A. Mallios

#### 220

- 5] A. Grothendieck, Théorèmes de finitude pour la cohomologie des faisceaux, Bull. Soc. Math. France 84 (1956), p. 1-7.
- [6] R. Harvey, R. O. Wells, Jr., Compact holomorphically convex subsets of a Stein manifold, Trans. Amer. Math. Soc. 136 (1969), p. 509-516.
- [7] R. Kultze, Lokalholomorphe Funktionen und das Geschlecht kompakter Riemannschen Flächen, Math. Ann. 143 (1961), p. 163-186.
- [8] A. Mallios, On the spectrum of a topological tensor product of locally convex algebras, Math. Ann. 154 (1964), p. 171-180.
- 97 Tensor products and harmonic analysis, ibidem 158 (1965), p. 46-56.
- [10] Spectrum and boundary of topological tensor product algebras, Bull. Soc. Math. Grèce (N.S.) 8 (1967), p. 101-115.
- [11] Note on the spectrum of topological inductive limit algebras, ibidem 8 (1967), p. 127-131.
- 12] On the spectra of topological algebras, J. Funct. Anal. 3 (1969), p. 301-309.
- [13] E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).
- [14] L. Schwartz, Théorie des distributions à valeurs vectorielles, Ann. Inst. Fourier (Grenoble) 7 (1957), p. 1-141.
- [15] S. Teleman, La représentation des anneaux réguliers par les faisceaux, Rev. Roum. math. pures appl. 14 (1969), p. 703-717.

UNIVERSITY OF ATHEMS
AND THE NATIONAL RESEARCH FOUNDATION



## STUDIA MATHEMATICA, T. XXXVIII. (1970)

Colloquium on

Nuclear Spaces and Ideals in Operator Algebras

### Bases in sequentially retractive limit-spaces\*

b:

K. FLORET (Kiel)

The object of the present paper is to generalize the classical Banach-theorem for the continuity of coefficient functionals of bases in Banach-spaces to some inductive limit-spaces. A suitable class for the treatment is the class of limit-spaces  $E=\operatorname{ind} E_n$ , for which the convergence of sequences takes place already in some generating space  $E_n$  ( $E_n$  Fréchet-spaces). These spaces seem to be interesting for other questions too, because they include two of the three most important cases: strict (LF)-spaces and (LS)-spaces (i.e. (LF)-spaces with compact linking mappings), but not ( $LS_n$ )-spaces (i.e. (LF)-spaces with weakly compact linking mappings; in particular those with generating reflexive normed spaces). The terminology is essentially that of [3].

### 1. Sequentially retractive sequences.

- **1.1.** A sequence  $E_1 \subset E_2 \subset \ldots$  of (F)-spaces  $E_n$  is called *sequentially rectractive* if for every sequence  $(x_i)$  converging in the (locally convex) inductive limit  $E = \inf_{n \to \infty} E_n$  there is an index n such that  $(x_i)$  converges in  $E_n$ . Furthermore, the limits of  $(x_i)$  coincide.
- 1.2. Sequentially retractive generated  $(\mathit{LF})$ -spaces are separated and sequentially complete.

If an (LF)-space E is twice generated

$$E = \underset{m \to}{\text{ind}} E_m = \underset{n \to}{\text{ind}} F_n, \quad E_m, F_n \text{ (F)-spaces,}$$

then by a theorem of *Grothendieck* ([5], I, p. 17) these sequences are mutually cofinal (i.e. for every n there is an m such that  $E_n \subset F_m$  and  $F_n \subset E_m$ ; " $\subset$ " means continuous embedding). Thus, if one generating sequence of an (LF)-space is sequentially retractive then all are, and one can speak of sequentially retractive (LF)-spaces.

<sup>\*</sup> Part of the author's dissertation, Kiel 1969.

THEOREM. An (LF)-space E is sequentially retractive if and only if E is regular and fulfills Mackey's condition of convergence.

(Recall that an (LF)-space  $E=\operatorname{ind} E_n$  is regular if every bounded set is already bounded in some  $E_n$ , and a locally convex space E fulfills Mackey's condition of convergence if every convergent sequence converges in the span of a bounded absolutely convex subset with its gauge.)

