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Perturbation theory and strictly singular operators
in locally convex spaces™

. . by
D. van DULST (Amsterdam)

Introduction. In this paper we present some results on perturbations
of Fredholm operators in locally convex spaces. We are interested in
what happens to the index of such an operator when another operator
is added to it. In particular, we want to establish conditions that guarantee
that the index remains invariant. These problems have been studied
extensively in the case of Fredholm operators acting in Banach spaces.
Since non-normable and even non-metrizable spaces abound in analysis,
it seems worthwhile to investigate what can be done in a more general
context. The natural limit to which we can hope to generalize the theory
is indicated by the fact that the closed graph theorem plays an essential
role in it. Since the work of Ptak [8], however, it has become known
that the validity of this theorem is rather wide. We shall make ample
use of the following generalized closed graph theorem, due to Ptak: any
closed linear operator mapping all of a barreled space into a Ptak (= fully
complete = B-complete) space is continuous.

Of the three chapters in which this paper is divided, Chapter I con-

‘tains the preliminaries. Chapter II and Chapter III can be read indepen-

dently.

In Chapter II we study perturbations of Fredholm operators 7' by
weakly continuous operators B which are small with respect to 7.
In the case where the spaces involved are Banach spaces and B is conti-
nuous, the smallness condition takes the form |B|| < y(T), where y(T)
is some constant depending on 7. In the non-normable case in which we
are interested here, a corresponding condition can be formulated in terms
of seminorms (conditions (P) and (P*)).

Chapter 11T js devoted to strictly singular operators. First we obtain

* This work was supported in part by the Netherlands Organization for the
Advancement of Pure Research (Z2.W.0.).
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a characterization of strictly singular operators in Ptak spaces. This
characterization, which is of interest in itself, leads to the more restrictive
notion of super strictly singular operators. We then go on. to prove a result
on perturbations of Fredholm operators by super strietly singular operators.
We conclude with some theorems on the algebraic structure of the spaces
of strietly singular and super strictly singular operators, respectively.

The system of internal references is as follows. Theorem 2.1 of Chapter
II is referred to as II. 2.1 if the reference is made outside of Chapter II,
and as 2.1 otherwise.

I. PRELIMINARIES

For purposes of reference we list in this chapter some definitions
and theorems, most of which are generally known. F and F will denote
arbitrary locally convex spaces (l.c.s.), unless otherwise specified.

A linear operator 7' with domain D(T) a linear subspace of B and
range R(T) a linear subspace of ' will be briefly denoted by T': E - F.
‘We emphasize that this notation does not imply that D(T) = E or that
R(T) = F. The null space of T is denoted by N(T).

A linear operator T': B — F is called. closed if its graph ¢(T) = {(z, Ta):
zeD(T)} is a closed linear subspace of the product space B x F.

The kernel index «(7) and the deficiency index A(T) of a linear
operator T': B — F are defined by

o(T) = dmN(T), B(TI) = dimF/R(T).

B(T) is called the deficiency of R(T) in F. In general, a linear subspace
M = B is said to have finite (infinite) deficiency in B it dim B /M < oo
(= o). Whenever a(T) and B(T) are not both infinite, the number

#(T) = a(T)—p(T)

is defined. »(T) is called the index of 7.

A closed linear operator with closed range is called mnormally solvable.
‘A closed linear operator which has a finite index is ealled a Fredholm
operator. It is known that if # and F are Banach spaces, any Fredholm
operator has a closed range and is therefore normally solvable. This is
not frue in general. )

Let B be the dual of B. We consider the following topologies on ': v’

o(¥, B): the topology of pointwise convergence (or the weak to-
pology);

B(#', B): the topology of uniform convergence on the bounded
subsets of E (or the strong topology).
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The le.s. B equipped with these topologies are denoted by Z, and
B, respectively. Analogously one defines o(H, B'), f(B, B'), E,, B,.

LevmA 1. The graph G(T) of a linear operator T:E —F is closed
in EXF if and only if it is closed in B, X F,.

Proof. (BXF), is topologically isomorphic to H,x F, (ct. [9]).
The lemma follows from this and from the well known fact that a convex
subset of a l.c.s. is closed if and only if it is weakly closed.

If T: B —F is a linear operator, it is sometimes convenient to
consider the associated 1-1 operator T EB|N(T) - F, where E|/N(T) has
the quotient topology. We collect some facts relating 7' and T in the
following theorem:

TarorEM 2. Let T: E—~ F be a linear operator with domain D(T)
and null space N (T). Let ¢ be the quotient map B — E|N(T) and let T be
the 1-1 operator from <p(D (T)) into B associated with T. Then the following
holds:

(1) T s continuous if and only if T is continuous.
(ii) T is open if and only if T is open.
(ili) @(T) is closed in B X F if and only if G(_’f‘) 18 closed in B|N (T)x F.
(iv) If D(T) is dense in H, then D(f) is dense in E[N (T).
(v) If T' is closed, then N (T) is closed.

A continuous linear operator 7':F — F which is open, is called
a (topological) homomorphism. If, in addition, T is 1-1, T' is called a (fo-
pological) isomorphism.

A linear operator T': E — F is called nearly open if for each 0-neigh-
borhood U in B, TU is dense in some 0-neighborhood in TH.

Before stating the generalized closed graph and open mapping the-
orems we need to define Ptak spaces. )

Definition 3. A le.s. B is called a Ptak space (or fully complete,
or B-complete) if a linear subspace ¢ of E' is closed in E,, whenever
Q N A is o(F, B)-closed in A for each equicontinuous set 4 c X'

It is an immediate consequence of the Krein-Smulian Theorem
(ef. [9]) that every Fréchet space is a Ptak gpace.

‘We also need the following two results:

THEOREM 4. Every Plak space is complete.

TamorEM 5. Hvery closed linear subspace and every separated quotient
of u Ptak space is a Piak space.

We now proceed to formulate the generalized open mapping and
closed. graph theorems.

THEOREM 6 (generalized open mapping theofem). If E is a Ptak


GUEST


344 D. van Dulst

space and X 4s barveled, then every comtimuous linear operator T:H —» R
with D(T) = E and R(T) = F is a topological homomorphism.

Another version of the open mapping theorem which deals with
closed and not necessarily continunous operators is the following:

TrroREM 7. Let B be a Ptak space and let T: B — F be a nearly open
linear operator with D(T) dense in B and with closed graph. Then T is open.

A corollary of Theorem 7 is

TeEOREM 8 (generalized eclosed graph theorem). Let H be barreled
and let F be a Ptak space. If T: BE— F is a closed linear operator with
D(T) = E, then T is continuous.

The next theorem states what relations there exist between a linear
operator T and its adjoint 7', as well as their respective ranges and null
spaces. It was proved by Browder [1]. To formulate it conveniently,
we need some definitions which are also due to Browder.

Definition 9. A Le.s. B is called fully barreled it every closed linear
subspace of Z is barreled.

Definition 10. A lc.s.  is said to satisfy condition (t) if for every
linear subspace M of B the Mackey topology (M, M’) coincides with
the topology induced on M by z(E, E').

TegoreM 11. Let T': B— F be a linear operator with domain D(T)
dense in E and range B(T) in F. Let G(T) be the graph of T considered
as o subspace of BEX T, T' the adjoint of T with domain DTy in F' and
range B(1") in B', N(T) and N (T') the null spaces of T and T’, respectively.
Consider the following properties of T and T'.

(1) R(T) 4s closed in F.
(2) B(X") is closed in Bj.
(3) R(T") 4s closed in H,.
(4) T is open.

(8) T is weakly open (i.e., open with respect to the topologies o(H, B
and o(F, F)).

(6) I" is weakly open (i.c., open with respect to o(F', F) and o (B, H)).
(7) BR(T) = N(T).

(8) B(T") = N(T)".

(9) R(T) is barreled.

Then the following relations hold between these properties:

@ 1)+ (7) =(6)
(2) = (3) = (8) = (5) = (9
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(1)  If G(T) is a Piak space and F is fully barreled,
(9) = (1) < (7) < (6) = (4)
: ¢
(2) <= (8) = (8) = (5)

If G(T) is a Ptak space, F is fully barreled and satisfies condition
(t), then

(I1T)

(9) < (1) = (7) < (6) = (4)

¢
(2) = (3) « (8) < (5)

Of fhese many relations we need only a few which we collect in
a corollary.

COROLLARY 12. )

(a) If T: B — F is o linear operator with D(T) dense in B, then

(@) = (5) = (3) = (8).

(b) Let EX F be a Ptak space and let F be fully barreled. If T: B —~ F
@8 a linear operator with D(T) dense in E and with closed graph, then

(1) = (4) = (3). -

(c) Let BEX F be a Piak space and let F be fully barreled and satisfy
condition (t). If T: B — F is a closed Uinear operator with D(T) dense in
E, then

(8) < (1) = (3)

Remark. Of course in (b) and (¢) the relations (1) < (4) and
(B) < (1), respectively, also hold if D(T) is not dense in K. The denseness
of D(T) only serves to guarantee the existence of the adjoint.

