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Colloquium on
Nuclear Spaces and Xdeals in Operator Algebras

Small operators between Banach and Hilbert spaces
by
R. M, DUDLEY (Cambridge, Mass.)

1. Let B be a Banach space and let H be a Hilbert space with inner
product (-, ). We shall study operators from B into H which are suffi-
ciently “small” to decompose continuous linear random processes on. H.

Here are some definitions. Let P be a probability measure on & space £.
Let L°(Q, P) be the space of all real P-measurable functions on £ modulo
functions vanishing P-almost everywhere. I (2, P) has its usual topology
of convergence in measure. Given a real topological linear space S,
a continuous linear process on § is a continuous linear map L from 8. into
some L'(£2,P). 8 denotes the (dual) space of continuous linear real-
valued forms on S. I is called decomposable iff (i.e. if and only if) there
ig & mapping w — L, from Q into §' such that for every z in 8, L,(®)
= L(#)(w) for almost all w. A continuous linear map C from another
topological vector space X into-S will be called L’-decomposing itf LoC
is decomposable on X for every continuous linear process L on 8.

The following result has been stated by S. Kwapiei:

THEOREM 1. An operator A from B imto H is L°-decomposing iff
A = JoO for some Hilberi-Schmidt operator J from H into atself and
bounded operator C from B into H.

The proof to be given here uses the following probabilistic result
which may be of independent interest. (I do not know what would be
the largest possible function of o in place of a%/+.) )

Limvyva 1. Let Ay, ] = 1,2, ..., be independent events, and a>0.
Let By Ay for all § and P(B)) = aP(4;). Then

P(J B> a*P() 4)/4.

Proof. It P (._;1j) =0 for all j, there is nothing to-prove. Otherwise
we have a< 1. If, for some j, P(4;) > a/2, then

P(By) > a*/2 > a?P( 4))/4.
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8o we assume P(4)) < a/2 for all §. Let N be such that

N1
P(H Af) < af2

(e.g. N =1,2). Then

N-1 N—1
P(By ~ }:JI B)>P(By)—P(4y ~ (U 4)) = (a— af2)P(d ).
So !
N N
P(jU B)>a > P(4))2.
=1 j=1

If for some ¥, the latter quantity iy at least oi/4, then
PU B)> a?fd > a?P(J 4,)/4.

Otherwise, we let N — oo and obtain
P(UB)=aP(UA)2>a®P(Ud)js, qed

Ly . 0 ) .
Al it g MA 2. Let A be an LP-decomposing operator from B imto H, and
anspose from H into the dual space B*. Then

2 M < oo

Jor amy orthonormal set {pn} in H.
Proof. Let 4,

e = a;. I Yo = oo, we can agsume

) a; >0 fo

all §. We choose b, 3 ’ T
K

100 >0 such that 3 5 = oo and byla;—0 as j-» oo.
Let 2> R - i <
F e %kT’7=1§1-1a7‘ >F, and b = a,/k for M <J < Myyy.) Lot X, De
independent random variables such that

PO =1/b) = P&, = —1b) = P(X,  0)2 = B2,

_ Then we can let L) = X,
linear process on H. Choose @
Where y; = A4 (). Then

‘for a.ll‘ J and extend I to a continuous
in B with ||zz =1 and (prs 1) > ay/2,

P(L(y)| > ay/2b,) > P(| L) = 1/b;)/2

smfebf(zg,-) = ;X;+ Y, where 4 >a;/2 and Y is a symmetric random
:;ana e independent of X;. Thus we can, apply Lemma 1 with ¢ = %
7 ={1%;] =1/p;}, B; = 4; ~ {1 L(y;)| = a;/2b;}. Hence for any 7, ’

P(g B) > (1/204 = 1/16,

icm®
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3 , V
since P(UJ 4;) =1 by the zero-one law (YP(4;) = +oo). Thus B; occurs
j=r

infinitely often with probability at least 1/16. Since |lz;] =1 and
a;/2b; = oo, Lo A is not decomposable. Lemma 2 is proved.

