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Introduction. We are concerned in the sequel with topological sheaves,
‘whose fibers are fopological algebras and in particular topological tensor
product algebras, our main objective herein being the sheaf-theoretic
version of the basic relation connecting the spectrum. of a topological
tensor product algebra to the spectra of the factor algebras (cf. Theorem
3.1 below). An analogous result into the same context, referring in par-
ticular to topological sheaves of Stein algebras was previously considered
in [12]. Similar considerations in the recent literature have been developed
in [2], [3] and [15]. ' _

Detailed proofs and further developments as well as applications to
cerfain analytic function algebra.sheaves will be given in subsequent
publications.

1. Preliminaries and definitions. Let X be a (Hausdorff) topological
space and let & be a sheaf of (complex linear associative) algebras on X.

‘We say that & is a topological algebra sheaf it the following conditions
are satisfied:

(1.1) For every open set U < X the set I'(U, &) of (continuous local)
sections of & over U is a topological algebra ([13], p. 6).

(1.2) For any open subsets U, V of X with U < V, the restriction.
map ggp: I'(V, &)—TI(U, &) is a continuous (algebra) homomorphism
between the respective topological algebras.

(1.3) For every open set U = X and for every open covering (U,).r
of U, the algebra I'(U, &) has the corresponding projective limit (initial)
topology with respect to the topological algebras I'(U,, &) and the algebra
homomorphisms ¢y ;7 a<l, making it a topological algebra.

‘We remark that for Fréchet sheaves based on a second countable
topological space, the preceding condition (1.3) is implied by the first

_two (ef., for instance, [1] p. 324, §6). We have this case below by the"

consideration of Fréchet (locally convex and, in particular, locally m-con-
vex topological) algebra sheaves. ) )
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Now, let & be a topological algebra sheaf on X. The stalk &, of &
at weX iy given, as a topological algebra, by

(1.4) & =1lim I'(U, &),
—

where U ranges over a fundamental system of open neighborhoods of
@, and &, is equipped with the inductive limit vector space topology,
such that &, is a topological algebra.

In case the topological algebras involved in the sheaf & are locally
convex with separately, respectively jointly, comtinuous multiplication,
the corresponding inductive limit locally convex vector space topology
on &,,xeX, makes it & locally convex algebra of the same kind with
those of the sheaf &. This is not in general the case if the topological
algebras considered are locally m-convex [13] in which case one congiders
on &, the inductive limit locally m-convex topology with respect to the
locally m-convex algebras I'(U, &) with U varying as in relation (1.4)
above.

If the algebras involved have identity elements, then regarding the
spectra IM(I'(U, £)) of these algebras [8], one gets a projective system
of topological spaces ({11], p. 128, Prop. 2.2), so that the spectrum
of the algebra (1.4) is given by

(1.5) M(4,) = lim M(I(T, ¢)),

within a homeomorphism, where U varies as in (1.4). )

More generally, if K is an arbitrary subset of X and U ranges over
an open neighborhood basis of X, one defines the algebra of germs of &
over K as a topological inductive limit algebra, by

(1.6) fx =lm (U, &),
—

the spectrum of which is given, within a homeomorphism, by
1.7) M(Sx) =Lm M(I(T, &)).
<

Example. Suppose that X is a Stein manifold and let § be an arbit-
rary subset of X. Then, the “envelope of holomorphy™ of § is the spectrum
of the locally m-convex algebra 0(8), the algebra of germs of holomorphic
functions on 8, which is obtained by the specialization of (1.7) above
to the case under consideration (cf. also [61, p. 510, xel. (2.1)).

Now, given the topological algebra sheaf & on a Hausdorff topological
space X, we define the spectrum of & by the relation

(1.8) M(&) = gmz(gx),

disjoint union of the respective topological -spaces (defined by relation
(1.5) above) equipped with the direct sum topology.
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On the other hand, a topological algebra sheaf & is said to be of
a nuclear type (or a nuclear topological algebra sheaf) if, for every open
set U < X, the algebra I'(U, &) is a locally convex nuclear topological
algebra (cf. also [9], p. 49).

