) ©
226 K. Floret lm

. . . L . R pT—
esentation of analytic functions by infinite series, Philos. qui ‘
;‘T;.afs. N]:OV;HSS’OZ.%I?:);?;(})Z A 245 (191.;2/53), p. 429-468. . Nuclear -Spaces and Ideals in Operator Algebras
[71 M de‘Wilde Théoréme du graphe fermé et espaces & réseau absorbumf, Bull. Math.
o. Sci. Mat .238.
Soc. Sci. Math. Roum. 11,59 (1967), p. 225
[8] J.Wloka, Kernel functions and nuclear spaces, Bull. AMS 71 (1965), p. 720-728.

STUDIA MATHEMATICA, T. XXXVII. (1970)

[6]

Remarks on a theorem of S. N. Bernstein
. by’
6. ALBINUS (Berlin)

As usually ¢(0, 1) denotes the space of all real-valued continuous
functions on the closed intervall [0,1]. Tt is well-known that the set of
polynomials is dense in ¢ (0, 1) with respect to the Supremum norm |- J|.
If we introduce the minima] deviation,

b,(f) = int][f— P,

of a function feC(0, 1) from the linear subspace of polynomials P, of
degree < m, the density of the polynomials can be expressed by

gdnm =0 (feG(O’ 1))‘

n . @

8. N. Bernstein has shown that for each non-increasing null sequence
(,) of non-negative numbers there is a geC(0, 1) with
- dn(g) = Gy
: Shapiro [8] generalized this. theorem in the following way. He repla~
ced C(0,1) by an arbitrary B-space (B, I} and the sequence of %-dimen-
sional subspaces of polynomials with degree <7 by a sequence (M, y

of proper closed linear subspaces in F. In this case for each null sequence
{@,) of non-negative numbers there is a vector zeF with

oM,: = infllw—ul| # 0(a,).
uel,,

For two sequences (b,) and (c,) of non-negative numbers the formula,
' ¢, % 0(by,)

means that there is no 4 > 0 with ¢, < 4b, for all n. We shall say briefly
that each sequence of Proper closed linear subspaces in a B-space ap-
prozimates slowly. In his proof Shapiro used the category argument.
Therefore the question seems naturall ; Whether Shapiro’s §taterdent

also helds in F-spaces. In this paper F-space means a complete metrie

.
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linear space or, using the terminology of [10], a complete quasinormed
Spac?[n section 1 we answer this question by characterizing those sequences
of linear subspaces in an F-space which approximate slowly. The existence
of a slowly approximating sequence of finitely dimensional subspaces
turns out to be a characteristic property of space s in an extensive class
of F-spaces. As usually s denotes the space of all sequences of real or
complex numbers with the topology of coordinatewise convergence.

Tn a second section we deal with the n-th diameter &, (B) of a bounded

set B in an F-space (H, |-|). The numbers d,(B) (n =1,2,...) are de-
fined by
(0.1) 8,(B) = inf{supzM: dim M < n},

xeB

where M denotes a linear subspace in H and zM = m}l |e— u].

1. Leb (E, |-]) be any F-space, M < F a linear subspace, <l and
7 >0. We write :

aM: =inflz—u|, @y =supasM
weM

zel
and

= {wek: x| < ).

The following proposition and theorem were proved in [1].
ProPoSITION 1. It holds the equality ‘

(1.1) supsM = min {7, wy}.
zeK,

. Ag this proposition is also valid in incomplete quasinormed spaces,
it includes the well-known lemma of . Riesz on the existence of “nearly
orthogonal” elements for proper closed subspaces in normed. spaces.
We have wy = oo for any proper closed linear subspace M of a normed
space (&, |-]) and thus it follows from (1.1)

supsM = 1.
<1
A sequence of linear subspaces M, < B is said to approvimate slowly
if for each null sequence (a,) of non—nega.mve numbers there is a vector
2 in B with

oM, +# O(a,).

THEOREM 2. A sequence of linear subspaces M,, in (B, |-|) approzimates .

slowly if end only if
(1.2) limwy,, > 0.

icm
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COROLLARY. For proper closed linear subspaces M, of o B-space we

have wyy, = co and therefore limao u, = o0 > 0. Thus our theorem 2 ﬂmplws
Shapiro’s. generalization of Bernstein’s theorem mentioned above.

