A linear topological characterization
of inner-product spaces
by
S. KWAPIEN (Warszawa)

A result due to J. S. Cohen in [1] suggests the following

Theorem. Let \(E \) be a Banach space; then the following conditions are equivalent:

(i) \(E \) is isomorphic (=linearly homeomorphic) to an inner product space.

(ii) if \(\varphi \in \Pi_2(E, l_1) \), then \(\varphi^* \in \Pi_2(l_1, E^*) \).

Notation. \(B(X, Y) \) denotes the space of bounded linear operators from a Banach space \(X \) into a Banach space \(Y \). The class \(\Pi_2(X, Y) \) of absolutely 2-summing operators from \(X \) into \(Y \) is defined by

\[
\Pi_2(X, Y) = \{ \varphi \in B(X, Y) : \sum \|a_n\| < C(\varphi) \}
\]

for \(\varphi \in X (i = 1, 2, \ldots) \) with \(\|\sum |a_i|\| < \|\varphi\| \) for \(\varphi \in X^* \).

\(X^* \) denotes the dual of \(X \) and \(\varphi^* \) denotes the adjoint operator of \(\varphi \).

By \(l_\infty(A) \) we denote the space of bounded scalar-valued functions on a set \(A \). We admit

\[
\|f\| = \sup_{a \in A} |f(a)|
\]

for \(f \) in \(l_\infty(A) \). Finally, \(\varphi \in B(X, Y) \) is called Hilbertian if there are a Hilbert space \(H \) and operators \(\psi \in B(X, H), \omega \in B(H, Y) \) such that \(\varphi = \omega \psi \).

Proof of the Theorem. (i) \(\Rightarrow \) (ii). This follows from the fact that if \(E \) is (isomorphic to) a Hilbert space; then the class \(\Pi_2(E, l_1) \) coincides with the class of Hilbert-Schmidt operators (cf. [3], Theorem 6.3)

(ii) \(\Rightarrow \) (i). Let \(\varphi \in B(E, l_\infty(A)) \) be an isometrically isomorphic embedding (Take \(A \) the unit ball of \(E^* \) and put \(\psi(\varphi^ *)(e) = \varphi^*(e) \) for \(e \in E \) and \(\varphi^* \in A \). Since \(B(l_\infty(A), l_1) = H_2(l_\infty(A), l_1) \) (cf. [9] and [3], Theorem 4.3), we
infer that \(u \in \Pi \), for each \(v \in B(l_2(A), l_2) \). Thus (ii) implies that
\[
(1) \quad u^* v u^* \in \Pi \quad \text{for every } v \in B(l_2(A), l_2).
\]

Now pick for \(i = 1, 2, \ldots, n \) so that \(\sum |\alpha_{i,j}^*|^2 < ||x^*||^2 \)
for every \(x^* \) in the second dual \((l_2(A))^* \). Define \(v^* \in B(l_2(A), l_2) \)
by \(v^* = \sum_{i,j} \alpha_{i,j}^* f_{i,j} \) and denote by \(d_i \) the \(i \)-th coordinate functional
in \(l_2 \). Clearly, \(\sum |d_i^*|^2 = ||d_i||^2 \) for every \(d \in l_2 = (l_2)^* \). Thus (1) implies
that
\[
\sum |u^* v u^* d_i|^2 < C(u^* v^*).
\]

Hence \(E \subseteq \Pi \subseteq C(l_2(A))^* \), because \(v^* d_i = d_i^* \)
for \(i = 1, 2, \ldots \). Therefore \(u^* \Pi u^* \subseteq C(l_2(A))^* \).
Hence, by the Pietsch Factorization Theorem (cf., [3], p. 283), \(u^* \) is a Hilbertian operator.
Thus, by [3], Proposition 5.1, \(u \) is Hilbertian. Since \(u \) is an isometrically
isomorphic embedding of \(E \) and \(u \) is Hilbertian, \(E \) is isomorphic to an inner
product space (because the Banach space \(u(E) \) is the range of a bounded linear
operator from a Hilbert space). This completes the proof.

References

operators, this volume, p. 271-276.
[2] A. Grothendieck, R閚um馥 de la th閙ie m閚trique des produits tensoriels

UNIVERSITY OF WARSAW, DEPARTMENT OF MATHEMATICS

STUDIA MATHEMATICA, T. XXXVIII. (1979)

Colloquium on
Nuclear Spaces and Ideals in Operator Algebras

On a class of operators in Hilbert space*

by

BERNARD R. GELBAUM (Irvine)

0. Introduction. One version of the spectral theorem for Hermitian
and normal operators in Hilbert space is a consequence of the Gelfand
representation of the uniform closure \(B \) of the algebra generated by
the normal operator \(T \), its adjoint and the identity. The essential fact
is that \(B \) is commutative and isometrically *-isomorphic to the algebra
\(C(X) \) of all complex-valued continuous functions on a compact Haus-
dorff space \((X) \).

On the other hand, if \(T \) is any operator on any Hilbert space \(H \),
then \(B \) is isometrically *-isomorphic to some algebra \(C(X, A) \) of all
continuous \(A \)-valued functions on \(X \), where \(X \) is a compact Hausdorff
space and \(A \) is a C*-algebra. Indeed, we may use for \(A \) the algebra \(B \)
and for \(X \) any one-point space \(\{a\} \). Clearly, what is desirable for any
extension of spectral theory is the choice of a canonical or minimal
algebra \(A \) and of a usefully simple topological space \(X \) so that the isometric
* -isomorphism \(B \cong C(X, A) \) permits some analysis of \(T \).

To pursue these ideas the author has discussed various aspects of
a natural and fruitful generalization of the notion of commutative Banach
algebra \([4]-[6]\). Indeed, since a commutative Banach algebra \(A \) is one
such that all its quotients by regular maximal ideals are isomorphic
(to \(G \), the field of complex numbers), the generalization in question is
a so-called Q-uniform Banach algebra defined as follows:

An algebra \(A \) is a Q-uniform algebra if:

a. \(A \) is a simple Banach algebra with identity;
b. \(A \) is a Q-bimodule such that for \(a_1, a_2 \in A, g_1, g_2 \in Q \),
\[
(g_1 a_1 a_2 - g_2 a_1 a_2, g_1 a_2 a_1 - g_2 a_2 a_1, a_1 g_1 a_2 - a_1 g_2 a_2, a_2 g_1 a_1 - a_2 g_2 a_1),
\]
where \(\{g_1, g_2 \} \in Q \), and where the left and right actions of \(Q \) on \(A \) are unitary;

* This research was supported in part by NSF Grant GP-12588 for which the author is grateful.