Proof of Theorem 1. The “if” part follows from the well known
results of Sazonov and Minlos. The converse follows from Lemma 2 and
a theorem of Sudakov [7] (for another proof see Stowikowski [6]; cf.
Kwapietl [4]). Sudakov’s theorem states that if ¢.is an operator from
a Hilbert space I into & normed space X such that for every orthonormal
set {py}y 2, I0pl* < oo, then € = Uo V, where U: H — X is bounded and
V: H — H is Hilbert-Schmidt. But the total length of the proof can appa-
rently be shortened somewhat by exploiting L-decomposability further
before passing to pure operator theory.

Suppose 4 is L’-decomposing from B into H. A sequence {n,} = H
is called weakly 2-summable itf 3'|(5,, ¢)?| < co for each ¢ in H. Then the
operator 1: ¢ — {(1,, P)}n=y I8 bounded from H into the Hilbert space
l, of square-summable sequences, by the Banach-Steinhaus theorem.
Thus nod is L’-decomposing. %' applied to the standard orthonormal
basis of I, yields {n,}n.,. Hence, by Lemma 2, Y| Alp,|* < co. So A? is
a “2-absolutely summing” operator. It can be suitably approximated
by operators with finite rank. Thus according to Pietsch [5], p. 243-244,
we have y; in B* and f; in H such that for every ¢ in H,

A'p = 3 (o, F)vs,
=1

where Y'[fjl}; < oo and for any z¢B, 3 [1;(#)|* < co. Now ¢ — {(¢, f;)}2,
is a Hilbert-Schmidt operator from H into Iy, and {u}2, > wuy; is
a bounded operator from I, into B*. Thus 4% from B** into H is a com-
position of a Hilbert-Schmidt operator with a bounded operator. We
can replace I, by a subspace of H (ox if H is finite-dimensional, the theorem
is trivial). Then, restricting A% to B = B**, we obtain 4 and Theorem 1
ay stated, g.e.d.

Sudakov [7] obtains the following result using his deeper theorem.
So a simple, direct proof may be of some interest. (It seems like a “com-
pactness and. continuity” fact, but the proof seems not to work that
way.)

ProrosroioN 1. Let T be a bounded opérator from o Hilbert space
H into o Banach space such that for every orthonormal set {p;} in H,
STl < co. Then

sup{ SUTwlr: () orthonormal} < co.
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Proof. We can assume 7' has norm 1. If the supremum. is

oo
it suffices to show that for each # and orthonormal vy, ..., v,, ’

sup{ 3 [Tg,l1*: {y;} orthonormal, g; = ;,1<j<n} = oo,

for then we could chooose orthonormal q'af inductively to make

24
2 ITple >k k=1,2,..
» f=1
And, further, we need only treat n = 1.
Given y, and M >0, choose orthomormal #; such that

D) T2 > (M4 272,
i=1

Let U be a unitary operator (rotation) such that U(n,) =y, and
U{p) = ¢ whenever (p,n,) = (p, p) = 0. Let a; and a, form an ortho-
normal basis of the linear span of v, and 7, (if », and 77y are proportional,
there is no problem). Let I be the identity operator. Then sinee I— I7
has its range in this span,

D MI=TmlE< 3 3l (I 0% a2 <8,

§ k=1
and

M2 < Y1) < [ S Onl4 17 (1= 0y )
< (21T 3 i1z — vy
< (DT Un )t 250,

So we can let ¢; = Un;, orthonormal, with ¢y = yrand 3| Tyt = M,
¢.e.d.

2. Epsilon-entropy and the Gaussian process. Once again let 4 he
a bounded operator from a Banach space B into a Hilbert space H. Lot
B, be the unit ball of B. Then we may say 4 is a “small”
A(B,) is & “small” get. One way to measure smallness is by w
tropy. For any set 0 = H and ¢ >0, leb '

operator if
ay of e-on-
diam(0) = sup{lo—y|: @, y<C},
N(C, &) =inf{n: O c U G for some C; with diam C; < 2e,
. =1

j=1,..