- 1.3. The arrangement with the some special spaces gives the following COROLLARY. (1) (F)-spaces are sequentially retractive.
- (2) (LS)-spaces are sequentially retractive. Nuclear, sequentially complete (or reflexive) (DF)-spaces are (LN)-spaces [8] and thus (LS).
  - (3) Strictly generated (LF)-spaces [2] are sequentially retractive.
- (4) Sequentially complete (LF)-spaces satisfying Mackey's condition of convergence are sequentially retractive.
- (5) Bornological sequentially complete (DF)-spaces satisfying Mackey's condition of convergence are sequentially retractive (LB)-spaces.
- (6) Strong duals of distingué (or even reflexive) quasinormable ([4], p. 106) (F)-spaces are sequentially retractive (LB)-spaces.
  - (7) (LS<sub>w</sub>)-spaces are in general not sequentially retractive.
- (8) There is a complete (thus regular) Montel (LB)-space which is not sequentially retractive.
  - 2. Continuity of coefficient functionals of bases.
- **2.1.** A sequence  $(x_n)$  of elements of a locally convex space E forms a basis, if every  $x \in E$  has a unique expansion

$$x = \sum_{n=1}^{\infty} a_n x_n, \quad a_n \in \mathbf{R} \text{ (resp. } \epsilon C)$$

and a Schauder-basis, if all coefficient functionals  $x \mapsto a_n = a_n(x)$  are continuous.

2.2. Theorem. Every basis in a sequentially retractive (LF)-space is a Schauder-basis.

Proof. (a) Let be  $E=\inf_{n\to}E_n$ ,  $E_n$  Banach-spaces with norm  $|\cdot|_n$  and  $(y_i)$  a basis of E with the expansion-operators

$$T_n x = \sum_{i=1}^n a_i(x) y_i$$

whose continuity is to be proved.

(b)  $G_n = \{x \in E_n \mid T_m x \in E_n \text{ for all } m \text{ and } T_m x \underset{E_n}{\longrightarrow} x\} \subset E_n \text{ is the space of all } x \in E_n \text{ whose expansions are all situated in } E_n \text{ and converge there}$ 

.

to 
$$x$$
. Obviously  $G_n\subset G_{n+1}$  and the assumed sequential retractivity ensures 
$$\bigcup_{n=1}^\infty G_n=E.$$

(c) Defining

$$||x||_n = \sup_{m \in \mathbb{N}} |T_m x|_n, \quad x \in G_n,$$

 $G_n$  is a normed space:  $\|x\|_n < \infty$  by the boundedness of the (in  $E_n$  convergent) sequence  $(T_m x)$ ; the inequality

$$|x|_n = \lim_{m \to \infty} |T_m x|_n \leqslant \sup_{m \in \mathbb{N}} |T_m x|_n = ||x||_n$$

establishes the continuity of the embedding  $G_n \subset E_n$ ; in particular,  $(G_n, \|\cdot\|_n)$  is separated. Homogeneity and Minkowski's inequality are obvious.

(d) The restricted expansion operators  $T_l$  map  $G_n$  into  $G_n$  and are continuous by

$$||T_l x||_n = \sup_m |T_m T_l x|_n = \sup_{m \leqslant l} |T_m x|_n \leqslant ||x||_n.$$

(e) By the continuous embeddings  $G_n \subset E_n$ , (c) and (b) the identity

$$\varphi \colon \operatorname{ind} G_n \subset \operatorname{ind} E_n$$

is continuous and bijective.

(f) To apply a closed-graph-theorem, it is convenient to prove the completeness of the normed spaces  $G_q$ . A Cauchy-sequence  $(x_n)$  in  $G_q$ 

$$(+) \qquad \sup_{k,l \geqslant n} \sup_{m} |T_m x_k - T_m x_l|_q \to 0 \quad (n \to \infty),$$

is also a Cauchy-sequence in  $E_q$  and has an  $E_q$ -limit x. By (+), all  $(T_n x_k)_k$  form Cauchy-sequences in  $E_q$ , such that limits

$$x^n \in [y_1, \ldots, y_n] \cap E_q = F_n$$

(dim  $F_n \leqslant n$ ) exist satisfying

$$(++) |T_n x_k - x^n|_q \leqslant \sup_{i,j > k} ||x_i - x_j||_q \to 0 (k \to \infty);$$

particularly,  $T_n x_k \underset{G}{\Rightarrow} x^n \ (k \to \infty)$ .

