'} F')'$. Le résultat en découle.

6. Le dual topologique de $E \otimes_{\mathcal{A}_k} F$. La norme \mathcal{A}_k étant la norme duale de g_k , il est naturel d'étudier le dual topologique de $E \otimes_{\mathcal{A}_k} F$, E et F étant quelconques.

Soient K' la boule unité de E' munie de la topologie faible et C(K')l'espace de Banach des fonctions continues sur K' à valeurs scalaires. La norme $\checkmark d_k$ sur $E \otimes F$ est induite par $C(K') \otimes_{d_k} F$. Donc $(E \otimes_{\checkmark d_k} F)'$ peut être identifié à l'espace des applications linéaires T de E dans F'qui se factorisent sous la forme

$$T: E \xrightarrow{i} C(K') \xrightarrow{A} F',$$

i étant l'injection canonique de E dans C(K') et A un élément de $S^{k'}(C(K'), F')$. La norme $i_{k'}(T)$ de T comme élément de $(E \otimes_{\neq d_k} F)'$ est égale à $\inf \pi_k(A)$, la borne inférieure étant prise sur l'ensemble des applications A, k' absolument sommantes telles que $T \equiv A_0 i$. On dit que T est une application k' intégrale de E dans F'. De même, on définit l'espace $I^{k'}(E, F)$ des applications k' intégrales de E dans F qui peuvent être identifiées à des éléments de $(E \otimes_{\neq d_k} F')'$. La norme $i_{k'}(T)$ d'une telle application est sa norme en tant qu'élément de $(E \otimes_{\neq d_k} F')'$ (voir [12] où les applications k' intégrales sont introduites avec une définition légèrement différente). Soit T une application k intégrale de E dans F et j l'injection canonique de F dans F''. On a alors la factorisation suivante pour j_0T :

$$j_0 T \colon E \xrightarrow{i} C(K') \xrightarrow{A} F'',$$

iétant l'injection canonique de E dans C(K') et A une application k absolument sommante.

Soient K un compact, F un espace de Banach, A une application linéaire continue de C(K) dans F k absolument sommante $(k < +\infty)$. On sait, d'après ([12], Satz 45) qu'il existe alors une mesure de Radon positive μ sur K telle que A se factorise sous la forme

$$A: C(K) \xrightarrow{i_0} L^k(K, \mu) \xrightarrow{A_1} F,$$

 i_0 étant l'injection canonique de C(K) dans $L^k(K, \mu)$ et A une application linéaire continue.

Donc, si T est k intégrale de E dans $F(k < +\infty)$, on a la factorisation suivante pour j_0T :

$$j_0T\colon E\stackrel{i}{
ightarrow} C(K')\stackrel{i_0}{
ightarrow} L^k(K',\mu)\stackrel{T_1}{
ightarrow} F'',$$

 μ étant une mesure de Radon sur la boule unité K' de E' et T_1 une application linéaire continue.

Remarquons que si k = 2, utilisant le fait que $L^2(K', \mu)$ est un espace de Hilbert, on en déduit aisément la factorisation suivante pour T:

$$T: E \stackrel{i}{\rightarrow} C(K') \stackrel{i_0}{\rightarrow} L^2(K', \mu) \stackrel{T_2}{\rightarrow} F,$$

 T_2 étant une application linéaire continue.

De plus, si T est une application k intégrale de E dans F' $(k < +\infty)$, on a même la factorisation suivante pour T:

$$T: E \xrightarrow{i} C(K') \xrightarrow{i_0} L^k(K', \mu) \xrightarrow{T_2} F';$$

il suffit pour obtenir la dernière factorisation d'utiliser la projection canonique de F''' dans F'.

On obtient alors, sans difficulté les propriétés suivantes:

Pour tout k, $I^k(E, F) \subset S^k(E, F)$.

 $I^{2}(E, F) = S^{2}(E, F)$, par vérification directe ou en utilisant la propriété $d_{2} = d_{2}$.

Pour tout espace L^{∞} de type L^{∞} , $S^k(E, L^{\infty}) = I^k(E, L^{\infty})$, par vérification directe ou en utilisant le fait que si L est un espace de type L, on a $d_k = \angle d_k$ sur $E \otimes L$ (car $d_k = (\angle d_k \angle)$).

 $(E \otimes_{g_k} F)' = I^{k'}(F, E')$, par transposition.

Pour k = 1, $I^1(E, F)$ est formé des applications intégrales de Grothendieck ([5] et [6]).

