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1. Introduction. Let {z;,z;} and {y;, y;} be complete biorthogonal
sequences in the respective Banach spaces X and Y. For F' a continuous
linear operator from X into Y the sequence A(F) = {y;(Fz;)} will
be called the diagonal of F. The operator F is said to be a diagonal operator
if yy(Fmy,) = 0 for j k. In this note the properties and characteristics
of two spaces of sequences are discussed: N consisting of all sequences
A(F) as F ranges over the space ./ of all nuclear operators from X into
Y and M consisting of all sequences A(F) as F ranges over the space
2 of all diagonal operators from ¥ into X. Specialized work in this direction
appears in [7] where the two complete biorthogonal sequences coincide,
in [8] where the biorthogonal sequences are both {¢;, B;} in perfect coor-
dinate spaces and in [9] where the biorthogonal sequences are {¢;, B}
in the spaces of type I”. Some of the content of my communication is
included. in [7] and is not repeated here. It is there shown that the nature
and relationship of the two sequence spaces M and N are reflected in
the summability properties of the series Dla; () @; a8 & ranges over X.

7
A Banach space X in which there is a complete biorthogonal sequence
{#;, @} can Dbe identified with space S of sequences through the corres-
pondence of x in X to the sequence s, = {m}(w)}. Under this correspondence
x; becomes the sequence {0p: % =1,2,...} which is denoted by e¢; and
@; becomes the j-th coordinate functional which is given by B;(s) = s(j)-
Tore s = {s(1), §(2), ...} With the norm
lI8zlls = Il
S is & Banach space isometrie to X. The conjugate space X* can be identi-
fied with the space 8 consisting of all sequences s, = {o' (x;)} as &' ranges
over X*. With the norm
) llsa 15 = 112}
&' is isometric to X".
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It thus suffices to consider the case of two Banach spaces of sequences
S and T in both of which {¢;, B} forms a complete biorthogonal sequence.
A Banach space of sequences on which each functional I; is continuous
is called a BE-space. The space of all sequences is called, o, and the subspace
of sequences in « which are eventually 0 will be called ¢. For sep and
tew, (s, 1) is the finite sum Ss(j)¢(j). For 4 a subset of ¢, A® congisty

7

of all ¢ in w such that |(s, )| < 1 for each s in 4. For B a subset of w, B®
congsists of all s in ¢ such that |(s, ¢)] < 1 for each ¢ in B The respective
norms on 8, T, 8" and 7 ave || llg, || fl || I, I If*. For sin § and s = Sy
in §¢'(s) is the value of o' at 8, ie., '(s). It is easy to see that if
either s or " is in'p, s'(s) = (s', s). The product of two sequences iy defined,
coordinatewise; thus if v = st, v(j) = $(J)t(j) for each j.

The proof of the following statement is essentially the same as the
proof of 4.1 of [A] and is omitted:

LY. If {e;, By} is a complete biorthogonal sequence in the BK-space 8,
then

S = nd®@

=1

and A™ is the closed unit ball of &, where A consists of all s in ¢ such that
llslls < 1.

2. Diagonals of nuclear operators. In this section and the following
S and T denote Banach spaces of sequences in which {¢;, B;} forms a comp-

lete biorthogonal sequence. The space N then consists of all sequences
of the form

Vp = A(F) = Ej(Fﬁf)

as F ranges over the Banach space . of all nuclear operators from & into 7,
For s in & and t in 7T

b
" DIDT 15 leslls leg 17 8]
Thus if {s;} is a sequence in &' and {t,} i5 a sequence in 7' such that
Dy < oo
n
it follows that
D lsn(DlIt(i)] < oo for each j.
n

2.1. THEOREM. (a) The set N consists of all sequences v of the form

oo
(2.1) v = Zs;ztm

=1

Diagonals of operators 45

where {s,} is @ sequence in & and {1} is a sequence in T such that

Shlf gl < 0.