If (1.2) does not hold, only a finite number of terms Wy
are oo and

ey On,

hman =0
o0
Then there is a sequence (r,) such that T, =o0(i=1,..., k), g, < 1p<oo

(m¢{ny, ..., m}) and hmr = 0. With E
a base of nelghbourhoods in E, for which the equalities
M, 2t E, =F (n=1, .2

hold evidently. It follows that property (1. ‘)) is of & topologma;l linear
nature independent of the special quasinorm |-|.

‘We give now some properties of F-spaces, in which slowly approx-
imating sequences of finitely-dimensional subspaces exisb.

PROPOSITION 3. Am infinitely-dimensional F-space (B, |-|), in which
a sequence of finitely-dimensional subspaces does mot approximate slowly,
contains & subspace isomorphic to the space s.

Proof. Without any loss of generality we may assume that for
each wel the function ¢ - [tz], {> 0, is non-decreasing and that there
is a sequence (M,,) of finitely-dimensional subspaces in F such that {@n,)
is & null sequence of positive numbers. Let ¢ be an arbitrary posmve
number, #» a natural number with wy, < & and zeE\M,. Setting

L: = {u+t2z: ue M,, 1eC}

(C denotes the set of real or complex numbers) and H, = K, ~ L, we
have

: K the sequence (K ) forms

M,+H,=L.

Thus for each natural number m there ‘are vectors u,, e M, and v,,eH,
with v,, = m&— u,,. As L is finitely-dimensional, there is a norm [|-] on
L equivalent to the restriction of |-| to L. The sequence (v,,) is evidently
unbounded. Therefore we may assume

1< ol < o]l <

In accordance with our assumptions in the beginning of the proof,
(llom " ,,) is & bounded sequence in H,. These sequence contains a con-
verging subsequence (w;) with the limit w in H,. It is easy to see that

vee < lim |jo,,]] = oo.
m—>00

{tw: —oo <t << oo} < H,.
Applying Theorem 9 in [2] we finish the proof. ‘ S,
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The following theorem comprehends theorems 5 and 6 in [1] and
gives a characterization of the space s in a wider class than the class
of locally convex F-gpaces (cf. [2], theorem 8):

TrEOREM 4. Let E be an infinitely dimensional F-space, whose topology
is given by a sequence (f;) of semiguasinorms (f;(x) =0 does mot imply
@ = 0) with the properties

(%) for each wcE and j is the function t— f;(tx), t > 0 non-decreasing
and

(%) for each j there is a positive number v; such that limf; (tw) is equal

t>00

to 0 or 7;.

The space I is isomorphic to the space s if and only if there is a sequence
of fimitely dimensional subspaces M, in B, which does not appromimats
slowly.

Proof. The necessity of the condition is obvious. To prove the
sufficiency we remark at first that the sets {we®: fi(@) =0} are closed
linear subspaces Z; in B. The quotient space E/Z;= J; can be quasinor-
med by ¢ (): = f;(a) (wed e By). :

According to (%) it holds

limg,(tz) = 7,
=00

for each & 6. For any profper finitely-dimensional subspace M; = B
we have . :

(1.3) M+ {6 <B;: q;() <27'n;} + B,

Provided that there is a subspace Z;, of infinite codimension in &.
Then the dimengion of &, is infinite and for any finitely-dimensional
subspace M < B the space M; = M[Z; is a proper finitely-dimensional
subspace of Ev‘o' Because of (1.3) we have

WMA{weB: f; () <27'n )} # B,

The set {weB: f; (v) < Z'I'ry-o} is a neighbourhood U of ¢ in H. Thus
for each finitely-dimensional subspace M < B we have M4 U = K.
Therefore it follows from the condition of the theorem and from theorem 2
that all Z, are of finite codimensions in ¥ or, what is the same, that all E,
are of finite dimensions. In this ease, however, the quasinorms ¢; on H;
can be replaced by equivalent norms |- ;- Then the seminorms defined by

pi(@): =@y (wedeBy)

on E are eqﬁivalent to the f;.

icm
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We have shown that B is locally convex and that the topology is
given by a sequence of seminorms having null spaces of finite codimension.
Applying [2], theorems 1 and 8, we finish the proof.

A sequence (,) of positive numbers or oo tends non-increasingly to
zero, if at most a finite number of its terms are co and P2 2T, >
>limy; = 0.