7. Interprétation de $E' \otimes_{g_k} F$. D'après le théorème 3.4 et la proposition 1.1, $E' \otimes_{\sigma_k} F$ s'identifie à l'adhérence dans $S^k(E, F)$ de $E' \otimes F$ ou encore de l'ensemble des applications de rang fini de E dans F, la norme g_k sur $E' \otimes F$ est donc la norme π_k induite par $S^k(E, F)$. Soit φ' la boule unité faible de F', la norme g_k sur $E \otimes F$ s'interprète aussi comme la norme induite par $E \otimes_{\sigma_k} C(\varphi')$.

Donc si T est une application linéaire continue de E dans F, qui est un élément de $E' \otimes_{g_k} F$, on a la représentation

$$T=\sum_{i=0}^{\infty}x_{i}^{\prime}\otimesarphi_{i},$$

P. Saphar

avec $x'_i \in E'$, $\varphi_i \in C(\varphi')$, les suites (x'_i) et (φ_i) ayant les propriétés indiquées dans les propositions 3.2 et 3.4.

De plus, $g_{k\setminus}(T) = \inf N_k(x'_i) M_{k'}(\varphi_i)$, la borne inférieure étant prise sur l'ensemble des représentations de T. On peut dire que T est un élément de $\mathscr{L}^k_g(E, C(\varphi'))$ qui prend ses valeurs dans F. L'application T a la propriété suivante:

Si $x \in E$, alors

$$Tx = \sum_{i=0}^\infty \langle x, x_i'
angle arphi_i, \quad \|Tx\| \leqslant M_{k'}(arphi_i) N_k(\langle x, x_i'
angle).$$

Pietsch et Persson ont introduit dans [12] la notion d'application quasi k nucléaire de la manière suivante:

On dit que l'élément T de $\mathscr{L}(E, F)$ est quasi k nucléaire s'il existe une suite (x'_i) de E' avec $N_k(x'_i) < +\infty$ et de plus, $||x'_i|| \to 0$ si $i \to +\infty$ lorsque $k = +\infty$, telle que:

 $||Tx|| \leq N_k(\langle x, x'_i \rangle)$ pour tout x de E.

On pose $r_k^q(T) = \inf N_k(x_i')$, la borne inférieure étant prise sur l'ensemble des suite (x_i') vérifiant l'inégalité précédente. L'ensemble des applications quasi k nucléaires est noté $N_k^q(E, F)$. On montre que $N_k^q(E, F)$ est un espace vectoriel et que r_k^q est une norme sur cet espace vectoriel qui en fait un espace de Banach. Il est clair que $E' \hat{\otimes}_{u_k} F \subset N_k^q(E, F)$ et que l'injection canonique de $E' \otimes_{u_k} F$ dans $N_k^q(E, F)$ est une isométrie. La proposition suivante précise la relation entre ces deux espaces d'applications:

PROPOSITION 3.8. $E' \hat{\otimes}_{g_k} F$ est formé d'éléments T de $\mathscr{L}_{\rho}^k(E, C(\varphi'))$ qui prennent leurs valeurs dans F.

 $N^q_k(E, F)$ est formé des éléments T de $\mathscr{L}^k_g(E, C^{\prime\prime}(\varphi^\prime))$ qui prennent leurs valeurs dans F.

Si E' ou F sont métriquement accessibles on a

$$E' \,\hat{\otimes}_{g_k \searrow} F = N_k^q(E, F).$$

. Démonstration. Nous avons déjà indiqué la propriété concernant $E' \otimes_{\sigma_E \smallsetminus} F$. Soit T un élément de $\mathscr{L}_{\sigma}^k(E, C''(\varphi'))$ prenant ses valeurs dans F. On peut écrire:

$$T = \sum_{i=0}^{\infty} x'_i \otimes \varphi''_i,$$

avec $x'_i \in E'$, $\varphi''_i \in C''(\varphi')$, les suites (x'_i) et (φ''_i) ayant les propriétés indiquées dans les propositions 3.2 et 3.4.

Si $x \in E$, on peut écrire $Tx = \sum_{i} \langle x, x'_i \rangle \varphi''_i$. Donc $\|Tx\| \leq M_{k'}(\varphi''_i) N_k(\langle x, x' \rangle).$

Done $T \in N_k^q(E, F)$.

Réciproquement, soit $T \in N_k^q(E, F)$. Alors, on a

 $\|Tx\| \leqslant N_k(\langle x, x'_i \rangle)$

pour tout x de E, avec $x'_i \in E'$ et $N_k(x'_i) < +\infty$.