The aim is to show  $x^n = T_n x$ .

Firstly, the inequality

$$|x^n - x|_q \leq |x^n - T_n x_l|_q + |T_n x_l - x_l|_q + |x_l - x|_q$$

holds. Choosing  $l = l_0$  (by  $x_l \underset{E_q}{\Rightarrow} x$ ) such that

$$|x_{l_0} - x|_q \leqslant \varepsilon$$

15

and (by (++))

$$|x^n - T_n x_{l_0}|_q \leqslant \sup_{i,j \geqslant l_0} ||x_i - x_j||_q \leqslant \varepsilon,$$

the convergence of the expansion of  $x_{l_0} \epsilon G_q$  in  $E_q$  gives an  $n_0$  satisfying

$$|T_n x_{l_0} - x_{l_0}|_q \leqslant \varepsilon$$

for all  $n \ge n_0$ ; thus

$$|x^n-x|_{\alpha}\leqslant \varepsilon$$

for all  $n \geqslant n_0$  is proved and  $(x^n)$  converges in  $\mathbb{E}_q$  to x.

The operator  $T_n-T_{n-1}$  is continuous on the finite dimensional space  $F_m$  so that  $(m\geqslant n+1)$ 

$$\begin{split} [y_n] &\ni a_n(x^m)y_n = (T_n - T_{n-1})(\lim_{lk \to \infty} T_m^l x_k) \\ &= \lim_{k \to \infty} (T_n - T_{n-1})(T_m x_k) = \lim_{k \to \infty} T_n x_k - \lim_{k \to \infty} T_{n-1} x_k \\ &= x^n - x^{n-1}. \end{split}$$

But

$$x = \lim_{n \to \infty} x^n = x^1 + (x^2 - x^1) + \dots + (x^{n+1} - x^n) + \dots$$

in  $E_q$ , all the more in E; therefore the uniqueness of the expansion of x with respect to the basis  $(y_i)$  yields

$$x^{n}-x^{n-1} = a_{n}(x^{m})y_{n} = a_{n}(x)y_{n},$$

thus  $T_n x = x^n$ ; in particular, the expansion of x converges in  $E_q \colon x \in G_q$ . Furthermore, by (++)

$$\begin{split} \|x_k - x\|_q &= \sup_m |T_m x_k - T_m x|_q = \sup_m |T_m x_k - x^m|_q \\ &\leqslant \sup_{i,j \geqslant k} \|x_i - x_j\|_q \to 0 \qquad (k \to \infty) \end{split}$$

and  $G_q$  is complete.

(g) By de Wilde's closed-graph-theorem [7],  $\varphi^{-1}$  is continuous, so that the equality

$$\inf_{n\to} E_n = \inf_{n\to} G_n$$

holds topologically; but by (d) the expansion operators are continuous on ind  $G_n$  so on E.

(h) The restriction that all  $E_n$  were Banach- and not Fréchet-spaces was made only for technical reasons: substitute for the norm  $|\cdot|_n$  the semi-norms  $p_{n,r}, r \in \mathbb{N}$ , of the (F)-space  $E_n$ , define the corresponding



- 2.3. In view of Corollary 1.3, the theorem ensures the continuity of coefficient functionals of bases in (F)-spaces (originally proved by Newns [6]), strict (LF)-spaces (Arsove-Edwards [1]; the spaces considered in theorem 12 of that paper are sequentially retractive, too), in (LS)-spaces, some nuclear spaces (specified in 1.3.(2)), and some classes of (DF)-spaces.
  - 2.4. Another look at the proof yields the

COROLLARY. The set of  $y_i$  with  $y_i \in G_n$  forms a basis of  $G_n$ . For by the convergence of  $(T_m x)$  in  $E_n$  to x  $(x \in G_n)$ 

$$\begin{split} ||T_m x - x||_n &= \sup_{\mathbf{i}} |T_i T_m x - T_i x|_n \\ &= \sup_{i>m} |T_m x - T_i x|_n \to 0 \qquad (m \to \infty). \end{split}$$