N=1
(The comvergence in (2.1) is coordinatewise).
(b) With the norm

@2) oy =| f ol talle: ) site = v5 {53} = & {t} = Th

Pos ], =1
N is a BI-space. -
(¢) The biorthogonal sequence {e;, B;} is complete in N. .
(d) The mapping from 4 onto N defined by F — A(F) is a continuous

linear operator. .
Proof. (a) If v has the form (2.1), define F from § into I' by

Fs) = Z 85, (8)1,-

n=1

Then Fe.# and A(F) =o. o
It weN, let v = A(F) for I in 4. There are sequences {s,} in & and

{t,} in T such that Fs = Y s,(s)t, for s in 8 and 3 ls,[°[ltallr < oo. For
each. j " -

St =B Y snle)t) = By(Te) =o(3),

k3 T

so that Y's,t, = . Thus » has the form (2.1).
n

(b) Tt follows from (a) that N is a linear space. The proof- that || ||x
is a norm. is omitted. To see N is complete Wiﬁl.l thfe norm || |y a.ss:unlle
Slly < oo. Let {s,;,} and {t,} be sequences in 8 and T respectively

n| i

, " =1,2,...
such that Z'g'llmln t’nlc = Tp and Z ”’S‘nlc“S”tnk”T < ”/UHHN_I_2 for n 17 ?
T k

Then
RITRANT]
SV sl el < 00,
22

i i f i llows that v
80 that if v is the coordinatewise sum of %‘%‘snktﬂk, it fo

i in N, Since

H niZn: ’”“’;,D“N < n_;ﬂ; l8lt® Ml

< D) ey +27

aw=m+1
>, converges to o in N.
n
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Bach coordinate functional on IV is continuous because if v = s,
n
(< 3 16l a1 << (3 Il Ml eyl s
. n . n

(c) Let v in N have the form (2.1). Since {¢;, 7} is a complete bior-
thogonal sequence in 7, ¢ is dense in 7. Let {1,,} be sequences in ¢ such
that Ztnk = tn. and E”tnk”:[’ < “in”.’l‘“%"2*n for each n. Then

k& k

2 D Isutudly < 37 llsill Wallz < o0
n ok I k

and 3 }'s,t,, = v coordinatewise and thus in N. Therefore, ¢ is dense

n k
in N so that {¢, B;} is a complete biorthogonal sequence in N.

(d) The proof that A4 is linear is omitted. The norm on 4 ig given
by the formula

@3)  1PI=int{ DhsilP Il 35l (51t = Fs for s in 8.
It s, (s)t, = F(s), then

By(Fe) = s, (e)By(t,) = X (i) (j)

ki3

for each j so that the set in (2.3) is smaller than the set in (2.2). Thus
W2 N4 (F)lly for F in .

For a sequence space S, M(8) -called the multiplier algebra of 8,
consists of all % in o such that useS whenever seg. Multiplier algebras
are studied in [5].

2.2, M(8) v M(T) = M(N).

Proof. Suppose ue M(T) and v = Y's,t,N, where Y |lsi/[¥|It./|; < co.
Then wv = Jus,i, and Y [lsy|%lut,|s < oo because there is ¢ > 0 such

K N

that [lut]ly < @ty for each ¢ in T. See 3.2 of [5]. Theretore M (T) = M(N).

By 3.5 of [8], M(8) =« M(§"), and by an argument similar to that
in the preceeding paragraph M (8) = M(N).

The following theorem. iy an immediate consequence of 2.2 above
and of Theorem 3 and Corollary 2 of [37]:

2.3. TuwoREM. If {¢;} is o Schauder (an unconditional) basis for 8 or
T, then {¢} is o Schauder (an unconditional) basis for N.

3. Diagonal operators. Examples. With & and T' as in Section 2, let
A consist of all sep such that lslls < 1 and B consist of all teq such that
ltlr < 1. The space M consists of all sequences of the form

up = A(F) = H;(Fe;)

@ ©
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as I ranges over the set of all diagonal operators from 7' into §. It can

be shown that M then consists of all sequences « such that uteS whenever

tel, i.0. M is the space called (I'~8) by Goes in [4] and elsewhere.
3.1. With the norm

(3-1) llullsr = sap{llutls: Il < 1}

M 48 a BIC-space in which the closed wnit ball is (A B)®.