Soit *M* le sous espace de l^k formé des éléments de la forme $(\langle x, x'_i \rangle)_i$ avec $x \in E$; l'inégalité $||Tx|| \leq N_k(\langle x, x'_i \rangle)$ signifie que *T* se factorise sous la forme

$$T\colon E\xrightarrow{A} M\xrightarrow{B} F,$$

A et B étant deux applications linéaires continues définies par

$$A = x \to (\langle x, x'_i \rangle)_i, \quad B: (\langle x, x'_i \rangle)_i \to Tx.$$

Notons i_1 l'injection canonique de F dans $C''(\varphi')$ et $T_1 = i_0 T$. On a la factorisation:

$$T_1: E \xrightarrow{A} M \xrightarrow{B} F \xrightarrow{i_1} C''(\varphi')$$

L'espace $C''(\varphi')$ a la propriété d'extension (voir [9]). En effet, cet espace est isométrique à un espace de type L^{∞} . Il existe donc une application linéaire continue B_1 de l^k dans $C''(\varphi')$ dont la restriction à Mest égale à $i_1 \circ B$. On peut donc écrire $T_1 = B_1 A$. Ceci entraîne que $T_1 \in \mathscr{L}^{k}_{q}(E, C''(\varphi'))$.

Supposons maintenant que E' ou F soient métriquement accessibles et $k < +\infty$. D'après [12], Satz 44, toute application T quasi k nucléaire de E dans F est limite pour la norme π_k d'applications de rang fini. On déduit que $E' \otimes_{g_k} F = N_k^q(E, F)$.

Si E' ou F sont métriquement accessibles et $k = +\infty$, d'après [12], partie 9, $N_k^q(E, F)$ est formé de l'ensemble des applications compactes de E dans F. Il est clair qu'il en est de même de $E' \hat{\otimes}_{g\infty} F$. Le résultat est obtenu.

8. Résumé. Soient E et F deux espaces de Banach. Nous employerons la notation $\langle E, F \rangle \rangle$ ou $\langle \langle F, E \rangle$ pour exprimer que F est le dual topologique de E, on peut résumer un certain nombre des propriétés précédentes dans le schéma suivant:

$$egin{array}{lll} \langle E\otimes_{d_k}F,\,S^{k'}(E,\,F')
angle
angle\ B_k& & \uparrow A_k\ \langle \langle I^k(F',\,E''),\,E'\otimes_{g_k}ackslash F'
angle \end{array}$$

dans lequel A_k est une application linéaire continue isométrique, B_k une application linéaire continue; B_k est une injection si E ou F sont accessibles (d'après [6], p. 95, n° 2); B_k est une isométrie si E ou F sont métriquement accessibles (car alors $d_k = \tilde{d}_k$ sur $E \otimes F$). Pour k = 1, on retrouve les résultats de Grothendieck sur les normes π et ϵ .

Pour k = 2, si E et F sont des espaces de Hilbert, les quatre espaces du schéma peuvent être identifiés à des espaces d'applications de Hilbert-Schmidt.

Pour k = 2, si E et F sont des espaces de Banach, on a trois extensions aux espaces de Banach des applications de Hilbert-Schmidt. Ce sont: $\mathscr{L}^{2}_{g}(E, F), \mathscr{L}^{2}_{d}(E, F), S^{2}(E, F)$. Ces classes ont des propriétés diverses dans des cas particuliers, cf. th. 4.2, 4.3, 4.4, 4.5.

Nous dirons que l'espace de Banach E est accessible à l'ordre k (resp. métriquement accessible à l'ordre k) si l'application B_k est injective (resp. isométrique) pour tout F. La propriété d'accessibilité (resp. d'accessibilité métrique) de Grothendieck (voir [5] et [6]) est identique à la propriété d'accessibilité (resp. d'accessibilité métrique) à l'ordre 1. Elle entraîne la propriété correspondante à l'ordre k pour tout k. On a alors le résultat suivant

THÉORÈME 3.5. Tout espace de Banach E est métriquement accessible à l'ordre 2.

Démonstration. Ce rèsultat découle directement du théorème 3.3. Par ailleurs, on peut noter que dans le schéma ci-dessus, au lieu de choisir les couples de produit tensoriel $E \otimes_{d_k} F$ et $E' \otimes_{v_k} F'$ on peut choisir respectivement: $E' \otimes_{d_k} F$ et $E \otimes_{v_k} F'$, $E \otimes_{d_k} F'$ et $E' \otimes_{v_k} F$, $E' \otimes_{d_k} F'$ et $E \otimes_{v_k} F$, les deux autres espaces du schéma s'obtenant sans difficulté, dans chaque cas, par dualité.

§4. ETUDE DE CERTAINS CAS PARTICULIERS ET APPLICATIONS

Dans cette partie nous donnons des propriétés diverses des normes g_k et d_k dans des cas particuliers. Ces propriétés s'obtiennent en utilisant des propriétés connues des applications k absolument sommantes (cf. [8] et [17]). On obtient en application des théorèmes de représentation des opérateurs compacts dans certains cas et aussi des propriétés nouvelles des applications k absolument sommantes (cf. notamment le th. 4.6). Pour terminer, on montre les relations entre les \otimes normes g_k et d_k et certaines des \otimes normes introduites par Grothendieck dans [5].

