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1. The results discussed in this paper are based on two classical
theorems of functional analysis. The first of these theorems says that
every separable Banach space X is linearly isometrie to a subspace of
0 = 0([0, 1]), the space. of continuous functions. on. the segment.[0,.1]
(see Banach [1], p. 163). The second theorem, stated in a form which is
convenient for .our purposes, is the following:

Suppose that the space € is a closed linear subspace of a Banach
space B. Then there exists & continmous linear operator of extending
continuous linear functionals on € to the functionals on B (see Nachbin [4],
Lindenstrauss [3], 86-89, and also [8], p. 49).

These results have given to A. A. Miliutin and A. Pelezynski (separa-
tely) the idea of trying to establish non-isomorphism of given Banach
spaces X and Y by comparing the positions in which these spaces can
be embedded. into the universal space C. The realisation of this idea has
supplied the proof of non-isomorphism of certain Banach spaces which
could not as yet be distinguished by any other method.

2. Let X be a Banach space and let J: X — C be an operator of an
isomorphic embedding of X into (. Then the conjugate J*:C*—X*
is onto X*. For every subspace M of X*, let y,(}) denote the infimum
of the norms of linear operators §: M — C* having the property that
J*8: M — M is the identity on M.

In 1964 A. A. Miliutin comunicated to the author the following
(unpublished) result:

THEOREM 1. Let I: X — C and J: X — C be two isomorphic embeddings
of the space X into O. Then, for every subspace M — X*, we have

T TN < oy (M) o () < TG )
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where ||J|| denotes the norm of the operator J, and |J7Y| the norm of
the inverse of J, which is defined on the image of X under the map J.

It turned out (see [11], p. 60) that Theorem 1 is an immediate con-
sequence of the classical results mentioned in section 1.

In our paper [11] the number y(M) = y,(M) (where I: X — (¢ is
an isomorphically isometric embedding of X into C) was called the
Milintin characteristic of the subspace M <= X*. Theorem 1 just says that
the property of a fixed subspace M = X* of possessing finite characteristic
%(M) is not only an isometrical invariant but also a linear-topological
(isometrical) one.

Theorem 1 implies %(0") = 1 < oco. Hence, if a Banach space X
has the property y(M*) = co, then X is not isomorphic to C.

3. The first proof of non-isomorphism of spaces based on the above
argument was given by Pelezynski [6], see also [7], p. 25-28. Let A (D)
be the space of functions which are analytic on the open unit disk 2 in
the complex plane and continuous on .;3, the closure of the disc, under
the uniform norm :

Iff = sup [f(2)].
2D

THEOREM 2 (A. Pelezytiski). We have y{A*(D)) = co, and therefore
the space A (D) is not isomorphic to C.

Let us mention that Pefezyiski’s proof is based on the “analytic”
result of Newman [5], stating that the Hardy space H, is non-comple-
mented in the space L,(02), of absolutely integrable functions on the
circle 09.

Let C™(I") denote the space of all p times continously differentiable
functions on the cube I™. In papers [8] and [9] we have proved

TeEOREM 3. If n> 2 and p =1, then y(0P(I™*) = co. Hence the
space 0@ (I™), for n>2, is not isomorphic to C.

The proof of Theorem 3 is based on a result of [8] and [9] on
non existence of linear projector of the space ¢'(X) onto the space ¢ (I™)
embedded in certain “natural” way into the space ¢ (K), of continuous
functions on certain, specially constructed, compact space XK. Let us

note that a result close to Theorem 3 has been stated without proof by
Grothendieck [2].

4. Theorems 2 and 3 give an illustration how certain Banach spaces
can be distinguished from the space €. In many instances it is much more
difficult to establish non isomorphism of Banach spaces X and Y such
that %(X*) = 4(¥*) = co and non of them ig isomorphic to 0. Of this
kind are, for instance, the spaces 4 (2%), of continnous functions on closed
polycylinders, of different dimensions, which are analytic in the interiors
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«of polycylinders. The problem of distinetion between spaces A4(FF) is,
in general, unsettled. The following partial result (see [10] and [11])
is known: :

THEOREM 4. Let k>2. Then the spaces A (D) and A(Z*) are not
isomorphic.