We remark that it is equivalent to suppose in the preceding defini-
tion that the algebra I'(U, &) is nuclear, for every set U of an open basis
of X: This is an easy consequence of the definition given above and con-
dition (1.3) in the definition of a topological algebra sheaf.

Example. Suppose that (X, 0) is a reduced (second countable)
complex space. Then, its struocture sheaf 0 is a topological algebra sheaf
of a Fréchet nuclear type, in the sence that I'(U, 0) is a Fréchet locally
m-convex algebra, which is also a nuclear space (cf. also [1], p. 327,
Prop. 8.1).

Now, let ¢ be a topological vector space sheaf on & Hausdorff to-
pological space X ([5], p. 3) and let & be the topologically dual vector
space precosheaf on X, corresponding to &: That is, we are given a co-
variant functor from the category of the open subsets of X belonging
to a basis of its topology and inclusions to the category of vector spaces
and linear maps, given by

(1.9) U~ &'(0) =(I(T, &),
U being an open subset of X as above, the last space being the topolo-

gical dual of the topological vector space I'(U, &) in such = way that,
for any open sets U, V in X as above with U < V, one has

(1.10) 0% =up:(I(T, &) —(I(V, &),

that is the transpose to the respective restriction map rf(cf. also [7],
p. 166).

Under the preceding circumstances, we say that & is weakly flabby

in case

- )
(1.11) (r(u, &) =% (I(X, &) =0
is an exact sequence for every open set U < X.

Example. Let (X, 0) be a Stein space and let % be a coherent analytic
sheaf on X. Then, the canonical Fréchet space structure on & defines
a topologically dual weakly flabby precosheaf &, the corresponding by
the foregoing dual precosheaf.

In connection with the preceding, we also remark that it amounts
to the same of being a sheaf flabby or weakly flabby.

2. Tensor products. Let ¢ and # be sheaves of locally convex algebras
with continuous multiplication on a Hausdorif topological space X. Then,

(2.1) (U, &)& I'(U,#)
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is a complete locally convex algebra with confinuous multiplication, for
every open set U in X, where = denotes the projective tensorial topology
{[8], p- 176, Prop. 3.2). .

Now, if U varies over an open basis of the topology of X, then (2.1)
defines a presheaf of topological algebras on X, so that we denote by
én & the corresponding topological algebra sheaf generated by the pre-
gheaf in' question.

On the other hand, suppose that one of the sheaves &, # is of a nu-
clear type and moreover either one determines a topologically dual weakly
flabby precosheaf. Then for every open subset U of X, one has

{2.2) U, éxF) =I'(U, &)QI'(U,F),

within a bijection.

As a consequence of relation (2.2) above, we are now in the position
to state the following »

TemorEM 2.1. Let & and F be topological algebra sheaves on a Hausdorff
second couniable topological space X such that the corresponding local
sections define Fréchet locally comvew  (topological) algebras. Moreover,
suppose that one of &, F s a nuclear topological algebra sheaf and
either one of them defines a topologically dual weally flabby precosheaf.
Then, ExnF is a topological algebra sheaf, if for every open set U < X,
the bijection defined by (2.2) is considered as a topological (algebraic) isomor-
phism, such that the corresponding local sections of &nF constitute Fréchet
locally convex algebras. :

The sheaf &z F defined by the preceding theorem will also be denoted
by &¢#, where s denotes the biprojective: tensorial topology [4], which
coincides with the e-tensor product of L. Schwartz ([14], p. 47, Corol. 1;
cf. also [1], p. 328, Def. 9.1).

3. The spectrum of a topological tensor product algebra sheaf. Let
€ and # be topological algebra sheaves on a Hausdortf topological space
X, such that the conditions of Th. 2.1 above are satisfied. Moreover, let
EnF = £:F (cf. the comments at the end of the preceding section)
the topological algebra sheaf on X, given by the same theorem.