‘We conclude this chapter with some facts about topological direct
sums.

Let & be an l.c.s. and let M and N be two linear subspaces of & with
MA+N =F and M NN = {0}. We then call ¥ the algebraic direct sum
of the subspaces M and N. By the definition of an l.c.s. the map
v: M X N~ E defined by

p(m,n) =m+n (meM, neN)

is continuous. If y is a topological isomorphism, ¥ is called the topological
direct sum of M and N and we write ¥ = M @ N. From now on, we reserve
the notation B = M@N exclusively for a topological direct sum,
although it is used by many authors to denote an algebraic direct sum
as well.
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Let Py: E— M and P,: B — N be the projections defined by

Pym+n)=m and Pym+tn)=n (meM, nelN)

and let the 1-1 map ¢: M — E/N be defined by
(me M).

Since y is continuous and the quotient map ¥ - E/N is continuous
and open, the following two theorems hold. ‘

THEOREM 13. Let an lc.s. B be the algebraic direct sum of the linear
subspaces M and N. Then B = M®N if and only if P, and P, are
continuous.

Remark. If P, is continuous, then so is P, = I—P;.

TEEOREM 14. Let B be the algebraic direct sum of the linear subspaces
M and N. Then B = M@N if and only if ¢ is a topological isomorphism.

The next theorem is a consequence of Theorem 14.

THEOREM 15. If B 4s the algebraic direct sum of M and N and if
dim M < co and N is closed, then B = MDN.

With the aid of the Hahn-Banach theorem one can prove the fol-
lowing result:

TEROREM 16. For any finite-dimensional linear subspace M of an
l.es. B there ewists a closed linear subspace N of B such that B — M BN.

We express this by saying that M has a closed complement in H.

TemoREM 17, Let B be a barrdled Piak space. If B is the algebraic
direct sum of two closed linear subspaces M and N , then B = M DN.

Proof. Let P, be the projection of B onto M with null space N.
Since M is a Ptak space it suffices, by Theorem 8, to prove that P, ig
closed. This is quickly seen to be equivalent with the closedness of N.

To conclude this chapter, we prove the following easy but extremely
useful result:

TrmOREM 18. Let M be a closed and N be o finite-dimensional subspace
of an lcs. H. Then M+ N is closed.

Proof. The quotient map ¢: B~ B/M is continuous and N is

finite-dimensional and therefore closed in E/M. Then ¢'¢N = M+ N
is closed in E.

p(m) =m+ N

II. PERTURBATIONS BY WEAKLY CONTINUOUS OPERATORS

In this chapter we consider perturbations of normally solvable
operators .by weakly continuous operators and we establish conditions
under which the indices a, f and » remain invariant.
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1. Definition of the conditions [P] and [P*]. We begin by proving
a lemma which we shall need throughout this chapter.

LievwA 1.1, Let B be an l.c.s. and let M < F be a closed linear subspace
of finite deficiency in E. Then the following holds:

(i) For amy linear subspace L of E there exists a finite-dimensional
linear subspace N contained in L such that :

L=(LnM®N.

(ii) If L is dense in B, then L n M is dense in M.

Proof. The space L/(L N M) is finite-dimensional, since it is alge-
braically isomorphic to a subspace of H/M . Hence there exists a finite-
dimensional linear subspace K of I such that
(1) L=(Lo QK.

That this direct sum is topological, follows from Theorem I.15. The
projection P of L onto K with null space L n M is therefore continuous.
Since PL is finite-dimensional, it follows that
(@) K =PL « PL = PL.

Let 4,,...,¥, be a basis for K. Then by (2) there exist elements
Zyy ..., @, <Ll such that Pz, =g, (i =1,...,n). Clearly, the linear hull -

N =sp{=z,,..., s,} is an n-dimensional subspace of L on which P is 1-1.
In other words,
3) NcL and Nn(LnM) ={0}

Since dim K = dimXN = n, it follows from (1) and (3) that
L=(LnMPDN.

This proves (i). B
We now suppose that L = E. Then (i) implies that ¥ = M PN,

. ‘where ¥ is a finite-dimensional lineax subspace of L. Hence I = (L nM)PN.

By Theorem I.14, M is topologically isomorphie to B/ under the map
7 defined by #(m) = m+ N (me M). Under the same map #, L N M
is isomorphic to L/N. The last space is dense in B[N, because L is dense
in B and the quotient map ¢: B — E/N is continuous. Hence 4 ' (L/N)
=L n M is dense in 77 (E/N) = M and the lemma is proved.

Throughout the rest of this chapter we consider two l.c.s. B and F,
two linear operators T, B: E— F and we always assume that the fol-
lowing conditions are satisfied.: )

(A) Ex F is a Ptak space, F is fully barreled; T is closed, D(T)
denge in B, R(T) closed in F, a(T) < oo; B is weakly continuous (i.e., con-
tinuous with respect to o(E;E') and oF, F')), and D(B) > D(T).
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In some of the following lemmas and theorems more assumptions
will be necessary. Only the extra conditions will be explicitly stated.
0-neighborhoods in F and F will always be assumed closed and
absolutely convex.
Definition 1.2. The pair (7, B) is said to satisfy condition (P)
if there exists a closed complement M of N (T) in B and a constant y < 1
such that for every 0-neighborhood U in F there exists a 0-neighborhood
V in F with T(Un M) >V n RB(T) and with the property that

(1)  py(Bz) < ypy(L2) for all xe M N D(T) (py is the gauge of V).

Remark 1. Note that by Corollary I.12(b) T is open, because
B(T) is closed. It is easy to see that T’y (the restriction of 7' to M) is also
open. Hence for every 0-neighborhood U in F there always exists a 0-neigh-
borhood V in F with T(U n M) > ¥ n R(T). Condition (P) says that
this 0-neighborhood ¥ can be so chosen that (1) holds.

Remark 2. Loosely speaking, one could express the meaning of
condition (P) for the pair (T, B) by saying that B is ‘“bounded with
respect to T on a closed complement of N(T).

Remark 3. In order to check if condition (P) holds, it clearly suffices
to establish the existence of a V with property (1) for every U out of
2 0-neighborhood base in H. S

TeeorEM 1.3. If the pair (T, B) satisfies condition (P), then T+ B
s open.

Proof. Let y and M be as in Definition 1.2. Let U be an arbitrary

0-neighborhood in . We choose a 0-neighborhood V in F with 7' (Un M
>V NnR(T) and such that

Py (Br) < ypyp(Tw) for all e M N D(T).

Then .
(1) py((_’l’+B):6) 2 (1—~y)pp(Tw) for all e M N D(T).
Indeed, for any z¢ M N D(T) we have, by the convexity of py,
2v{(T+ B)2) > py (T0)—py (Ba) > (1— ) py (T).
We now show that

( 2) (T+B)(U N M) = (1—9) V n(T+B)M.

Let ye(1—y)V n(T+B) M be arbitrary, so y = (T-+B)z with
we M and py(T+B)a) <1—y. We prove that zeU. Suppose z¢U.
Since T(TU n M)>V NnR(T) and T is 1-1 on M we then must have
Tw¢V and therefore py (T2) > 1. (1) now implies that py ((T+ B) w) >1—y
and this contradicts the agsumption. Thus we have proved (2)
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Since the 0-neighborhood U in E is arbitrary, it follows from (2)
that the restricted operator (T4 B),, is open. We show that this implies
that T+ B is open. First we observe that 774 B is closed. This is proved
by applying Lemmsa I.1 twice and noting that the sum of a ‘closed and
a continuous operator is closed. Since M is a closed subspace of B, the
restricted. operator (T'+ B)y: M - F i3 then also elosed, while D ((7-+ B),)
=M nD(T) is dense in M by Lemma 1.1. Furthermore; as we have
just proved, (' + B)yis open. By CorollaryI.12 (b), (T+B) M = R((T+B))
is then closed in F. (T4 B)M being a subspace of finite deficiency in
R(T+ B), R(T'+ B) is closed by Theorem I.18. Again applying Corollary
1.12, we see that 7--B is open.

Let us consider for & moment the case where E and F are Banach
spaces and B is continuous. It is well-known (cf. [3]) that in that case
the adjoint 1", which is closed, has a closed range (in the norm topology)
and that y(7) = y(2"). Hence |B]| < y(T) implies |B'l} < (7). This
plays an important role in the proofs of perturbation theorems.

In the present case the condition (P) for the pair (T, B) serves the
same purpose as the requirement ||B| < ¢ (T) in the Banach space context.
Therefore, we would like to prove, analogously, that the pair (7', B')
satisfies condition (P) (with respect to the strong duals Fj and Bp) if -
the pair (7, B) does. Unfortunately, we can only prove a weaker state-
ment.

THEOREM 1.4. Let F be a Banach space and suppose that f(T) < oo,
If the pair (T, B) satisfies condition (P) and if the 0-neighborhoods V in
F, occurring in Definition 1.2 can be chosen out of the 0-neighborhood base
{n 1 Cplay (Op is the unit ball in F), then there exisis a o >0 such that
the pair (1", AB') satisfies condition (P) with respect to F; and E;, for every
AeC with [2] < p.