This theorem is a consequence of the following facts concerning the
structure of conjugate spaces:

THEOREM 4. A. The space A*(D) can be divided into a direct sum of
subspaces L and M such that y(M) = 1 and the space L is separable.

THEOREM 4. B. For k> 2, there is no decomposition of A*(D*) into
a direct sum of subspaces L and M with the property that L is separable
and x(M) < c.

The main achievement of the paper [11] is the proof of Theorem
4. B, however the theorem itself is not explicitly formulated; it is for-
mulated in the next paper [12]. An essential role in the proof of this
theorem. is played by the fact that the polycylinder &% (for k > 2) admits
uncountably many Gleason parts.

Proof of Theorem 4. A (Lemma 2.I in [11]) is based on & theorem
of F. and M. Riesz which describes the measures on 92 orthogonal to A (2).

5. After Theorem 4 had been proved, the author has ascertained
that a more general fact is true. Let %, denote the ball in the complex
n-space ¥, given by the inequality |z;|*4-...+ |2,|* < 1. Let A(%,) denote
the space of all functions which are analytic on %, and continuous on
4,, with the sup-norm:

[if )l = supifie)l.
2y,

In paper [12] we have proved

THEOREM 5. For arbiftrary infegers k= 2 and n > 1, the spaces A (2
and A(3,) are not isomorphic, i.e. there is no linear homeomorphism between
these spaces.

The difficult point in the proof of Theorem 5 is that there is mo
description of measures on %, orthogonal to .4 (4,), which could be used
in the proof of the A (#,) version of Theorem 4. A.

Let u be a measure on 8%,, the boundary of the ball #,. We shall
say that u is an A-measure, if for every norm-bounded sequence {f: (=)}
of functions from A (%,) which converge to zero together with all their
derivatives in certain point z,¢%,, the following holds: '

lim [ £:(2)u(@2) = 0.

i oad,
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Foftu.na.tely, in the n-dimensional case, the theorem of F. and
M. Riesz could be replaced by the following result [12]:

THROREM 6. Leét u be an A-measure on %,. Then every measure
v which is absolutely continuous with respect to u, is an A-measure.

In paper [13], Theorem 6 is generalized to the case of an arbitrary
strictly pseudo-convex domain in #". This generalization has been used.
to obtain an essential strengthening of Theorem 5 (see [13], Theorem 1.6).

Concluding this paper the author would like to say, that his interest
in the topics diseussed above is due to the fact that they combine general
ideas and metods of the theory of Banach spaces with interesting and
quite difficult analytical problems concerning concrete funetional spaces.

I want to express my gratitude to Professor B. 8. Mitjagin, who
kindly presented, on my behalf, this paper during the Colloquium in
‘Warsaw.
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Introduction. Pietsch [4] has recently introduced the notion of an
absolutely p-summing operator between normed linear spaces. A linear
operatior T mapping a normed space E into a normed space F is absolutely
p-summing if there exists a constant ¢ > 0, such that for all finite sets
By, ..., @, in E, the inequality

n n N
(2 172iP)” < 0 sup (3 i<, >
=1 Iel<t I3
is satisfied. The smallest constant C such that the above inequality is
satisfied is called the absolutely p-summing norm of T and is denoted
by I1,(T). The normed space of absolutely p-summing operators from:
E into F is denoted by IL,(E,F).

The absolutely p-summing operators are not closed under conjugation.
For example, Pietsch ([4], p. 338) has shown that the identity operator
I from I, into I, is absolutely 2-summing, but the conjugate operator
I’ mapping 1, into 7, is not absolutely 2-summing. In this note we discuss
a relationship between the structure of the domain space F and the
conjugation of absolutely 2-summing operators (Theorem 1.1). In Section 2,
we present a reformulation of this result using the tensor norms introduced
by P. Saphar ([6], p. 125).

1. Characterization of inner product spaces. In this section we present
a characterization of inner product spaces using the absolutely 2-summing
operators and their conjugates. A normed linear space E is an inner
product space if there is an inner product defined in E such that |jz|* = (2,2).

THEOREM 1.1. Let E be a normed linear space. Then, B is an inner
product space if and only if for all Banach spaces F and for all absolutel‘y
2-summing operators T mapping E into F, the conjugate operator T’ is
absolutely 2-summing and II,(T') < II,(T). :
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