700

The linear hull of vectors =,, -+ @, Will be denoted by [ay, ..., z,].
Eventually we remind that K = B.

PropOSITION 5. Let H be an F-space with an infinite base {u;}. If
there is a (non-increasing) null sequence (r,) of positive numbers or co with

(1.4) [y, "‘7uﬂ.]+KTn =F
E is isomorphic to the space s.
‘Proof. For each zeF there is a unique representation

= Za,-(m)u, = fo"‘n
=1

i=1

(n=1,2,..),

where ¢; are contirmous linear functionals on E. Therefore the operator
T defined by Ts = (&) (v<F) is a continuous 1-1 mapping from F in
s. Let (n;) be any vector in s. Then for each nataral number = the vector

n
Yn = 2777"“9'
=1

belongs to [uy, ..., u,]. According to [6], theorem 1, we may assume
that the vector y, is the only nearest point of each Ym (M2 n)inlu, ..., u,]
Because of (1.4), (y,) is a fundamental sequence in ¥ converging to

y :2"7iu:i'
F=1

We have shown that 7 maps ¥ onto s. Thus F is isomorphic to s.

There are three properties characterizing the space s in certain
classes of H-spaces: ]

(I) A locally convex F-space or an F-space with a base is isomorphic
to s if and only if each infinitely-dimensional subspace is isomorphic to
s (cf. [2]);

(IT) theorem 4;
and
(III) an F-space B belonging to the class given in theorem 4 or having ‘
an infinite base is isomorphic to s if and only if no increasing sequence
of finitely-dimensional subspaces, whose union is dense in B, approximate
slowly. '


GUEST


G. Albinus

o
e
W

The question, whether one of these properties characterizes the
space s among all F-spaces or whether some properties are equivalent
geem to be not yet answered. ; .

Finally, we remain that the restriction of Shapiro’s theorem to the
special case of an increasing sequence of finitely-dimengional subspaces
in a B-space is a weaker statement than Bernstein’s one. As we were
concerned with sequences of finitely-dimensional subspaces a great deal
the question arises, whether the statement of slow approximation could
be formulated more precisely. Indeed, this is possible in many cases and
Bernstein’s original proof can even be used in a slightly motivated way.
. We do not want, however, to carry out this work here.

2. Let (E, |-]) be again an F-space and B < F a bounded set. Further-
more, let é,(B) (n =0,1,...) denote the n™ diameter defined in (0,1).
‘We have, obviously, lim §,(K) = 0 for each compact set K in B. We

n->00

can ask Bernstein’s question:

Does for each non-inereasing null sequence (a,) exist a compact set
K with 6,(K) =@, (n =0,1,...)% .

For the space s the answer is negative ag it is easy to check. For
B-spaces, however, we give an affirmative answer by ~

THEOREM 6(1). Let (B, ||-lf) be a B-space and (a,) a non-increasing null-
sequence of non-negative nwmbers @y, ay,... Then there is a compact set
K < B such that

Gp(K) =a, (n=0,1,...).
Proof. Let (M,) be an increasing sequence of linear subspaces in B
with dim M, = » and let U denote the unit ball in (&, ||-|)).
Setting ‘
By: =a,U,
B,: ={#eB, ;: oM, <a,} (n=1,2,..)
and '

we get & non-empty closed bounded set K and sets satisfying the

inclusions

(2.1) By>B;>...2B,5B, ,~ M, (n=2,3,...).. ;
(*) Meanwhile the author has come to know that theorem 6 is well known. The

set constructed in the proof is just a full approximation set in G.G. Lorentsz,

Approximation of functions, New York 1066, p. 139. The theorem was also stated

by 8.B. BabadZanov, On geomeirical questions in Banach spaces, Voprosy Kibernot,
Vyéisl. Mat. Vyp. 12 (1967), p. 95-97.
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If for any natural number p the ineclusion B, , ~ M, = B

holds, we obtain mrend

B, ;N ﬂIn = (Bn—l n Mn) 0 Mn+zz < Bn+p—l n Mn+p < Bn-HD

pecausg of (2.1) and M, < A, ,. Therefore it follows from (2.1) by
induction that B, ; n M, < B,, for each fixed s and all m. As a con-
sequence we have

(2.2) B,ynM,c K (n=1,2,..).
Moreover, it is easy to see that we have the inclusions

(2.3) anUnMn+1cBnr\Mn+l (n=0,1,...).