Proof. A 0-neighborhood base for ¥y is formed by the polars in
F' of {n0p}_,. Let U be an arbitrary 0-neighborhood in Fj. It is no
restriction to suppose that U = C%. Let M be a closed complement of
N(T) in E as in Definition 1.2 and put K = (Ty) 'Cp. As we noted in
Remark 1 following Definition 1.2, T, is open and so (T,)~" is continuous.
Hence K is bounded in M. Then K is bounded in E and K° is therefore
a 0-meighborhood in B,;. We shall show that

(1 T'(0%) = E° N R(T").
Suppose 7'y’ <K° for some y'eD(T’). Then
Ke, T'y">| = KTz, y'>| <1 for all mekK.
Hence

Ky, y> <1 for all yeTK = Op N R(T).


GUEST


350 D. van Dulst

By the Hahn-Banach theorem there exists a y'’«F’ such that
Y,y =<y, y"> for all yeR(T), while

Iy, ¥ <1

From the fact that <y, y") = <y, y""> for all yeR(T), together with
the relation y'eD(I"), we infer that y”eD(T') and T’y = T'y'. This
proves (1).

Since B(T) < oo and E(T) is closed, there exists by Theorem I.15
a finite-dimensional linear subspace L < F such that F = E(IT®L.
Clearly, the Banach space Fj is the algebraic direct sum of E(T)0 and L.
Since both E(T)* and L° are closed in Fj, Theorem .17 implies that
Fy = B(T)°@L°. Furthermore, by the definition of the adjoint we have
B(T) = N(I"). Thus Fy = N(T)@®I' Also &im N(T')< oo, gince
N(T') = R(T)° and g(T) < oco.

The projection P, of Fy onto L° with null space N (1"} is continuous.
Putting [|[P,]| = %, we may assume that % > 1. Indeed, the other possibility
k = 0 implies that L° = {0}. Hence B(T) =0, so T =0. In this case.
the theorem trivially holds. We have

P,(0%) < k(C% n I9).
From this and (1) we conclude that
T (k(C% N L) > K° n R(T")

or, written somewhat differently,

for all yeCy, ie., 4" Ol

@) T'(0% N L% > (kE)° A R(T").

) We write again U = 0y and we put ¥ = (kE)0. Then (2) takes the
orm
T(UNI)>V AR(T) (ot Definition 1.2).

) We will show that there exists a @ >0 such that for every AeC
with [A] <o there is a constant y’ — ¥'(4) < 1 such that

@) 27((B)Y) <¥'pp(T'y)  for all y'eL° A D(T).
Equivalently, we prove that there exists a ¢ > 0 such that

(4) Peo(B'Y) < opo(T'y')  for all y'eLd N D(T).
This last inequality can also be written in the form

(5) iBKp](Ba:, Yol < cil?l(Tm, y'>l  for all y'<L® N D(T").

The proof of (5) proceeds as follows. By assumption we have
Pep(Br) < YPop(TLz) for all xe M N D(T) or, equivalently, | Bz|| < v |||
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for all xe M N D(T), where y is the constant < 1 that occurs in the defini-
tion of condition (P) for the pair (7, B). Hence BK < yCy, since zeK
implies #« M N D(T) and TzeCr. Let P, be the projection of ¥ onto
R(T) with null space L. For every y <L’ n D(T") we have

sup [{Bz, y'>| = sup Ky, y' > < sup [y, y'>| = sup Ky, y">l.
zeK yeBEK veyCp . yeyPyCp

Putting [|P,]| = o, we may again assume that «>>1. We have
P,0z = a0y N R(T). Hence

sup{[{Bwz, ¥yl < sup Ky, y>l< sup Ky, y"l
zeK yeyPoCr yeyaCpnRB(T)
=ay sup Ky,y>| = aysup|<y,y’>l
yeCgp~R(T) yeTK

= aysup KTz, y'>|

for all y'«L® N D(T'). Thus we have proved (4) with ¢ = ay. Now the con-
stant o = 1/ay satisfies the assertion of the theorem. Indeed, for any
Awith 1] < ¢ = 1/ay we have pgo(AB'y") = |A|pge(B'y’) < |2 aypxo (T'y")
for-all -y’ «L® n D(T'), while |Ajay < 1. This means that (3) holds for
arbitrary 1eC, [A| <.0 = 1/ay, if we take ' = y'(A) = || ay.

Remark. If F is a Hilbert gpace, we can take L to be the orthogonal
complement E(T)! of R(T)jn F. Then ||P,|| = 1 (if T # 0). Consequently,
in this case we may take ¢ =1y >1. Hence the pair (7', B') satisfies
condition (P) with respect fo Fj and Hj. ‘

‘We now define a condition (P*) which is somewhat stronger that (P).

Definition 1.5. The pair (7, B) is said to satisfy condition (P*)
if there exists a closed complement M of N (T) in ¥ and a constant y < 1
such that there is a 0-neighborhood base ¥~ of 0-neighborhoods V in F
with the property that py(Bz) < ypp(Tx) for all se M N D(T) and for
all Ve? .

Remark. If F is a Banach space, condition (P*) can be formulated
more easily: there exists a closed complement M of N (T) in E, a constant
v <1 and a bounded 0-neighborhood V in ¥ such that

Pr(Bx) < ypp(Tx) for all xe M N D(T).

Theorem 1.4 now has the following corollary:

COROLLARY 1.6. Let F be a Banach space and suppose that §(T) < co.
If the pair (T, B) satisfies condition (P*), then there emists a o >0 such
that the pair (T', AB') satisfies condition (P) with respect to Fy and Hy,
for every AeC with |4 < o.

Proof. By the preceding remark there is a closed complement M
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of N(T) in E, a y <1 and a bounded 0-neighborhood V in F such that
Py (Bz) < ypp(Tx) for all we M 0 D(T).
There exist pogsitive constants a; and a, such that
ull] <pr@) <a@lyl for all yeF.
Hence
o, [|Bal| < yas|iTw|| for all we M N D(T)

or, equivalently,

{(—Zl—Bwi <y[Tz| for all 2e M N D(T).

Thus the pair (.’Z’,%—B) satisfies all requirements of Theorem 1.4.
: gy

2. Perturbation theorems. Making use of the results of section 1,
we now derive some theorems concerning the indices of 7' and T+ B.
We still assume that the conditions (A) hold.

Levwa 2.1. Suppose that the pair (T, B) satisfies condition (P*).
If o(T) =0 and R(T) = F, then .

() o(T+B) = a(T) =0,

(i) B(T+B) = R(T) = F. : ,
) Proof. For an arbitrary 0-neighborhood V in F we consider the
hne(:n'hspa.ce Fy = Flp7'(0), equipped with the norm 1B = pp ()
(#<®, 8 eFy). The canonical map ¢p: F—Fp i clearly continuous for

every V. Now let #" be a 0-neighborhood. base in F as in Definition 1.5
and le§ Ve¥” be arbitrary. Then

® Py (Bz) < ypy(Ta)

By hypothesis 7! exists. We consider the operators BT, 14 BT 1:
F—F (I is the identity).

It follows from (1) that BT and I + BT~ may also be considered
ag operators in_ Fy. Moreover, (1) implies that BT~ Fy— Fp has norm
<7 <1 Let Fy be the completion of Fy. Then BT~! can be extended
continuously to an operator BT !: 117',,—->17",7 defined on ﬁy, also. with
norm<y<1. By a wellknown theorem I BT-': 17’V—>1i77 is then
surjective. Si;nee this operator is algo continuous, it follows that (I+BT~Y) Fy -

is dens? In Fy, and therefore dense in F,. Also (I+ BIY)Fy = pp(I+
+BIT)E = ¢p(I+BI)TE = ¢, (T+B)E = ¢, R(T+B). Hence

for all z<D(T).

@) ¢y R(T+B) is dense in Iy.
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Since V was arbitrarily chosen from the 0-neighborhood base ¥ , (2)
is true for every Ve¥". Furthermore, by Theorem 1.3 and Corollary 1.12,
B(T+ B) is closed in F. These last two facts imply that R(T4B) = F.

Finally, a(T+ B) = 0, since (1) holds for all ¥¢¥" and some y<1.

Remark 1. If in Lemma 2.1, T is continuous (and therefore defined
on F), it is an isomorphism, since 7' is also open. In this case the condition
(P) is equivalent to the condition (P*). In general, however, condition
(P) does not suffice to prove the lemma. Indeed, the collection of the
V for which (1) is true, may not be a bage for ¥. Hence we cannot conclude
that R(T'+B) = F. . .

Remark 2. With a view to what follows we observe that for the
proof of the equality «(7+B) =0 in Lemma 2.1, the condition (P)
suffices. Indeed, let zeD(T), z 0 be arbitrary. Choose a 0-neigh-
borhood U in E such that #¢U. Since T is 1-1, Tz ¢TU. Let V be any
0-neighborhood in ¥ with ¥V < TU and such that (1) of Definition 1.2
holds. Then p(Bz) < py(Tz), so (T+B)x == 0.

