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Bases in sequentially retractive limit-spaces*
by

K. FLORET (Kiel)

The object of the present paper is to generalize the classical Banach-
theorem for the continuity of coefficient functionals of bases in Banach-
8paces to some inductive limit-spaces. A suitable class for the treat-
ment is the class of limit-spaces B = ind H,, for which the convergence

n—
of sequences takes place already in some generating space ¥, (&, Fréchet-
spaces). These spaces seem to be interesting for other questions too,
because they include two of the three most important cases: striet (LF)-
spaces and (LS)-spaces (i.e. (LF)-spaces with compact linking mappings),
but not (LS,)-spaces (i.e. (LF)-spaces with weakly compact linking
mappings; in particular those with generating reflexive normed spaces).
The terminology is essentially that of [3].

1. Sequentially retractive sequences.

1.1. A sequence B, c B, = ... of (F)-spaces E, is called sequeniially
rectractive if for every sequence (z;) converging in the (locally convex)
induetive limit B = ind B, there is an index n such that (z;) converges

n—
in E,. Furthermore, the limits of (#;) coincide.
1.2. Sequentially retractive generated (LF)-spaces are separated and
sequentially complete.
If an (LF)-space # iy twice generated

¥ =ind B, =ind ¥,, E,,F, (F)-spaces,

oed n—
then by a theorem of Grothendieck ([5], I, p. 17) these sequences are mu-
tually cofinal (i.e. for every » there is an m such that &, . F, and
F, <+ B,; “c>” means continuous embedding). Thus, if one generating
sequence of an (LF)-space is sequentially retractive then all are, and one
can speak of sequentially retractive (LF)-spaces.

* Part of the author’s dissertation, Kiel 1969.
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TaEorEM. An (LF)-space B is sequentially retractive if and only if
B is rveqular and fulfills Mackey’s condition of convergence.

(Recall that an (LF)-space B = ind F, is regular if every bounded set
is already bounded in some E,, and a locally convex space E fulfills
Mackey’s condition of eonvergence if every convergent sequence converges
in the span of a bounded absolutely convex subset with its gauge.)

1.3. The arrangement with the some special spaces gives the following

CorOLLARY. (1) (F)-spaces are sequentially retractive.

(2) (L8)-spaces are sequentially retractive. Nuclear, sequentially com-
plete (or reflexive) (DF)-spaces are (LN )-spaces [8] and thus (LS8).

(3) Strictly gemerated (LTF)-spaces. [2] are sequentially retractive.

(4) Sequentially complete (LF)-spaces satisfying Mackey’s condition of
convergence are sequentially retractive.

(5) Bornological sequentially complete (DF)-spaces satisfying Mackey's
condition of comvergence are sequentially retractive (LB)- spaces.

(6) Strong duals of distingué (or even reflemive) ) quasinormable ( [4],
. 106) (F)-spaces are sequentially retractive (LB)-spaces.

(7) (LS,)-spaces are im general not sequentially retractive.

(8) There is & complete (thus regular) Montel (LB)-space which is not
sequentially retractive. :

2. Continuity of coefficient functionals of bases.

2.1. A sequence (w,) of elements of a locally convex space F forms
& basis, it every z<F has a unique expansion

o0
T = E O, iy, y
n=1

and a Schauder-basis, if all coefficient functionals T v o, = q, (%) are
continuous.

a, R (resp.eC)b

2.2. THROREM. Huvery. basis in a sequentially retractive (LF)-space is

a Schauder-basis.
Proof. (a) Let be ¥ =ind H,, B, Banach-spaces with norm ||,

and (y;) a basis of E with the expansion-operators

T, = D a(a)y;
g==1

whose continuity is to be proved.
(b) @, = {(&eB,|T,,xcE, for all m and T,» 5 «}  E, is the space
of all z¢kE, whose expansions are all situated in E and converge there
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to #. Obviously &, = G,,., and the assumed sequential retractivity ensures

U6, = .
n=1

(c) Defining

ol = suP[Tmm]m mme

G, 18 a normed space: [z}, < co by the boundedness of the (in E, con-
veraent) sequence (T,,); the inequality

o, = lim[Tmm]n < Sup T ly = llally

establishes the continuity of the embedding @, = EB,; in particular,
(Guy - ln) is separated. Homogeneity and Mmkowskls inequality are
obvious.

(d) The restricted expansion operators T map @, into @, and are
continuous by

”Tlm”n = sup |Tmle]n = fnugll)le{G]n < ”‘T”n‘

(e) By the continuous embeddings G, = H,, (c) and (b) the identity
¢: ind@, < ind B,
n— n—

is continuous and bijective.
(f) To apply a closed-graph-theorem, it is convenient to prove the
completeness of the normed spaces &,. A Cauchy-sequence (z,) in Qq,

(n — o0),

(+ B SuP SuP]Tmﬁk'— mwl]qéo
m

is also a Cauchy-sequence in E, and has an B limit 2. By (), all (T, o)
form Gauehy—sequences in E,, such that hmlts

" €[¥1, ey Ynl A Eq :Fn

(dim F, < n) exist satisfying
(++) | Tyt —

T < S o=l 0 (k> o0);

1=k
particularly, 7, T 5 B (b~ oo).
The aim is to show " =T,x.
Firstly, the inequality
' — Tyl + | Tty — tilg+ loy—al,

holds. Choosing I =1, (by @ 3> #) such that
q

7t — |, < |2
4

[aslﬂ— zl, < e
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and (by (+4))

[@*— T |, < sup  [fo,—all, < s,

2,721
the convergence of the expansion of‘ @y, €@, in B, gives an n, satisfying
1 Tnty,— )y < &
for all » > n,; thus
Iw'lb____x ,q e
for all » > n, is proved and (") converges in B, to ».