Proof. Tet £ (T, 8) denote the Banach space of conti.:n}lous.linear
operators from ' into § with the uniform norm. It can be Verlfled.dlrectly
that for each pair 4, § the functions defined by p;(F) = B;(Fe;) is conti-
nuous and linear on Z (T, S). The space 2 consists of all F such that
yy (B = 0 fov 4+ j. Thus 2 is a clogsed subspgc(.a of Q(l.’, 8). Under
the correspondence of F in & to A(F) in M, M is isomorphic to 2. The
norm given by (3.1) coincides with the uniform .1101“m on 2. Hence M
is & Banach space. Tach K is continnous on M since

By (up) = B;(Fe;) = py(F).
By 1.1, A" is the closed unit ball of &, Thus if |lulx <1,
llutl = sup{|(ut, s')|: s’ A} <1

- 1 forp ' (o) B
o that [(#,v)| =1 for v in A" B. ) )
£ ue(/?L("ﬂ B)®, then for §'e4® and teg, l(s, w)] = |(u, s 9)| < el
80 that Jutlly < [[#]z. Since ¢ is dense in both S and T, th‘ere is & conﬁnz}(;uz
extension F, of the linear operator ¢-»uf from T into § suc a
WF (Dl = (ltll,. But Fyt = wt for ¢ in 7. Thus flully <1
3.2. M(8) v M(T) < M(IM). u
Proof. Let we M(S) and ue M. If teT, uses, s0 30}&(#;;8;, 50 wue M.
o we ] imilar argument shows M (T) = :
Hence we M(M). A similar argument s (I ‘
From 3.2, Theovem. 3 and Corollary 2 of [3] it fo]low.s thgthliu'({;g
is o Sehauder (an unconditional) basis for 8 or T, then {Ej} is zinn iy[
(an. unconditional) basis for M°, the elosed linear span of {¢} N’.__ .
3.3. Tunornm. If {¢} is o Schauder basis: for 8 or T, then =
and N = M. .
Proof. It is smlw’&nyﬂ frué that N' < M. Let O denote the set of a
v i @ such that [Jof = L. Then, by 1.1,

N = D nC®.

=1
But A@B e ¢, so that 0@ < (4@ B)®, which implies by 3.9 that
E N J, (
N < M. .
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If {¢;} is a Dbasis for 8, let ue M and veXN, and let v = Slspt,, where
DlsalPlitall < oo. For s'e8” and each % let C

k
Pis' = D's'(j)e.
=1

Then sup [Pyl < co since {¢;} is a basis for § (p. 67 of [1]). Thus
k

k k
| PROLY =1 st u|
=1 f=1 n

.
=1 2 Ysuimi)u)]
M f=1

= ‘ZPIGS;L(“%)

< (supi Pl wllar D) Isyll il -

The refore M = N by 3.3 of [6].

A similar argument applies if {¢;} 13 a basis for 7,

The following table shows M and N for certain familiar spaces of
Sequences. See [2], p. 239, for a discussion of these spaces. The space
M was caleulated directly by means of the relation,

M = (J n(4® By
=1
:and N was calculated by 3.3. In particular, observe that cs is not contained
in b so that there are nuclear operators in ¢s whose diagonals do not
map-cs into itself. Hence theorems of type 3.1, 3.2 and 3.3 of [8] do not
hold for the diagonals of continuous operations from a sequence space

into itself even when the space is associated with a basis and the operators
are nuclear.

g | % ] n , w | | o I by \ o8
T n 6 |18 w cs by w
M:T> 8| m n | wale+e) m b bv id
N:8>1T A ¢ e/ (va—p—qg) n ™ P w

1<p<g<o) (1< p<g< o)

icm°®

[1]
[2]
(31

(4]

[5]
[6]
[7]
[8]
[91
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