1. Cas où E et F sont des espaces de Hilbert. Pelczyński [17] a démontré que si E et F sont des espaces de Hilbert pour tout nombre réel k tel que $1 \le k < +\infty$, on a

$$S^{\kappa}(E, F) = S^2(E, F)$$

Il est par ailleurs clair que $S^{2}(E, F)$ est formé de l'ensemble des applications de Hilbert-Schmidt de E dans F.

On en déduit le théorème suivant:

THÉORÈME 4.1. Soient E et F deux espaces de Hilbert. Alors, pour tout k tel que $1 < k \leq +\infty$, on a:

1) les normes d_k et g_k sont équivalentes, sur $E \otimes F$, à la norme du produit tensoriel hilbertien classique;

2) $\mathscr{L}^k_q(E, F) = \mathscr{L}^k_d(E, F) = S^2(E, F).$

Démonstration. On sait d'après (13) que, sur $E \otimes F$, d_2 et g_2 sont équivalentes à la norme du produit tensoriel hilbertien classique.

Soient k et k_1 deux nombres réels tels que $1 \le k \le k_1 < +\infty$. Alors, sur $E \otimes F$, d_k et d_{k_1} sont équivalentes car $E \otimes_{d_k} F$ et $E \otimes_{d_{k_1}} F$ ont d'après le théorème 3.2 et le résultat de Pelczyński cité ci-dessus $S^2(E, F')$ pour dual topologique. Tous les autres résultats découlent. Ce résultat a été annoncé dans notre note aux Comptes Rendus [15]. Il a aussi été obtenu par Pietsch et Persson indépendamment (cf. [12], Satz 56).

2. Cas où E est un espace de Hilbert et F un espace de Banach. On peut généraliser le théorème 4.1 et aussi les résultats de Pełczyński:

THÉORÈME 4.2. Soient H un espace de Hilbert et F un espace de Banach. Dans ces conditions:

1) sur $H \otimes F$, d_k est équivalente à d_2 pour $2 \leq k \leq +\infty$, g_k est équivalente à g_2 pour $1 < k \leq 2$;

2) $S^k(H, F) = S^1(H, F)$ pour $1 \le k \le 2$, $S^k(F, H) = S^2(F, H)$ pour $2 \le k < +\infty$;

3) $\mathscr{L}^{k}_{a}(H, F) = S^{1}(H, F) \text{ pour } 1 < k \leq 2;$

4) $\mathscr{L}^k_d(H, F) = \mathscr{L}^2_d(H, F) \text{ pour } 2 \leq k \leq +\infty.$

Démonstration. Soit T un élément de $S^2(H, F)$. D'après le § 3, n° 5, il existe une mesure de Radon positive μ sur la boule unité K' du dual topologique de H telle que T se factorise sous la forme:

$$T: H \xrightarrow{A} C(K') \xrightarrow{i} L^2(K', \mu) \xrightarrow{B} F,$$

A et B étant des applications linéaires continues et i l'injection canonique de C(K') dans $L^2(K', \mu)$. On vérifie immédiatement que l'application i est 2 absolument sommante. Donc, i_0A est absolument sommante d'appès le théorème 4.1.

D'après le même théorème i_0A est k nucléaire à gauche pour $1 < k \leq 2$. Il découle que $T \epsilon \mathscr{L}_g^k(H, F)$ pour $1 < k \leq 2$. On conclut alors que:

(1)	$S^k(H,F)=S^1(H,F)$	pour $1 \leqslant k \leqslant 2$,
(2)	$\mathscr{L}^k_g(H,F)=S^1(H,F)$	pour $1 < k \leqslant 2$.

On déduit de (2) que, sur $H \otimes F$, g_k est équivalente à g_2 si $1 < k \leq 2$. On déduit de (1) par dualité (cf. th. 3.2) que sur $H \otimes F$, d_k est équivalente à d_2 si $2 \leq k \leq +\infty$. Tous les autres résultats découlent.

3. Cas des espaces de type C ou L. Dans ce numéro, on désigne par C ou C_1 un espace de type C par L ou L_1 un espace de type L, par H un espace de Hilbert. On a alors les résultats suivants:

Théorème 4.3.

1) Sur $H \otimes L$, g_k est équivalente à π pour $1 \leq k \leq +\infty$, d_k est équivalente à ε pour $2 \leq k \leq +\infty$.