The operator 7,—T,_, is continuous ‘on the finitedimensional space
F,, so that (m > n41)

(9012 0 (@) = (L= T, ) (lim T} )
= lim (Tn~T;,_1)(mek) = lim 7,2, —UimT,_ @,
But

® =Ima" = 2’4 @ —a') . 4 (@) 4.

in B, all the more in F ; therefore the uniqueness of the expangion of
@ with respect to the basis () yields
mn___wl'n—l = an(.mm)yn = n(w)yn)
thus T,2 = 4™; in particular, the expansion of x converges in H,: ze@,.
Furthermore, by (4 +)

”xk—w”q = Suplewh_me[q = sup’mek—$mlq
: m m
< sup g—al, >0 (k- oo)
=k

and G, is complete.

‘vr(g) By de Wilde’s closed-graph-theorem [7], ¢~ is continuous, so
that the equality

ind 7, =ind @,

holds topologieally; but by (d) the expansion operators are continuous
on ind @, so on E. . :

(h) The restriction that all B, were Banach- and not Fréchet-spaces
was made only for technical reasons: substitute for the morm []. the
Semi-norms p, ., reN, of the (F)-space H,, define the corresponding
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semi-norms on &, and prove completeness by the given method; the
same closed-graph-theorem ig applicable.

2.3. In view of Corollary 1.3, the theorem ensures the continuity
of coefficient functionals of bases in (F)-spaces (originally proved by
Newns [6]), strict (LF)-spaces (Arsove-Edwards [1]; the spaces considered
in theorem 12 of that paper are sequentially retractive, too), in (LS)-
-spaces, some nuclear spaces (specified in 1.3.(2)), and some classes of
(DF)-spaces.

2.4. Another look at the proof yields the

COROLLARY. The set of y, with Y €@, forms a basis of G,,.
For by the convergence of (T,,z) in E, to x (ze@,,)

“Tmm_m”n = S.l.lp]TiTmm_Ti$gn
i

=sup|T,,2—T;z|, > 0

(m — o).
i>m

2.5. A particular result is that every sequentially retractive (LF)-space
with a basis can be represented by an equivalent (i.e. mutually cofinal
in the terminology of 1.2.) sequence of (¥)-spaces @, with bases in such
2 manner, that the basis of §, grows out of the hasis of G, _, by prolon-
gation or (and) enlargement of the associated coefficient-space. An (LS)-
Kothe-sequence space ind P(b™) (with the unit vectors a8 basis) is an

>

example which enlarges only the coefficient spaces.

2.6. The (weakened) inverse question: “Does an (LF)-space generated
by (F)-spaces with bases, have a basis” seems to be incomparably more
difficult and is unsolved. Even in the cage of nuclear (LN)-spaces (a se-
quence of Hilbert spaces with nuclear embeddings can be established
immediately), this problem, which is equivalent with the existence of
bases in nuclear (F)-spaces, is not yet solved.

Added in proot. De Wilde (p. 457) has improved Theorem 2.2.
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Remarks on a theorem of S. N. Bernstein
. by’
6. ALBINUS (Berlin)

As usually ¢(0, 1) denotes the space of all real-valued continuous
functions on the closed intervall [0,1]. Tt is well-known that the set of
polynomials is dense in ¢ (0, 1) with respect to the Supremum norm |- J|.
If we introduce the minima] deviation,

b,(f) = int][f— P,

of a function feC(0, 1) from the linear subspace of polynomials P, of
degree < m, the density of the polynomials can be expressed by

gdnm =0 (feG(O’ 1))‘

n . @

8. N. Bernstein has shown that for each non-increasing null sequence
(,) of non-negative numbers there is a geC(0, 1) with
- dn(g) = Gy
: Shapiro [8] generalized this. theorem in the following way. He repla~
ced C(0,1) by an arbitrary B-space (B, I} and the sequence of %-dimen-
sional subspaces of polynomials with degree <7 by a sequence (M, y

of proper closed linear subspaces in F. In this case for each null sequence
{@,) of non-negative numbers there is a vector zeF with

oM,: = infllw—ul| # 0(a,).
uel,,

For two sequences (b,) and (c,) of non-negative numbers the formula,
' ¢, % 0(by,)

means that there is no 4 > 0 with ¢, < 4b, for all n. We shall say briefly
that each sequence of Proper closed linear subspaces in a B-space ap-
prozimates slowly. In his proof Shapiro used the category argument.
Therefore the question seems naturall ; Whether Shapiro’s §taterdent

also helds in F-spaces. In this paper F-space means a complete metrie

.
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