Now, the stalk of &nF at z<X is given by

(8.1) (6 5F), = lim I'(U, &x5F),

with U varying over an open neighborhood basis of 2 (ef. also (1.4) in
the foregoing). Therefore, by Th. 2.1, (fzF )» 18 @ locally convex topolo-
gical algebra with continuous multiplication. Furthermore, suppose that
€ and & are topological algebra sheaves with identity elements, in. the

sense that, for every open set U < X, the corresponding local sections .
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of €,% define topological algebras with identity elements. Hence, the
same i3 true concerning the (topological) algebras defined by (2.2) and
{3.1) above. Therefore, the spectrum of the algebras (3.1) is given by

(3.2) M(EnF),) = ]j_miDt(F(U, ExF)) =Iim MI(U, &) @I (U,F)),

within & homeomorphism.

On the other hand, suppose that the topological algebras involved
have locally equicontinuous spectra [12]. Then, by [10], p. 104, Th. 2.1,
the preceding relation yields

(3.3) M(ExF),) = M(&,) X M(F),

within a homeomorphism, for every zeX.

By the preceding, we now have the following

THEOREM 3.1. Let & and # be topological algebra sheaves on & Hausdorff
topological space X such that the conditions of Theorem 2.1 are satisfied and,
for every set U of an open basis of X, the corresponding local section algebras
have identity elements and locally equicontinuous spectra. Then EnF = e F
8 a topological algebra sheaf, such that the local sections define locally convex
algebras with continuwous multiplication, having identity elements and locally
equicontinuous spectra. Moreover, the spectrum of &nF (cf. § 1) is given by

(3.4) M(ExF) = M(E) X M(F),

within a homeomorphism.

The preceding statement may be considered as the sheaf-theoretic
version of previous results on the same subjeet (cf., for instance, [8],
[10] and [12]). A similar formula to (3.4) above has also been given in
[12] referring, in particular, to Fréchet sheaves of Stein algebras. A de-
tailed proof of the preceding result as well as furfher considerations will
be reported elsewhere.

Added in proof. A more natural concept of the spectrum of
a topological algebra sheaf as well as a corresponding extended form of
Theorems 2.1 and 3.1 in the preceding are given in a subsequent paper.
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Bases in sequentially retractive limit-spaces*
by

K. FLORET (Kiel)

The object of the present paper is to generalize the classical Banach-
theorem for the continuity of coefficient functionals of bases in Banach-
8paces to some inductive limit-spaces. A suitable class for the treat-
ment is the class of limit-spaces B = ind H,, for which the convergence

n—
of sequences takes place already in some generating space ¥, (&, Fréchet-
spaces). These spaces seem to be interesting for other questions too,
because they include two of the three most important cases: striet (LF)-
spaces and (LS)-spaces (i.e. (LF)-spaces with compact linking mappings),
but not (LS,)-spaces (i.e. (LF)-spaces with weakly compact linking
mappings; in particular those with generating reflexive normed spaces).
The terminology is essentially that of [3].

1. Sequentially retractive sequences.

1.1. A sequence B, c B, = ... of (F)-spaces E, is called sequeniially
rectractive if for every sequence (z;) converging in the (locally convex)
induetive limit B = ind B, there is an index n such that (z;) converges

n—
in E,. Furthermore, the limits of (#;) coincide.
1.2. Sequentially retractive generated (LF)-spaces are separated and
sequentially complete.
If an (LF)-space # iy twice generated

¥ =ind B, =ind ¥,, E,,F, (F)-spaces,

oed n—
then by a theorem of Grothendieck ([5], I, p. 17) these sequences are mu-
tually cofinal (i.e. for every » there is an m such that &, . F, and
F, <+ B,; “c>” means continuous embedding). Thus, if one generating
sequence of an (LF)-space is sequentially retractive then all are, and one
can speak of sequentially retractive (LF)-spaces.

* Part of the author’s dissertation, Kiel 1969.
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