 $\begin{array}{lll} 2) \ S^k(L,H) = \mathscr{L}(L,H) \ \ pour \quad 1 \leqslant k \leqslant +\infty, \ \ S^k(H,L) = \mathscr{L}^1(H,L) \\ pour \ \ 1 \leqslant k \leqslant 2. \end{array}$

 $\begin{array}{ll} 3) \ \mathscr{L}^k_g(H,L) = \mathscr{L}^1(H,L) \quad pour \quad 1 \leqslant k \leqslant +\infty, \ \ \mathscr{L}^k_d(H,L) = \mathscr{C}(H,L) \\ pour \ 2 \leqslant k \leqslant +\infty. \end{array}$

 $\begin{array}{ll} 4) \ \mathscr{L}^k_g(C,\,H) = \mathscr{C}(C,\,H) \quad pour \quad 2 \leqslant k \leqslant +\infty, \ \ \mathscr{L}^k_d(C,\,H) = \mathscr{L}^1(C,\,H) \\ pour \ 1 \leqslant k \leqslant +\infty. \end{array}$

Démonstration. La propriété $S^k(L, H) = \mathscr{L}(L, H)$ est une propriété de Grothendieck [5], corollaire 1, p. 59 (voir aussi Lindenstrauss et Pelczyński [8], théorème 4.1, p. 286). Il découle de cette propriété, par dualité (cf. théorème 3.2), que sur $L \otimes H$, d_k est équivalente à π si $1 \leq k \leq +\infty$.

D'après le théorème 4.2, sur $H \otimes L$, d_k est équivalente à d_2 pour $2 \leq k \leq +\infty$. D'après le corollaire 3 du théorème 3.4, $d_{\infty} = \varepsilon$ sur $H \otimes L$. On en déduit que sur $H \otimes L$, d_k est équivalente à ε pour $2 \leq k \leq +\infty$. Les propriétés 1) sont alors démontrées. On en déduit immédiatement les propriétés 3) et 4). La propriété $S^k(H, L) = \mathscr{L}^1(H, L)$ pour $1 \leq k \leq 2$ découle alors du théorème 4.2.

Théorème 4.4.

1) Sur $H \otimes C$, g_k est équivalent à π pour $1 \leq k \leq 2$, d_k est équivalente à ε pour $2 \leq k \leq +\infty$.

 $\begin{array}{lll} 2) \ S^k(C,H) = \mathscr{L}(C,H) \quad pour \quad 2 \leqslant k \leqslant +\infty, \quad S^k(H,C) = \mathscr{L}^s(H,C) \\ pour \ 1 \leqslant k \leqslant 2. \end{array}$

3) $\mathscr{L}^k_g(H, C) = \mathscr{L}^1(H, C)$ pour $1 \leq k \leq 2$, $\mathscr{L}^k_a(H, C) = \mathscr{C}(H, C)$ pour $2 \leq k \leq +\infty$.

 $\begin{array}{ll} 4) \ \mathscr{L}^k_{\mathscr{G}}(L,H) = \mathscr{C}(L,H) \ \ pour \ \ 2 \leqslant k \leqslant +\infty, \ \ \mathscr{L}^k_{\mathscr{G}}(L,H) = \mathscr{L}^1(L,H) \\ pour \ 1 \leqslant k \leqslant 2. \end{array}$

Remarque. La propriété $S^k(C, H) = \mathscr{L}(C, H)$ est une propriété de Grothendieck [5], corollaire 4, p. 52 (voir aussi Lindenstrauss et Pelezyński [8], th. 4.3, p. 289). Nous allons en obtenir une autre démonstration en application du théorème 4.3.

Démonstration. Démonstrons 1). D'après la proposition 3.7, la propriété $g_{,g_k}$ est équivalente à π pour $1 \leq k \leq 2$ sur $H \otimes C'$ " est équivalente à la propriété $g' d_k$ est équivalente à ε si $2 \leq k \leq +\infty$ sur $H \otimes C'$ ".

Puisque C' est de type L, la propriété $d_k = (\checkmark d_k)$ (corollaire 1 du théorème 3.4) implique $d_k = \checkmark d_k$ sur $H \otimes C'$. Le théorème 4.3 donne alors le résultat. Puisque $d_2 \ge d_{\infty} \ge \checkmark d_{\infty} = \varepsilon$, la propriété qui reste à montrer équivaut à $, d_2$ est équivalente à ε sur $H \otimes C'$. D'après la proposition 3.7 cette dernière propriété est équivalente à $, g_2$ est équivalente à π sur $H \otimes C'$. Le théorème 4.3 donne alors le résultat.