We now drop the requirement that «(T) = 0. .

Levma 2.2. Suppose that the pair (T, B) satisfies condition (P*). If
a(T) < oo and R(T) = F, then

(1) a(T+B) = a(T),

(ii) R(T+B) = R(T) = F. B

Proof. Let M be a closed complement of N(7T) in F as in Definition
1.5. We may apply Lemma 2.1 to the restricted operators Ty, Byt M — 7,
since clearly the pair (T, By) also satisfies condition (P*) as well as
conditions (A). It follows then that a(T,+By) = a(Ty) =0 and
B(Ty+By) = R(Ty) = F. Since F =R(Ty+By)c R(T+B)c F, it
follows that R(T+ B) =F. Furthermore, a(Ty-+By) =0, whence
N(IT+B) n M = {0}. Let zeD(T) be arbitrary. Then (T+ B)zeF =
= R(Ty+ By). Consequently, there exists an zye M N D(T) such that
(T+B)w = (Ty+ By)wy = (T+B)x,. Hence « = (v—ax,)+a, with
#ye M N D(T) and 2— e N (T B). Thus ¥ (T+ B)®(M n D(T)) = D(T).
We also have N(T)D(M n D(T)) = D(T). Hence a(T+B) = o(T).

Lemma 2.3. Suppose that F is o Banach space and the pair (T, B)
satisfies condition (P*). If a(T) =0 and B(T) < oo, then

() a(T+B) = a(T) =0,

(i1) B(T+B) = B(T) for all AeC with [A| < g, for certain ¢ > 0.

Proof. As in Lemma 2.1 the relation a(T) = 0 and condition (P*)
imply that a(T+ B) = 0. Of course we also have a(T-+AB) = 0 for all
AeC, |A| <1, since any pair (T, AB), |A| <1 also satisfies condition (P*).
We now consider 7". The operator T is open. Hence, by the implication
(4) = (8) of Corollary 1.12, R(T") = N(T)*and therefore #(T') = a(T) = 0.
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Thus 7" is surjective. We also have R(I)" = N(T'), whence a(T') =
= p(T) < oo.

- By Theorem 1.3, T+ AB is open for |1] <1. Using the same arguments
as above, we find that B(T’ —}—ZB) = a(T+AB) =0 and (T +iB")
= f(T+AB) for JA| < 1.

It Temma 2.2 were applicable to the pair (77, AB') for small 1, we
could conclude that o(T'+AB') = a(T’) and therefore (T +AB) = §(T).

However, there are some difficulties. In the first place we do not know .

if the pair (7', AB') satisties condition (P*) with respect to F; and B,
and secondly, the conditions (A) may not hold for (T, AB').

" A close examination of the proof of Lemma 2.2 shows, however,
that these econditions are needed only to prove that for sufficiently small
A we have a((T')g+A(B")x) =0 and R((T)x+i(B)g) =B, K being
a closed complement of N (') in. Ii’;. Now it follows from Corollary 1.6
that a o' >0 exists such that for every AeC with |A] < ¢’ the pair
(T, 2B') satisties condition (P) with respect to Fj and Ej, and therefore
also ((T')g, A(B)g) satisfies (P) with respect to. K and Hj, where K is
a closed complement of N (I") in F;, ag in Definition 1.2. Thig implies
that a{(T)x+4(B)g) = 0 for |A| < ¢'. (Cf. Remark 2 following Lemma 2.1.)

It remains to be proved that RB((1")g-+A(B")x) = H for A sufficiently
small. To this end we introduce an auxiliary topology on D(T). Since
T is 1-1 and B(T) is a Banach space, we may place on D(T) the unique
Banach topology for which T is a topological isomorphism. To avoid
confusion we denote D(T) equipped with this Banach space topology
by D(T),. By T, and By we denote the operators T, B: D(T)b—>F res-
pectively.

Since T': D(T)~ F is open, D(T), has a finer topology than D).
Therefore we have (D(T),)’ = . It is an easy matter to check that
Ty, By: D(T), — T satisfy conditions (A) and (P*). An examination of
the proof of Theorem 1.4 shows that, since Ty: D(T), - F is a topological
isomorphism, the pair (T}, AB;) satisfies condition (P*) with respect to
Fy and (D(T),);, for every AcC with |A| < g'. Clearly T; is surjective,
since T, is an isomorphism. Also {(Th)g, A(B))g), 14| < o, satisties (P*)
with respect to K and (D(T),);. It follows now from Lemma 2.1 that
(Ti4+AB) K = (D(T)) for |2 < ¢ ;
4] < ¢'. BEvidently ((T)+-AB)E) N B' = (T'+2B’)K .and we have the-
refore shown that B(T')e+A(B')g) = B for |4 < ¢'.

It <o =min(1, ¢’), we have both a((TYe+A(B')g) =0 and
B((T")x+A(B)g) = B'. The proof can now be completed as that of
Lemma 2.2. ’

Finally we again drop the condition that «(T) = 0.

TEEOREM 2.4. Let F be o Banach space and suppose that the pair
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(T, B) satisfies condition (P*). If a(T) < oo, B(T) < oo, i.e., if T is a Fred-
holm operator, then & ¢ >0 exists such that
(1) (I'+1B) < o(T),
(i) B(T+2B) < (D),

(ifi) »(T+AB) = =(T),
for all AeC with |A] < .

Proof. Again we consider the restricted operators Ty, Tar+ Bis:
M—F (M a closed complement of N(T) as in Definition 1.5). In virtue
of the condition (P*), a(TM+Bm) = a(Ty) = 0. Applying Lemma 2.3
to Ty and By, we find that a ¢’ > 0 exists such that

@ B(Ta+2Byy) = B(Ta) = B(T it <.
Also, because the pair (T, AB;,) satisfies (P*) for |1 <2

) < oo

(2) a(Ty+ABy) = a(Ty) =0 i |2I<1
Hence, by (1) and (2),

(3) #(Ty+ABy) = =(Ty) for |A| < ¢ =min(l, o).
(3) implies that '

(4) #(T+AB) = =(T) for |A| <o,

since #(T+AB) = %(Ty+ABy)+a(T) and »(T) = »(Ty) -+ alr). From
formula (2) it follows that 7’4 iB is 1-1 on M for |A| < g, therefore

(3) a(T+AB) < o(T) for |A| < o.
Finally, - (4) and (5) imply
B(T+2AB) < B(T) for |A] < g.

This completes the proof.

To end this chapter we wish to prove a result that allows us to draw
conclusions similar to those of Theorem 2.4 in the case that F is not
a Banach space. We then cannot appeal to Theorem 1.4-and Corollary
1.6 for a guarantee that the condition (P*) for the pair (T, B) is preserved
in the weaker form (P) by the adjoints (7, AB’), A.sufficiently small.
It is therefore not surprising that we need two conditions, one for the
pair (T, B) and another for the pair (T', B').

TuEOREM 2.5. Suppose that F satisfies condition (t) and that T is
a Fredholm operator. We also suppose that N (T') has a closed complement

M and N(T') has a weakly closed complement K (B = MQN(T), F
= K@N(T")) such that the following conditions hold:

(a) - ((Ty) +(By))E > (Ty) K,

(b) (T+B)M+EK°> TM.
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Then R(T+ B) is closed and

[6)) a(T+ B) < a(T),
(i) B(IT+B) < (1),
(i) %(T+ B) = =(T).

Remark. (a,) and (b) can be less elegantly but more usefully for-
mulated as follows:
(a') For every y'e«K n D(T") there is a y,<K N D(T1') such that

for all ze M N D(T) we have (T-+ B)z, y,) = (T, y’>.

(b’) For every we M n D(T) there is an x,e M N D(T) such that
for all y'«K N D(T') we have {(T+B)z,, y"> = (Tx, y').

Proof of Theorem 2.5. (a) We note first that, by Lemma 1.1,
K n D(T")is weakly dense in K and M n D(T) is dense in M. Furthermore,
T+4-B is closed, since T is closed and B is weakly continuous. This is
proved by applying Lemma I.1 twice.

(b) Next we prove that a«(T+B) < a(T). Let z,e N(T+B), z,¢ M,
@y 7 0. Then Tz, # 0. Hence, since K ~ D(T') is weakly dense in K,
there exists & y' <K N D(T") with {(Tw,, y'> # 0. But (T B)zy, y;> = 0
for all y; e K~ D(T"). Thus (a') is not fulfilled and therefore N(T+B)nM
= {0}, s0 that «(T-+ B) < a(T).

(¢) We now show that R(T-+B) is closed. Consider the restricted
operator Tp,. It iy closed because 7' .is closed and M is a closed linear
subspace of B. Also D(T,,) = M N D(T)is dense in M and R(T,,) = RB(T)
is closed. Furthermore, M x I is a Ptak space by Theorem I.5. Applying
Corrollary 1.12(c) to T, we find that T, is weakly open. By Corollary
L1.12(a) this implies that N (T,,)° = ((TM)) Now N(Ty) = {0} and so
the adjoint operator Ty: B — M’ is sur]ectlve Thus for every «'e M’
a y'eD(T") can be found such that o’ = (T y'. We may even assume
that y' <K N D(T'), since N((T,)) = N(T).