- **2.5.** A particular result is that every sequentially retractive (LF)-space with a basis can be represented by an equivalent (i.e. mutually cofinal in the terminology of 1.2.) sequence of (F)-spaces  $G_n$  with bases in such a manner, that the basis of  $G_n$  grows out of the basis of  $G_{n-1}$  by prolongation or (and) enlargement of the associated coefficient-space. An (LS)-Köthe-sequence space ind  $I^p(b^n)$  (with the unit vectors as basis) is an example which enlarges only the coefficient spaces.
- **2.6.** The (weakened) inverse question: "Does an (LF)-space generated by (F)-spaces with bases, have a basis" seems to be incomparably more difficult and is unsolved. Even in the case of nuclear (LN)-spaces (a sequence of Hilbert spaces with nuclear embeddings can be established immediately), this problem, which is equivalent with the existence of bases in nuclear (F)-spaces, is not yet solved.

Added in proof. De Wilde (p. 457) has improved Theorem 2.2.

### References

- [1] G. Arsove and R. E. Edwards, Generalized bases in topological linear spaces, Studia Math. 19 (1960), p. 95-113.
- [2] J. Diendonné et L. Schwartz, La dualité dans les espaces (F) et (LF), Ann. Inst. Fourier 1 (1949), p. 61-101.
- [3] K. Floret und J. Wloka, Einführung in die Theorie der lokalkonvexen Räume, Lecture Notes in Math. 56 (1968).
- [4] A. Grothendieck, Sur les espaces (F) et (DF), Summa Brasil. Math. 3 (1954), p. 57-123.
- [5] Produits tensoriels topologiques et espaces nucléaires, Memoirs AMS 16 (1955).
   Studia Mathematica XXXVIII

K. Floret

226



- 6] W. F. Newns, On the representation of analytic functions by infinite series, Philos. Trans. Roy. Soc. London A 245 (1952/53), p. 429-468.
- [7] M. de Wilde, Théorème du graphe fermé et espaces à réseau absorbant, Bull. Math. Soc. Sci. Math. Roum. 11,59 (1967), p. 225-238.
- [8] J. Wloka, Kernel functions and nuclear spaces, Bull. AMS 71 (1965), p. 720-723.

## STUDIA MATHEMATICA, T. XXXVIII. (1970)

Colloquium on

Nuclear Spaces and Ideals in Operator Algebras

# Remarks on a theorem of S. N. Bernstein

by

G. ALBINUS (Berlin)

As usually C(0,1) denotes the space of all real-valued continuous functions on the closed intervall [0,1]. It is well-known that the set of polynomials is dense in C(0,1) with respect to the supremum norm  $\|\cdot\|$ . If we introduce the minimal deviation

$$d_n(f) = \inf ||f - P_n||$$

of a function  $f \in C(0, 1)$  from the linear subspace of polynomials  $P_n$  of degree  $\leqslant n$ , the density of the polynomials can be expressed by

$$\lim_{n\to\infty}d_n(f)=0\quad \big(f\epsilon C(0,1)\big).$$

S. N. Bernstein has shown that for each non-increasing null sequence  $(a_n)$  of non-negative numbers there is a  $g \in C(0,1)$  with

$$d_n(g) = a_n$$
.

Shapiro [8] generalized this theorem in the following way. He replaced C(0,1) by an arbitrary B-space  $(E,\|\cdot\|)$  and the sequence of n-dimensional subspaces of polynomials with degree  $\leq n$  by a sequence  $(M_n)$  of proper closed linear subspaces in E. In this case for each null sequence  $(a_n)$  of non-negative numbers there is a vector  $x \in E$  with

$$xM_n: = \inf_{u \in M_n} ||x - u|| \neq O(a_n).$$

For two sequences  $(b_n)$  and  $(c_n)$  of non-negative numbers the formula

$$c_n \neq O(b_n)$$

means that there is no A>0 with  $c_n\leqslant Ab_n$  for all n. We shall say briefly that each sequence of proper closed linear subspaces in a B-space approximates slowly. In his proof Shapiro used the category argument. Therefore the question seems naturally, whether Shapiro's statement also holds in F-spaces. In this paper F-space means a complete metric