Les résultats de 3) et 4) s'obtiennent immédiatement à partir de 1). Démontrons 2). D'après 1), on a, par transposition: sur $C \otimes H$, d_k

est équivalente à π pour $1 \leq k \leq 2$. Le théorème 3.2 implique alors:

$$S^k(C,H)=\mathscr{L}(C,H) \quad ext{ pour } 2\leqslant k\leqslant +\infty.$$

La propriété $S^k(H, C) = \mathscr{L}^1(H, C)$ pour $1 \leq k \leq 2$ découle alors du théorème 4.2.

4. Cas des espaces L^p . On désigne dans ce numéro par L^p un espace de type $L^p(1 \le p \le +\infty)$, par C ou C_1 un espace de type C, par L ou L_1 un espace de type L. Lindenstrauss et Pełczyński ont démontré [8], théorème 4.3, p. 289, que

 $S^k(C,L^p) = \mathscr{L}(C,L^p) \quad ext{ pour } 2 \leqslant k \leqslant +\infty ext{ et } 1 \leqslant p \leqslant 2.$

Nous avons pu déduire le résultat suivant:

THÉORÈME 4.5. Soit G un espace de Banach et p un nombre réel tel que $1 \leq p \leq 2$. Alors:

1) d_k est équivalente à d_{∞} sur $L^p \otimes G$ pour $2 \leq k \leq +\infty$;

2) $S^k(L^p, G) = S^1(L^p, G)$ pour $1 \leq k \leq 2$;

3) $\mathscr{L}_{d}^{k}(L^{p'}, G) = \mathscr{L}_{d}^{\infty}(L^{p'}, G) \text{ pour } 2 \leq k \leq +\infty;$

4) $\mathscr{L}^k_a(C, L^p) = \mathscr{C}(C, L^p)$ pour $2 \leq k \leq +\infty$.

Démonstration. Le résultat de Lindenstrauss et Pelczyński cité ci-dessus entraîne par dualité (cf. théorème 3.2) que, sur $C \otimes L^{p'}$, d_2 est équivalente à d_1 . Si G est un espace de Banach, cette propriété entraîne que sur $G' \otimes L^{p'}$, d_2 est équivalente à d_1 , et même sur $G' \otimes L^{p'}$, d_2 est équivalente à d_1 ($d_2 = d_2$).

D'après la proposition 3.6. on obtient que sur $G \otimes L^p$, g_2 est équivalente à g_{∞} . Cette propriété donne, par transposition, que sur $L^p \otimes G$, d_2 est équivalente à d_{∞} .

Le résultat 1) est obtenu. On en déduit le résultat 2) par dualité (théorème 3.2). Le résultat 3) découle immédiatement du résultat 1).

Démontrons 4). Nous avons vu plus haut, que sur $C \otimes L^{p'}$, d_2 est équivalente à d_1 . Par la proposition 3.6 on obtient que sur $C' \otimes L^p$, g_2 est équivalente à ε . Le résultat cherché est alors immédiat.

COROLLAIRE 1. Soit k un nombre réel tel que $1 \leq k < +\infty$ et H un espace de Hilbert. Alors

$$\mathcal{S}^k(L^p,H) = \mathcal{S}^1(L^p,H).$$

Co résultat découle immédiatement du théorème 4.5 et du théorème 4.2. COROLLAIRE 2.

1) Sur $L \otimes L_1$, g_k et d_k sont équivalentes à ε pour $2 \leq k \leq +\infty$. Sur $C \otimes C_1$, g_k et d_k sont équivalentes à π pour $1 \leq k \leq 2$.

 $\begin{array}{ll} 2) \ \mathscr{L}^k_g(L,\,C) = \mathscr{L}^k_d(L,\,C) = \mathscr{L}^1(L,\,C) \quad \ pour \quad 1 \leqslant k \leqslant 2. \ \ \mathscr{L}^k_g(C,\,L) \\ = \mathscr{L}^k_d(C,\,L) = \ \mathscr{C}(C,\,L) \ \ pour \ \ 2 \leqslant k \leqslant +\infty \end{array}$

Démonstration. Montrons 1). La propriété sur $L \otimes L_1$, découle du théorème 4.5, du corollaire 3 du théorème 3.4. et du fait que le norme ε est égale à sa transposée. La propriété sur $C \otimes C_1$ s'obtient alors à partir de la précédente à l'aide de la proposition 3.6. Les propriétés 2) découlent immédiatement.

COROLLAIRE 3. Soit L^p un espace de type L^p et L un espace de type L. Alors $\mathscr{L}^k_d(L^p, L) = \mathscr{C}(L^p, L)$ pour $2 \leq k \leq +\infty$ et $2 \leq p \leq +\infty$.

Démonstration. Pour $p < +\infty$, la propriété est équivalente à la suivante: sur $L^{p'} \otimes L$, d_k est équivalente à ε pour $2 \leq k \leq +\infty$ et $2 \leq p \leq +\infty$.