. By (a) we hawve (Ty)'+ (By))E > (Ty) E. Since (T,) K = M by
what was proved above, it follows that (Ty) -+ (By) = (T By is
surjective. Because (T'+ B)y is elosed, D((T+ B)y,) is dense in M and
MxF is a Ptak space, Corollary L.12(c) may be applied to (Z+ B)y,
It follows that B((T+ B)) = (T+B) M is closed in F. Since (T BM
is a linear subspace of finite deflexeney in R(T+ B), Theorem 1.18 then
nnphes that R(T+B) is closed in P. :

(d) We show next that (T4 B) < (7). First we observe that the
conditions (a’) and (b’) can also be formulated as follows:

(a’) For every y <K n D(T") there is a y eK nD(T) such that
for all ze M N D(T) we have <z, ("B’ Yy =<2, T'y'>.

(b”) For every we M n D(T) there is an %, M ~vD(T) such that
for all y' <K N D(T') we have <(z,,(I' +B )y) =<2, T'y>.
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Upon comparing (a”) and (b") with (a’) and (b’) it is easily seen
that (a’) goes into (b’') and (b’) into (a’) if one makes the substitutions
T-T,T T, T+B-T +B, K—-+M, M—E, -8 KT,
F>F, BE-F.

Smee R(T) and R(T+ B) are closed, ﬁ'(_’l’) = a(T") and B(T+ B)
= a(T'+B'). If we repeat the a,rgument of (b), making the proper sub-
stitutions, we find that «(T'+ B') < a(T") and therefore 8(T-+ B) < B(T).

The equality »(7+ B) = »(T) we prove in two steps.

(e) First we show »(T+ B) = »(T). Consider the restricted operators
Ty and (T4 B)y. We showed in (b) that

(1)  a(Ty) = a((T+B)y) = 0.
If we apply the result in (d) to T, and ( T+B)M, we f.lnd that

) B((T+ B)a) < B(Tap).
From (1) and (2) it follows that

"((T‘l' B)M) = % (Tyy),

and therefore
%(T+B) > »(T),
since %(T+ B) = x((T—|—B)M)+a(T) and »(T) = %(Ty) -+ a(T).
(f) Finally we prove that » (T B) < »(T). If we repeat the arguments

of (b), (d) and (e), making the substitutions indicated in (d), we find ,
that

#(T'+B) > #(T).
It is well-known that #(T) = —x(T’) and »(T+ B) = —x(T + B).
Hence —x(T+B)z —«(T), or »(T+B)< »(T). This completes the

proof.

1I. PERTURBATIONS BY STRICTLY SINGULAR OPERATORS

1. Characterization of precompact and strictly singular operators.
Kato [4] defined strictly singular operators in Banach spaces. An obvious
generalization is the following

Definition 1.1. Let ¥ and F be Le.s. A continuous linear operator
B: E — Fis called strictly singular (s.8.) if it is not a topological isomorphism
on any infinite-dimensional linear subspace of its domain.

The most important examples of s.s. operators are the compact
operators. In cases where the range space is not assumed to be complete,
it i3 convenient to consider also precompact operators.
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Definition 1.2. A linear operator B:E — F is called precompact
if there exists a 0-neighborhood U in F such that BU is totally bounded.

Remark. If F is complete, the compact and the precompact oper-
ators from F into F coincide. Indeed, if U is a 0-neighborhood in ¥ such
that BU is totally bounded, then BU is totally bounded and eomplete,
and therefore compact.

For X and Y normed linear spaces, the precompact and strictly
singular operators from X into ¥ have been characterized in a way that
clearly shows the relationship between them.

TEEOREM 1.3. A Unear operator B: X — Y is precompact if and
only if for every & >0 there ewists a linear subspace N < D(B) with finite
deficiency in D(B) such that the restricted operator By has morm not exceeding e.

THEOREM 1.4. For a continuous linear operator B: X — Y the fol-
lowing statements are equivalent.

(i) B s strictly simgular.

(il) Given ¢ >0 and given an infinite-dimensional linear subspace M
of D(B), there ewists an infinite-dimensional linear subspace N <= M such
that the restricled operator By has morm not ewceeding e.

We refer to Goldberg [3] for the proofs of the last two theorems.

Since these theorems play a role in perturbation theory, we shall
attempt to generalize them for non-normable spaces. It is interesting
to see that in dealing with s.s. operators, Ptak spaces enter the picture
quite naturally.

E and F are arbitrary lc.s. and 0-neighborhoods are always assumed
to be absolutely convex and closed.

THEOREM 1.5. A continuous linear operator B: B —>F defined on B
8 precompact if and only if there ewists a 0-neighborhood U in H with the
property that for every 0-neighborhood V in F there is a closed linear subspace
M = B of the form

M= ﬂ N (@),
i=1

with ;B and @ bounded on U (i =1,...,n) such that B(U n M) < V.
Proof. (a) Suppose that B is precompact, and let U be a 0-neigh-
borhood in B such that BU is totally bounded. We choose & 0-neighborhood
V in F arbitrarily and proceed to construct a linear subspace M < B
with the required properties.
There exist ), ..., z,<E such that

BU <« U(Bm + = V)
=1

sinee BU is totally bounded. We set Pyp(Bz) = 2; (i =1, ...,n), where
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Py is the gauge of 1V. By the Hahn-Banach theorem we can select
Yy ey YneF' with
(Bu;,y;> =4 and

for all yeF (i =1, ...,n).
Let o, = y;B (1 =1, ...

Ky, ¥ < Prp(®)

, ) and
M =) N(z).
i=1

Since BU is bounded and the y; are continuous, the @; are bounded
onU (1=1,...,n). For any zeUn M we have Br<Bx;+ 1V for some i,
whence B(x—#;)e} V. Furthermote,

KB(@—w;), y:>| = KB
since e M = N (y;B). Also
KB(z—m), > QP;V(B(W“%)) <1,

gince B(z—a;)e} V. Hence 4, <1 or, equivalently, By} V. It follows
that Bx = By, B(w—m;)eV for every ze¢U n M. This proves that
B(UNnM)cV.
(b) Suppose now that U is a 0-neighborhood in ¥ with the property
stated in the theorem. V being an arbitrary O-neighborhood in F, let

Ly y:)] =i

M= N@)
=1
be such that B(U n M) = V, while #; is bounded on U (i =1, ..., n).
We may assume that «,..., 2, are linearly independent. Then we can

b,<B such that <b;, 2> = &; (4,§ =1,...,n). Evidently
b,}. Therefore

select b, ...,
by, ...y b, ave linearly independent and E = M @sp{b;, ...,
every 2l ean be written in the form

n

B+ D (w, @b, with Fe M.
=1
Hence
n
Bz = BE+ ) (w, 2> Bb;
=1
and
. . n
(1) 2yp(Ba) <py (BE)+ D) K&, 3|5 (BY;).

i=1
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Also
() Pu(® <pol@)+ D) Kz, adlpy(b).
=1

Sinee B(UNnM)<=V,
(3) ‘ 2y (BE) < pi (7).
It follows from (1), (2) and (3) that

Pr(B2) < pyle)+ DK, dd|pu b+ Y] K@, )]y (BY).

If K is the maximum of thé numbers py(b;) and pp(Bb) (@ =
1,...,n), then

n
(4) Py (Bo) < py(@)+ 2K Y (v, a}].
i=1
Now since the z; are bounded on U (i = 1,...,m), the map
@ ({8, @), ..., {2, @,>) of B into C* maps U onto a bounded. set in c,
therefore onto a totally bounded set, since C* is finite-dimensional. This
means that for any 5 > 0 we can select v, ..., @, U such that for every
velU an z, exists with

D Ke, 3> — @y, ] < 1.
i=1

This implies, together with (4), that for every ze U an a2, € U exists
such that

(5) Pr(Bo—Ba,) < 2+2Ky = o.
We may assume that o < 3, since this can be achieved by chooging
7 sufficiently ‘small. Then (5) implies

m

BU < ) (Bz,+37).

k=1
Hence B is precompact.
Remark. Theorem 1.3 is a corollary of Theorem 1.5.
Next we. characterize strictly singular operators.

TeEOREM 1.6. Let B be a Ptak space and let F' be an arbitrary l.c.s.
Then, for a continuous linear operator B: E — F defined on B the following
statements are equivaleni.

() B is strictly singular.

(i) For every closed infinite-dimensional linecar subspace M < B there
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ewists & 0-neighborhood T in B with the property thai for every 0-netghborhood
V in F there ewists an infinite-dimensional linear subspace N < M such
that N & U and B(U NN)c V.