_ -1 1},
7(0) = lim‘Ls‘:lp [loglog N (C, )/log(1/e)].

icm

Small operators 39

Let 7(4) = 7(A(B,)). The transpose operator A! takes H into B*;
let r(4Y = V(A‘(H 1)), where H, is the unit ball of H, and we use the
norm in B* in defining 7. Chevet [1] considers diagonal operators between
I,-spaces and obtains that r(4) =»(4% for such operators. It would
be of interest to know whether this relation holds generally.

There i @ normalized Gaussian linear process & on H. G maps H
into L*(£,P) for some probability space (Q,P). BG(z)G(y) = (@, ¥),
and if (#, ®) = 1, and ¥ is a Borel set in the real line,

P(6 (@) el) = @) [0t

I

There are operators .4 with Go.4 decomposable which are far from
being Lo-decomposing. It is known ([2], Sudakov [8]) that Go4d is
decomposable if »(4) < 2 and not if #(4) > 2, while, if »(4) =2, the
numbers N (A (By), e) -do not always determine whether Go A is decom-
posable. In some cases, however, precise criteria for deconmposability of
GoA can be found by other methods. L. A. Shepp has recently proved
several interesting results on Gaussian processes.

3. Volumes. If ¢ is any convex set in a Hilbert space, let
V. (C) = sup i, (P, 0),

where 1, is n-dimensional Lebesgue measure and the supremum extends
over all orthogonal projections P, with n-dimensional range. Then we
define the exponent of volume of ¢ by

BV (C) = limsup (log V,,(0)) /nlogn.
N—r00

In [2], I considered compact, convex symmetric sets ¢ and showed
that GoA s decomposable it BV (4(B,)) < —3/2, and not if BV (A(B)))
> —1. T conjectured that

r(0) = —2/(1+4+28V(0) i BV(0)< —4.

Sets ¢ satistying the above relation are called wvolumetric. A(B,)
iy volumetric whenever 4 is a diagonal map {®,} = {a,%,} from I, into
ly; in [2] this was proved for p = 1,2, and oo, and for other values
of p by Chevet [1]. Here we will consider some natural injections
into L2

Let I be the unit interval [0,1] and I* the corresponding k-dimen-
sional cube. Let ¢ >0, ¢ =7+ a, where r is an integer and 0 < a< 1.
We consider the space of all real-valued functions f on I* which have
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continuous partial derivatives of all orders <7 and for which the partial
derivatives of order r satisfy a Holder condition of order o, so that the
following norm is finite: o
Iflly = sup |D7f(x)]4- sup |DFf (@)= D ()l lo— ",
¢ Ip|=r,

[Dl<r el =
where D? = 31P![fa1 ... Qafk, |p| = py+ ...+ py.

Let Cpp = {f: Iflg<1}. Oy is naturally a subset of the Hilbert
space H = L*(I* J), where 1 is Lebesgue measure on IF.

Prorosrrion 2. O, is volumetric for all ¢ and %, with BV (0,
= —§—q/k.

Proof. Kolmogorov and Tikhomirov ([3], Theorem XIV) showed
that the exponent of entropy #(C,;) for the supremum norm is klq.
Hencein H, (0, ;) < %/q and by [2], Proposition 5.8, BV (Cyp) < —4—qjk.

For the converse inequality, let f be some (™-function on I" with
f(#) = 0 for |s—e| > %, where ¢ is the center of I*, f(c) = 0, and. for which
17, = 1. Let

JifPrar = & >o0.

For each n = 1,2, ... we divide I" into #* parallel cubes of gide 1 n.
Let g:(#) = f(nw)/n® for nwel”. Let g,, ..., g,k be the functions obtained
by translating g, on I*/n to the other small cubes. Then llgsll, < 1 for all 4.
A linear combination Za;g, belongs to 0O, whenever |a,| <1 for each
j=1,...,n% Thus C,, in H includes a cube of dimension " and side
en™TF2 TLetting m = n*, we have

Viu(Ogre) = e m™-=aih),

Hence BV (C,;) = —3—q/k. So equality holds and Oy x 18 volumetric,
q.e.d.
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