Pour $p = +\infty$ la propriété découle du corollaire 2.

Pour $p < +\infty$, la propriété est équivalente à la suivante: sur $L^{p'} \otimes L$, d_k est équivalente à ε pour $2 \leq k \leq +\infty$. Cette dernière découle du théorème 4.5 et du corollaire 3 du théorème 3.4.

5. Liaison avec les \otimes normes de Grothendieck. Dans [5], Grothendieck a introduit 14 \otimes normes. Leur liaison avec les normes g_k et d_k est précisée dans la proposition suivante:

Démonstration. La formule $d_1 = g_1 = \pi$ a déjà été donnée. La formule $\langle d_{\infty} = g_{\infty} \rangle = \varepsilon$ s'obtient alors par dualité. Les formules $\langle d_1 = C'$ et $g_1 \rangle = L'$ proviennent de la définition de C' et L'. Les formules $d_{\infty} = L$ et $g_{\infty} = C$ s'obtiennent alors par dualité.

Pour comparer d_2 et $H \swarrow$ étudions $(E \otimes_{d_2} F)'$ et $(E \otimes_{H \swarrow} F)'$.

L'espace $(E \otimes_{H/} F)'$ est formé des applications linéaires continues T de E dans F' qui se factorisent sous la forme $T: E \xrightarrow{T_1} C \xrightarrow{T_2} H \xrightarrow{T_3} F'$, l'espace C étant de type C, H un espace de Hilbert, T_1, T_2, T_3 étant trois applications linéaires continues.

D'après le théorème 4.4, on déduit que $(E \otimes_{H/} F)' = S^2(E, F') = (E \otimes_{d_2} F)'$. Donc d_2 est équivalente à $H \checkmark$. Par transposition, on obtient le fait que g_2 est équivalente à $\backslash H$.

Remarque. Le résultat sur g_2 et d_2 qui vient d'être indiqué avait été conjecturé dans [13], p. 140.

6. Représentation d'opérateurs compacts. Soient E et F deux espaces de Banach. Si E' ou F vérifient l'hypothèse d'approximation l'ensemble des opérateures compacts de E dans F peut être identifié à $E' \hat{\otimes}_{\varepsilon} F$. La formule $\angle d_{\infty} = g_{\infty} = \varepsilon$ va nous donner des résultats de représentation dans des cas particuliers:

THÉORÈME 4.6. Soient E un espace de Banach, L un espace de type L, C un espace de type C; alors on a les formules:

$$\begin{split} \mathscr{C}(L,E) &= \mathscr{L}^\infty_d(L,E), \quad \mathscr{C}(C,E) = \mathscr{L}^\infty_g(C,E), \ \mathscr{C}(E,C) &= \mathscr{L}^\infty_g(E,C), \quad \mathscr{C}(E,L) = \mathscr{L}^\infty_d(E,L) \end{split}$$

Démonstration. Montrons que $\mathscr{C}(L, E) = \mathscr{L}^{\infty}_{d}(L, E)$. Il suffit de montrer que sur $C \otimes E$, $d_{\infty} = \varepsilon$. C'est immédiat puisque $\mathbb{Z}_{d_{\infty}} = \varepsilon$. De même, on montre que $\mathscr{C}(E, C) = \mathscr{L}^{\infty}_{g}(E, C)$.

Montrons que $\mathscr{C}(C, E) = \mathscr{L}_g^{\infty}(C, E)$. Il suffit de prouver que sur $L \otimes E, g_{\infty} = \varepsilon$. Ceci découle du corollaire 3 du théorème 3.4. On montre de même que $\mathscr{C}(E, L) = \mathscr{L}_d^{\infty}(E, L)$.

Nous avons obtenu dans les numéros 3, 4 et 6 différents résultats de représentation d'opérateurs compacts. Ils sont consignés dans le tableau suivant dans lequel les espaces de départ sont placés en colonne et les

D	F	C	H	L	$\begin{array}{c} L^p \\ 1 \leqslant p \leqslant 2 \end{array}$
E		$\mathscr{L}^{\infty}_{g}(E,C)$		$\mathscr{L}^{\infty}_{d}(E,L)$	
L	$\mathscr{L}^\infty_d(L,F)$		$\mathscr{L}^2_g(L,H)$		
H		$\mathscr{L}^{\mathbb{P}}_{d}(H,C)$		$\mathscr{L}^2_d(H,L)$	
C	$\mathscr{L}^{\infty}_{g}(C,F)$		$\mathscr{L}^2_g(O,H)$	$\mathscr{L}^2_g(C, L)$ $\mathscr{L}^2_d(C, L)$	$\mathscr{L}^2_g(C, L^p)$
L^{q} $2 < q < +\infty$				$\mathscr{L}^2_d(L^q,L)$	

Représentation d'opérateurs compacts

espaces d'arrivée en ligne. Dans ce tableau, E et F sont des espaces de Banach quelconques. La signification des autres notations a déjà été donnée.