Proof. (a) We suppose first that B is strictly singular. Having chosen
an arbitrary closed infinite-dimensional linear subspace M < B, we deter-
mine & 0-neighborhood U in K with the desired property. We may assume
that the restricted operator By, has a finite-dimensional null space. Indeed,
if a(By) = oo, then any 0-neighborhood U in E with N (By) ¢ U sat-
isfies (ii): given an arbitrary 0-neighborhood V in F we can always take
N = N(Byy). We also observe that, by Theorem 1.5, M is a Ptak space.

First we prove that B, is not nearly open.

Indeed, suppose that By, is nearly open. It then follows from The-
orem L7 that By is a homomorphism. Hence, putting N = N (B,,),
the associated 1-1 operator

By: M|N - BM

is a topological isomorphism. Since N is finite-dimensional by hypothesis,
N has a closed complement K in M by Theorem I1.16. Also, by Theorem
114, K is topologically isomorphic to M/N under the quotient map ¢.

* This we find that in the diagram

K K o BK = BM

N

MIN

By is a topological isomorphism. Since dim K = oo, this contradicts
the strict singularity of B. Hence B,, is not nearly open.

A consequence of this is that a 0-neighborhood U in ¥ exists such
that '

(1) B(U n M)®M iy not a 0-neighborhood in BM.
‘We shall prove that this U has the required property. Suppose that
V is an arbitrary 0-neighborhood in Z. Then
B(UNM)D éVnBM foral 6 >0,
since B(U n M)P™M and therefore surely B(U n M) is not a 0-neigh-
borhood in BM. Hence there exists an z,e¢ M with py(2) =1 and

Py (Bz,) < 371. By the Hahn-Banach theorem we can select an «)<E’
such that

oy, > =1 and [z, 3| < pplx) for all zeH.
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If N (#;) is the null space of z;, then N; = N (x;) N M is closed in M
and has. deficiency 1 in M.

We now proceed to show that

@) B(U n ¥,)®¥ is not a 0-neighborhood in BN;.

We distinguish two cases.

1° BN, is closed in BM. We have M = N,®sp{z,}, by Theorem
I.15. Suppose now that B(U N N)®V) is a 0-neighborhood in BN,.
If Br,eBN,, then BN; = BM and our assumption contradicts (1). We
may therefore assume that By, ¢ BN,. Then BM = BN, ®sp{Bz,}, again
by Theorem. I.15. Since B(U N sp{w}) is clearly a 0-neighborhood in
sp {Bz,}, it follows from this and from our assumption that B(U n M)BEH)
-contains a 0-neighborhood of each of the spaces BN, and sp{Bw,}. Then
B(U n M) jga 0-neighborhood in BM = BN, @sp{Bw,}, which con-
tradicts (1).

2° BN, is dense in BM. Then B’l—\fl1 = BTM. Suppose again that
¥V = B(T n J,)®") is a 0-neighborhood in BN;. Then ¥ = B(T AN &0

p— [, —_— e —
is a 0-neighborhood in BM. Since B(U n M)F™ — B(U n M)BM A |

NBYM > B{U N N,)®M nBM, B(UNM)®M i5 then a 0-neighborhood
in BM. This again contradicts (1). The proof of (2) is now complete.

(2) implies that -

B(UAN,) 5 6V A BN, for all 6> 0.
In particular, there exists an ,eN, with )
Pyl®) =1 and  pp(Bzm,) < 372

Using the Hahn-Banach theorem, we can select an #,eB’ such that
for all ze&.

N, =DN() "N(@) n M

<@, @) =1 and [z, 55| < py(o)

N (w3) is the mull space of z;, then
ig closed in M and has deficiency 1 in ¥,.
Using similar arguments as before we can prove that

B(U N N,)™ is not a 0-neighborhood in BN,.

‘We only note that the following two possibilities have to be treated.
1° BN, is closed in BN,. It Bz,eBN,, then BN, = BN, and the

assumption that B(U N N,)™2 is a 0-neighborhood in BN, contra-
dicts (2). If. Bw, ¢ BN,, then the proof is based on the fact that BN, 1
BN, ® sp{Bz,}.

2° BN, is dense in BN;. Then we use that B’ﬁ} = ﬁvz.

(3)

icm°®

Perturbation theory 363

(3) implies that

B(U NN, %8V ABN, forall §>0.

Hence there exists an w;e¢N, with

Py(@) =1 and  pp(Bwy) <37

We then select an zjeB with (w, ;> =1 and [<(®, 25| <Pv(w)
for all zeF and. set
Ny = N(@) nN(z;) nN(z) 0 M.

Inductively, sequences () and () are selected in M- and E,
respectively,. sach that - )

(4) ?U(.“'k) = (@, m):c> =1, pV(Bmk) < 3_k’
Ko, 2> < pyle)  for all well (B =1,2,...),

k-1

Ty € N N ()

gl
Tt is easily verified that the sequence (z) is linearly independent.
Thus the space N = Sp{®y, ..., By ..} 8 infinite-dimensional.
We show that N has the required property. Suppose

m
o= Za,;wi.

=1

or, equivalently, {(z,wy =0 for i<k,

(5)

Then || = |<#, #)| < py(®). By induection we prove that, more
generally,

(6) (k=1,...,m).

o] < 25l py (@)

Assuming that (6) holds for k< j <m, it follows from

i
(m, w}+1> = Z o <171:, mf’+1>+ g

=1
that ]
7

PSR RICIL BV

i
< po(@)+ D) 27 po(@)pu (@)

= py(@)+ 22i—11’0(m) =2py(®).’
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This proves (6). Hence for every zeN

1z

m

lel Py (Bay) < D27 py (0)37 < py (2),

t=1

Py (Br) <

2

il
-

or, equivalently, B(U nN) c V.

Finally, it is evident that N ¢ U, since the points =z, are on the
boundary of U, as well as in N.
‘ (b) Suppose now that B is not strietly singular. Then there is a closed
?nﬁnite-dimensiona;l linear subspace M = B such that By, is a topological
1sgmorphism. Assume that for this M a 0-neighborhood U in B existis
with the property mentioned in (ii). This will lead to a contradiction
Indeed, since By, is an isomorphism, B(U n M) is a 0-neighborhood ir;
BM. Theorefore we can choose a 0-neighborhood V in F such thas

(1) 2V N BM = B(U n M).

By assumption there is an infinite-dimensional sub ‘
Spa
such that ¥ ¢ U and pace N c M

(@) B(UAN)c V.

It follows' from (1) that 2V n BN =B(U A N), since B, is 1-1.
Now take & point zeN with 2e(2U)\TU. Then BxeBN and Bz ¢B(U n N)

=2V n BN, because By is 1-1. Hence Bz impli
. . ¢27V. However, (2) impl
that, in contradiction to this, Sl

BreB(2U N N) < 2V,

Thus (ii) is not fulfilled.

Remark 1. Note that (6)
Hence we know not only that
any linear subspace of N.

Remark 2. Note that in the proof of the implication (ii) =
have not used that % is a Piak space.

Remark 3. Let E be a Banach

implies py(2) >0 for every zeN, z # 0.
N & U, but even that U does not contain

(i) we

) space and let B: E— F be 8.5. an

Qeﬁned on K. Then, by Theorem 1.6, for every closed iniinite-dimensiofa%
linear subspace M < D(B) there exists a 0-neighborhood U in E with
'G.he Property that for every 0-neighborhood V in F an infinite-dimensional
linear subspace N < M exists such that N ¢ U and B(UNnN)c<V.
We may assume that N ig closed since the last inclusion also holds for
thta closure of N. Now clearly every 0-neighborhood U’ < U also has
%h.ls propel_:ty, a8 well as AU for any A == 0. This implies that the unit
faull Cg enjoys the pr?pfarty. Hence U = Oy satisties (ii) of Theorem 1.6
or any M. It is not difficult now to check that if By, By: B — F are both
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defined on ¥ and. 8.8. and if B is a Banach space, then B,-+ B, is also s.8.
One only has to show that (ii) of Theorem 1.6 holds for B, B,.

2. A perturbation theorem. The following theorem is due to Kato [4]:

TuporREM 2.1. Let X and Y be Banach spaces. Suppose T: X — Y
is normally solvable and a(I) < oo. If B: X — Y s strictly singular and
D(B) o D(T), then the following holds:

"' (i) T+ B is normally solvable.

(i) #(T-B) = =(T).

(iii) a(T+HAB) and B(T+AB) have constant values n, and ny, respec-
tively, ewcept perhaps for isolated poinis. At the isolated points

oo > a(T+AB) >n, and B(T+ AB) >n,.

In particular, this theorem implies that the sum of a Fredholm
operator and a strictly singular operator is again a Fredholm operator.
In this section we prove an analogue of the latter statement in the non-
normable case. It appears that Definition 1.1 of a strictly singular operator
from one l.c.s. into another, is too general for that purpose. Lacey [5]
introduced and. studied several more restrictive notions of striet singu-
larity which all coincide in the case that E and F are normed spaces.
We define the following new concept, suggested by Theorem 1.6.

Definition 2.2. A continuous linear operator B: E— F is called
super striotly singular (5.5.5.) if a 0-neighborhood U in B exists with the
property that for every infinite-dimensional linear subspace M < D(B) such
that M n N(B) = {0} and for every 0-neighborhood V in F' there exists
an infinite-dimensional linear subspace N — M such that N ¢ U and
B(UNN)< V.