Applying (2.2) as well as F. Riesz’s Lemma we can estimate
(2.4) @y = ;151%1 e} = Sup ||l > sup {lzll: 2By N My} = a,

and a, = sup{aM,: wea, U N ] ap} (B=1,2,..).
Asthea, U M, , are compact sets, there are vectors z,eq, U N M, ni1
for which the suprema are attained. Then we,_can estimate

O = O 2> Oy = 3, M, = llzll = mn-nil-k (B =1, amym o =1,2,...).
From these inequalities, (2.1), (2.2) and (2.3) we obtain
(2.5) @, <sup{eM,:@eB, N M, } < supeM,, < sup zM, < a,.
XK XeB,

Because of (2.4) and (2.5) we get
(2.6) h(E)<a, (n=0,1,..)

and the compactness of the set K.

The rest of the proof consists in showing that the inequalities
6,(K) =@, (n =0,1,...) are also true. This will be done by means of
a Tesult of M. A. Krasnoselskij, M. G. Krein and P. D. Milman (cf. [4]
or [3] or [9], p. 250), which is a refinement of F. Riesz’s Lemma. Tt states
that for any linear subspace F c E with dim F < n there is a vector
Yo # 0 in M, ., such that [ly)] = y,F. The vector y,,: = 2 1ol v, belongs
to a, U N M,,, and has o as a best approximation in 7. Together with
(2.2) and (2.3) we obtain

&y = Wall = ¥, F <sup{aF:zea,U N M, ,}< supaF  (n=1,2,..).
. ek .
These estimates, the inclusion a4, Un M; = K and (2.6) show that

0, (K) = a, holds. Theorem 6 is proved.

Remark. For the special case (B, ||-|) = I* 'the same result is given
in [7], p. 130, by other means. ’
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The following questions may be of a certain interest:
TIs the existence of non-increasing null sequences (a,,) with é,, (K) = 0 (a,)
for all compact sets of an F-space E a topological linear property?
Does this property characterize the space s in a certain class of F-spaces
(of course, such a class should not only contain the B-spaces and the
spaces 8)? Is this property related to conditions listed in section 1 to
characterize the space s?

Concerning the last question it is easy to see that for an F-space E, in
which one sequence of finitely-dimensional subspaces approximates slowly,
there is a non-increasing null sequence of positive numbers 7,, 7, . .. such that

0,(B) = 0(ry)
for each bounded set B < E. In this case either each closed bounded set
is compact (cf. “(FM)-Raume” in [5], p. 372) or the compact sets cannot
be characterized among the closed bounded sets by
limé,(B) = 0.
This characterization is possible e.g. in complete p-normed spaces
{0 < p<1), where the p-norm differs from a usnal norm only by the
property ozl = |a|” ||| instead of = |a| [|#l] (aecC, weH) (cf. [7], p. 131)

“or in the space s. May be these facts give hints for an answer to the ques-

tion at the end of section -1.
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Colloquium on
Nuclear Spaces and Ideals in Operator Algebras

A theorem of Eilenberg-Watts type
for tensor products of Banach spaces

by
Z. SEMADENT and A. WIWEGER {Warszawa)

Introduction. ?By the tensor product of Banach spaces X and ¥ we
shall mean the projective tensor product XQ® ¥ defined as the completion

of the algebraic tensor product X @ ¥ withrespect to the greatest cross
norm

llu] = int {Z el iyl = 20 g‘ﬁﬂ%@%; re X, yieY}.

It is We}l known (cf. Grothendieck [4], Ch. I, §1, no. 2, Proposition '
3 and Théoréme 2, Buchwa.lte}- [1], p. 33) that for each fixed Banach
space A the tensor product 4@ X has the following properties:

{2) I 9: X > ¥ is a bounded linear operator onto a dense subset
of Y, then the induced operator
40X 487

maps A& X onto a dense subset of A& Y.

(B) If Z is a closed subspace of a Banach space X, then there iz a ca-
nonical isomorphism 7 from (4§ X)/N onto 4 & (X/Z), where N is the
closed subspace of A®X generated by the elements of the form a®z
with ¢ in 4 and 2 in Z; moreover, the corresponding diagram

AQX S (AQX)|F
A®w T
\\ |

48(X/7)

is commutative; here #.and o denote the canonical surjections.
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