L'usage du tableau est simple. Il indique, par exemple, que $\mathscr{L}^2_g(C, H)$ = $\mathscr{C}(C, H)$.

Bibliographie

- J. Amemiya et S. Koji, On tensor products of Banach spaces, Kodai Math. Seminar Reports 9 (1957), 7. 161-176.
- [2] Bourbaki, Integration, chap. 6 (1959).
- [3] S. Chevet, Sur certains produits tensoriels topologiques d'espaces de Banach, Z. Wahrscheinlichkeitstheorie Verw. Geb. 11 (1969), p. 120-138.
- [4] Dunford and Schwartz, Linear operators, 1958.
- [5] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Boletin da Sociedade de Mathematica de São-Paulo 8 (1956), p. 1-79.
- [6] Produits tensoriels topologiques et espaces nucléaires, Memoirs of the Amer. Math. Soc. 1955.
- [7] S. Kakutani, Concrete representation of abstract L-spaces and the mean ergodic theorem, Ann. of Math. 42 (1941), p. 523-537.
- [7bis] Concrete representation of abstract M-spaces, ibidem 42 (1941), p. 994-1024.
- [8] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in L_n-spaces and applications, Studia Math. 2.9 (1968), p. 275-236.
- [9] L. Nachbin, A theorem of the Hahn-Banach type for linear transformations, Trans. Math. Soc. 68 (1950), p. 28-46.
- [10] A. Pietsch, Absolute p-summierende Abbildungen in normierten Raümen, Studia Math. 28 (1967), p. 333-353.
- [11] Hilbert-Schmidt Abbildungen in Banach-Räumen, Math. Nachr. 37. nº 4 (1968), p. 327.
- [12] und A. Perrson, p nuklear und p integrale Abbildungen in Banachraümen, Studia Math. 33 (1969), p. 19-62.
- [13] P. Saphar, Applications à une puissance nucléaire et applications de Hilbert-Schmidt dans les espaces de Banach, Ann. Ecole Norm. Sup. 83 (1966), p. 113-152.
- [14] Produits tensoriels topologiques et classes d'applications linéaires, Comptes Rendus Acad. Sciences Paris 266 (1968), p. 526-528.
- [15] Comparaison de normes sur des produits tensoriels d'espaces de Banach. Applications, ibidem 266 (1968), p. 809-811.
- [16] Quelques propriétés des normes tensorielles g_k et d_k , ibidem 268 (1969), p. 528-531.
- [17] A. Pełczyński, A characterization of Hilbert-Schmidt operators, Studia Math. 28 (1967), p. 355-360.
- [18] Bourbaki, Intégration, chap. 3, 1965.

Colloquium on Nuclear Spaces and Ideals in Operator Algebras

The tensor product of a locally pseudo-convex and a nuclear space

by

L. WAELBROECK (Brussels)

The talk contained a relatively simple observation about the tensor product of a nuclear and a locally pseudo-convex space. It appears that nuclear locally convex spaces should play the same remarkable role in the category of locally pseudo-convex spaces as in the category of locally convex ones. The possibility that some, non-locally convex, but locally pseudo-convex spaces might rightly be called nuclear is not excluded, though it seems unlikely. S. Rolewicz [b] for instance mentions the fact that a locally pseudo-convex space which satisfies the "approximate dimension" condition for nuclearity is locally convex and nuclear.

Integrals of functions taking their values in locally pseudoconvex spaces were also discussed, along with applications to locally pseudoconvex algebra theory. The definition of the integrals, the relation of such integrals with topological tensor products, and applications, can be found in the literature and will not be further discussed here. (The reader may consult for example references [1] to [8]).

It does not seem that the starting point of this talk, i.e. the result about topological tensor products, has been published yet. The reader will find it here, along with a few corollaries, and counter-examples showing that the result cannot be generalized essentially.

1. Let 0 . A*p*-semi-norm on a (real or complex) vector space $is a mapping <math>n: E \to R_+$ such that $n(x+y) \leq n(x) + n(y)$, $n(tx) = |t|^p n(x)$.

If $n(x) \neq 0$ for all $x \neq 0$, then *n* is a *p*-norm. We do not always wish to specify the exponent *p*, and speak then of a pseudo-seminorm or of a pseudo-norm. If $0 < q \leq 1$ and if *n* is a *p*-semi-norm, then n^q is a pq-semi-norm, which can be identified with *n* for all our purposes. Modulo this identification, the set of *p*-semi-norms is an increasing set as *p* decreases to zero.