Remark 1. Tt is easily verified that the condition imposed in De-
finition' 2.2 implies property (i) of Theorem 1.6. We note the following
two differences which make super striet singularity a priori a stronger
requirement than property (i) of Theorem 1.6.

1° Tn Definition 2.2, M is not assumed to be closed. _

9° Tn Definition 2.2 the 0-neighborhood U~in B is requi;‘ed to be
independent of M for all M such that M n N(B) = {0}. In (ii) of The-
orem 1.6, U may depend on M. ,

Remark 2. For any linear operator B: E > F, E and ¥ arbitrary

Le.s., the following holds:

B precompact = B 8.5.5. = B s.8.

The first implication follows from Theorem 1.5, the se.zcond from
the foregoing remark and from Remark 2 at the end of section 1.


GUEST


366 D. van Dulst

Remark 3. It follows from Theorem 1.4 and from Remark 3 at
the end of section 1 that the s.5. and the s.s.s. operators concide when
E and F are both normed linear spaces.

Before stating a stability theorem. for s.s.s. operators, we give the
following definition:

Definition 2.3 (Cf. Lacey [5]). An Le.s. E is called superprojéative
if for every closed linear subspace M c E with infinite deficiency in B
there exists a closed linear subspace K > M with infinite deficiency in
F such that K has a closed complement in Z.

TEEOREM 2.4. Let B X F be a Ptak space and let F be fully barreled
and superprojective. Then, if T: B — F is a Fredholm operator with closed
range and if B: B — Fis s.8.s. and D (B) > D(T), T+ B is also a Fredholm
operator with closed range.

Proof. (a) It is clearly no restriction to suppose that D(T) is dense
in B. T4+ B is evidently closed, since T' is closed and B is continuous.
Also D(T+B) = D(T) is dense in E. Hence, by Corollary 1.12, R(T+ B)
is closed if (and only if ) 7+ B is open. In proving that R(T+ B) is closed
we may assume that a(1) = 0. Indeed, if a(T) # 0 we can choose a closed
complement I of N(T) in F, because a(T)< co. Then R(T+ B)
=R(Ty+By)+ K, with dimK < co. By Theorem 118, R(T+ B) is
closed if R(T'y -+ By, is. '

We prove that T-+B is open. Let U, be a 0-neighborhood in E
associated with B according to Definition 2.1. Suppose that 7+ B is not
open. Then 7+ B is not nearly open, by Theorem I.7. Hence a 0-neigh-
borhood U in ¥ exists such that (T4 B) UET+B) jg not-a 0-neighborhood
in B(T+ B). We may- assume that U < U,. Since T is open by Corollary
L12, there is a 0-neighborhood V in F such that TU =V n R(IN. T+ B
not being nearly open, we can repeat the argument in the first part of
the proof of Theorem 1.6 and construct an infinite-dimensional linear
subspace M < D(T) such that

1 (T+B)(U N M) = }7.

By Remark 1 following Theorem 1.6, we may even assume that
U contains no linear subspaces of M. Next, putting K = M n N(B),
we observe that K = {0}. Indeed, suppose that K = {0}. (1) then implies
that T'(U N K) = $V. On the other hand, since TU = ¥V n R(T) and
Tis 1-1, we have T(U NK) = V N TK. Hence TK < V and therefore
K = U, sinee TU = V n R(T). This contradicts the fact that U con-
tains no linear subspaces of M. .

Sinee B is ss.8., Uc U, and M N N(B) = {0}, there exists an
infinite-dimensional linear subspace N « M such that

2) : B(UNN)ciV.
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Trom (1) it follows, becanse N = M, thab

(3) (I+B)Y(UNN)<= V.
By (2) and (3) we have

(4) T(U AN)< (T+B(U nN)+B(UnN)c3V.
On the other hand, TU = V n R(T). Hence

(8) NUNnN)=VnIN,

gince a(T) = 0. Now (4) and (b) imply that V n TN = TW. Hex}ce

UAN =N or N e U, which cannot be since N = M and U. contains

no linear subspaces of M. Therefore T4 B is open or, equivalently,
B) ig closed.

R(Tar)) )We show next that a(T'+ B) < oo. Singe dm N (T) < oo and

therefore dim N(T'+B) n N(T) < oo, there exists by Theorem I1.16

a cloged linear subspace N, c E such that

N(T+B) = (N(T+B) n N(I)®N:.

It Ty = Iyenm, then T, is closed because N @N(T) is a closed
linear subspace of H. Also N(Ty) =N (T)'. ‘We prove that T'; is opell;.
Let U, be an arbitrary 0-neighborhood in N @N (). We ext?nd N
t0 @ 0-nejghborhood U in B with U, = U N (¥ I@N (1)). Since T is op?n
py Corollaxy I.12, TU is a O-neighborhoog in R(T).. FurthermTo;z,

U nR(T,) = T,U,. Hence T; U, is a 0-neighborhood in R(Z’l).1 Ets
Proves that T, is open. Again by Corollary I1.3.9, R(T:) = I'N 1le 017 osed.
Now consider Ty,. Since Tig1-1 on N, and T=—B on V15 1N1 (115
continuous. Since Ty, is also open, bepause R(L{’Nl) =.R(T1).1s eose]ao y
Ty, = —By, 18 2 topological isomorphism. B being strictly singular gy
Re}namk 9, it follows that dim N, < oo. Hence a(T+ B) < 0. ihat

(¢) Finally, we show that p(T 4 B) < co. We may a.ga;mfa;;vsu;’ae.n o
a(T) = 0 by restricting 7' and B t0 & closed c.omplement o ‘( t) c11 Osed
Suppose f#(I'+ B) = co. Since F' is fsuperprmectlve, ther«;% eTmsB osed
linear subspaces M and K in F with dim K =0 sgqh th?,t ( . + 1) -
and MOEKE =F KL =Kn R(T), then L is mﬁmte-dm.nensmna, sd.
B(T) < co. Let U be a 0-neighborhood in B associated with B ae}gor 1n§
to Definition 2.1. Let V, =3(T+B)U and V, ='(TU) nl.}.hb egjmsd
T+ B and T are both open by Corollary 11.3.9, V; is & O-Tlelgl or 3061:
in B(T+B) and V,is & 0-neighborhood in L Then the ‘d.,bSO 113113; y g)xéa >
hull I'(Vy, Vo) of Vv, and V, is 2 0-neighborhood in ((11—1]—17) V;
R(T+B)@L.being a subspace of M@K = F, we can exl’;ﬁen_ 1“((17 1173
to & O-neighborhood V in F with V N (B(T+B)®: ) ;1 Ti’l L.,,r;
Clearly dim T—'L = oo, since dim L = oo .a,nd'T is 1-1. TsoB)w.EL "

N N(B) = {0}. Indeed, 2e<T™1L AN (B) implies Tw = (T'+
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N R(T4B) = {0}. Hence z = 0. Therefore, since B is 8.8.8., there
exists an infinite-dimensional linear subspace ¥ < T-'L such that N ¢ U
and B(U N N) < V. Also (T+B)(U n N) <=}V, since (T+B)U = v
< V. Hence

T(UNDN)= (T+B)(U NN)+B(UNN)czV.
On the other hand,
ITU)NL=V,=VnIL so T(UNDN)=7T n(TN).

It follows then that TN < V. Hence N < U, which contradicts the
choice of N. Therefore B(T'+ B) < oo and the proof is complete.

Note. Compact operators are g particularly nice kind of s.5.8. oper-
ators. Therefore, better results can be expected for them. Pietsch [7
studied perturbations of “o-Transformationen” by compaet operators.
The author [2] proved the following

THEOREM. Let B be a Plak space and let T be Jully barveled. If T: B — F
8 & densely defined Fredholm operator with closed range and if B:H->F
is compact and defined on B, then the Jollowing holds:

(i) T4 2B is a Fredholm operator with closed range for every AeC
- and x(T+AB) = x(T). ) ’

(ii) There emists a consiant >0 such that a(T+AB) < a(T) and
B(T+2B) < B(T) for all 2¢C with |7] < o. ’

(i) If, in addition, Ex F is a Ptak space, then a constant g, > 0
exists such that a(T'+-AB) and (T4 AB) are constamt for all AeC with
0 <A < gy.

In the particular case where 7 is continuous and defined on all of B,
this theorem Partially follows from Pietsch’s resilt.

3. Algebraic properties of the spaces S(H, F) and S;(E, F). The
question as to whether or not, in general, the collection S (8, F) of all
8.8. operators B: B-»F defined on B forms a linear space, constitutes
an unsolved problem. The difficulty lies in proving the sum of two s.g.
operators to be s.5. In this section we exhibit some special cases in which
the answer is affirmative, In contrast to Lacey’s approach (6], we do
not strengthen the definition of strict singularity, but we impose restric-
tions on the underlying spaces.

Tt is easily verified that the 8.8.8. operators B: ¥ — F defined on &
form g linear Space. We can even prove the following result:

TeEoREM 3.1. Let B be a Ptak space and let B, G: H — F both be defined
on B. If B is s.5. and O is 8.8.8., then B+ C is s.s. ‘

Proof. Let U, be a 0-neighborhood in % satisfying Definition 2.2
for C and let M be any closed infinite-dimensional linear subspace of E.

Perturbation theory 369

By Theorem 1.6 there exists a 0-neighborhood U in B with the property
that for any 0-neighborhood V in ¥ there is an infinite-dimensional linear
subspace N < M such that ¥ ¢ U and

) B(UNN)ciV.

Now let a 0-neighborhood V in F be given arbitrarily and suppose
that N is an infinite-dimensional linear subspace of M such that 1)
holds. By Remark 1 following Theorem 1.6 we may even suppose that
U does not contain any linear subspace of N. We may algo agsume that
U< U,. We now distinguish two cases.

1° dim N NN (0) = oo,

Putting Ny, = N n N(0), (1) clearly implies

(B+C)UNN)c}VeV.

2° dim N n N(0) < oo. . ]

Let K be any linear subspace of N such that K n N(.G) = {'0},. QJm
K = co. Then by the super strict singularity of ¢, K contains an infinite-
+dimensional linear subspace N, such that ¥, ¢ U, and

@) C(UyNnN,)c V.

Since U = U,, we also have
@) C(UNN) V.

Furthermore, from (1) and N, = N it follows that
(4) ‘ B(UNN,) V.

(3) and (4) imply that

B+OUNN)<V.
i ' bitrary closed

We have thus proved in both cases that for_ an arbite
infinite-dimensional linear subspace M < ¥ there exists a O-Helghl.);;h(.f(?
U with the property that for every O-neiglilborh‘ood Vin F an 1Um1 ned
dimensional linear subspace N, M exists fsuc?n that N, & and,
(B+0)(UNN,) = V. By Theorem 1.6, B+ C is then s.s.

CoROLLARY 3.2. Let B be o Ptak space and let 3? C:.E—>F both be
defined on B. If B s s.s. and O is precompact, then B0 is s.s.

Proof. ¢ is 8.8.8. by Remark 2 in gection 2. .

In the following theorem §,(H, F) denotes the c.o]'lectxon of all :sf.s.ii
operators B: B — F defined on E. As usual L(E, F) is the space of a
continuous linear operators mapping all of E into F. ‘

2
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THEOREM 3.3. Let B, F, G and H be arbitrary l.c.s. Then the following
holds: :

1° If AeS,(E, F) and BeL(F, &), then BA <8, (B, G).

2° If CeB8,(@, H) and BeL(F, ), then OBeS,(F, H).

In particular, 8,(B, E) is & two-sided ideal in L(F, E).

Proof. 1° Let U, be a 0-neighborhood in ¥ associated with 4 ac-
cording to Definition 2.2. We show that U, also satisfies Definition 2.2
for the operator BA. Indeed, let M be an infinite-dimensional linear
subspace of B such that M N N(BA) = {0} and let W be an arbitrary
0-neighborhood in @. Then, in the first place, M N N(4) = {0} and,
secondly, V = B~'W is a 0-neighborhood in F. Hence, by the strict
singularity of A, there exists an infinite-dimensional linear subspace
N < M such that N ¢ U and A(U n N) < V. The last inclusion clearly
implies BA(U nN)c W.

2° Let U, be & 0-neighborhood in & associated with ¢ according to
Definition 2.2. Then U; = B™'U, is a 0-neighborhood in 7. We show
that U, satisties Definition 2.2 for the operator CB. Let M be -any infinite-
dimensional linear subspace of F such that M N N (OB) = {0} and let
V be an arbitrary 0-neighborhood in H. Then M n N (B) = {0}, and
therefore dim BM = co. Also BM n N(C) = {0}. Hence, by the strict
singularity of C there exists an infinite-dimensional linear subspace
K c BM such that K ¢ Uyand 0(K 0 U,) < V. Putting ¥ = B™'K N M,
we then have dim ¥ = oo, N ¢ U, and CB(N n Uy) = V. This com-
pletes the proof.

Finally we exhibit two eases in which § (B, F) is a linear space.

THEOREM 3.4. If F is complete and if either B or F has the property
that every infinite-dimensional linear subspace containg an infinite-dimension-
al normable linear subspace, then § (B, F) is a linear space.

Proof. Assume that F has the property stated in the theorem.
Let By By: B> F Dbe. s.5. and defined on F and suppose that B, B,
ig not s.5. Then there exists an infinite-dimensional linear subspace M < B
such that (B,+ B,)y is a topological isomorphism. We may assume thab
M is complete since X is complete. We consider the operators :

B\((By+Bo)ad) ™, Bu((By+By) )™ (By+By) M F.

Clearly both operators are s.s. and their sum is the identity, Also
d:im (B4 B,) M = 0o, so that by assumption there exists a normed
linear subspace N (B;+B,) M. We may assume that ¥ is a Banach
space, since (B;--B,) M is complete. The restrictions of 191((1.'?1—1—]32)111)‘1
and B,((B;+By)y)™! to N we denote by T, and T,, respectively. T,

and T, are s.5. and by Remark 3 in section 1, their sum Iy is then also
8.8., which. is absurd.
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1f B has the property of the theorem, then the proof is even simpler.

We leave it to the reader.

TurorEM 3.5. S(H, ) is a linear space if ai least one of the following
conditions is satisfied: .

(i) B is weakly complete, i.c., complete with respect fo the topology
o(E, 1'). ‘

(i) B is complete and F is weakly complete. -

Proof. An le.s. I is called minimal if the topology is minimal,
ie., if there exists mo strictly coarser locally convex Hausdorff topology
on B. It is known (Cf. Martineau [17]) that B is minimal if and only
if ¥ iy weakly complete, and also that every closed linear subspace and
every separated quotient of a minimal space is minimal.

(a) Suppose that B iy weakly complete, therefore minimal. Then
every continuous linear operator B: E — F defined on E is open. Con-

© sidler now the induced operator BB |/N(B)+~R(B) =« F a;.nd agssume that

B is not open. Carrying over the topology of E(B) to E/N(B) by means
of 1§“1, we then obtain a locally convex Hausdorff topology on E/N (B)
which is strictly coarser than the gquotient topology. This contradicts
the minimé;lity of B /N (B). Hence B and therefore B'is open. Consequently
S(B, F) consists precisely of all continuous linear operators of finite rank.
Hence S(Z, F) is a linear space.

(b) Suppose now that E is complete and that F is weakly complete.
We argue ag in the proof of Theorem 3.4. If we assume that By, By: E.—> r
are 8.8. and that B, B, is not s.s., it follows that an iniinite—dimensmpal
linear subgpace M = E exists such that (B, B,)y is & topological iso-
morphism. We may assume that M is closed. As a closed linear subspace
of the minimal space F, (B;-+B,) M is then minimal. The operators

By ((Bi+Ba)a) ™% Ba((Bi+ Bo)a)™: (Bit+Bo) M > F

are then clearly s.5. and their sum is not s.s. Since (B1+32) M _ is minimal,
this contradicts what was proved in (a). Hence S (&, F) is a linear space.
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Colloquinm on
Nuclear Spaces and Ideals in Operator Algebras

Equivalent nuclear systems

by
Ed. DUBINSKY (Hamilton, Ont.)

In this paper we introduce the notion of nuclear system as a means
of constructing nuclear Fréchet spaces whose topologies are defined by
a family of seminorms which are actually norms. We then show that
all such spaces are obtained by this comstruction. The main result
(Theorem, 2) is an “intrinsic” characterization of when two nuclear systems
are equivalent, that is when the spaces which they econstruct are iso-
morphic. This result is then applied to the basis problem for nuclear
Fréchet spaces. Finally some examples and open questions are listed.

This method of constructing nuclear Fréchet spaces gives rise to
examples which have not previously been discussed as well as providing
a new way of studying the familiar gpaces. These examples will be discussed
in detail in a forthcoming paper.

Let Ap:ly—1y, % =1,2,
define the associated space,

B = B{(4)} = {(@k

Thus B is a subspace of the countable product of copies of 1,, and
Wwe may equip B with the topology induced by the usual product topology.
Let Py:H — 1, by Pi((@)) = oy We call (4y), 2 nuclear system it

(i) each 4; has dense range

(ii) each P; is injective.

TuanorEM 1. The associated space of mnuclear system is a nuclear
Fréchet space with a fundamental sequence of seminorms which are norms;
and, conversely, every such space is the associated space of a nuclear system
(up to isomorphism).

Proof. Clearly, B {(4,)} is nothing more than the projective limit
of the sequence of maps, (4;), and hence it is a Fréchet space. Evidently,
a fundamental system of neighborhoods of 0 is given by the sets

, be a sequence of nuclear maps and

D wpely, iy, = Ay, b =1,2,...}.

={(mk)e1§7 o] < k=1,2,...,%}, w=1,2,...,

'n
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