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Biprojective tensor products and convolutions
of vector-valued measures on a compact group

by
M. DUCHOXN (Bratislava)

Tntroduction. Tf z and » are regular complex-valued Borel measures
on a compact Hausdorff group @, then the convolution of g and » can
e defined. by appealing to the Riesz representation theorem and letting
v be that unique regular Borel measure on @ for which

Gf f@auer () = [{[fandp@)d©)

G @

nolds for all continuous funetions f on G. Moreover, it #(G) denotes the
set of all complex-valued countably additive, regular Borel measures
on @, then . (@) may be made a Banach space if we define linear opera-
tions pointwise and the norm as el = 1p](@) (total variation of x). Further
M (G) with convolution multiplication is a Banach algebra (cf. {167,
{101, [13])-

Tn this paper similar questions are dealt with for vector-valued
measures. In the Banach space Tca (#(@), X) of all regular countably
additive Borel measures with values in a Banach space X a convolution
multiplication. is introduced which is & bounded bﬂj.nea;r mapping frf)m .
rea (# (6, X) x rea (#(&), X) into rca (#(@x @), X ©X), where X X
ig the biprojective tensor product of X by X. Some properties of the
convolution are given, further results will be given elsewhere.

1. Preliminaries. We need & generalization, for vector-valued measures,
of the classical theorem asserting the existence of the product of measures
defined on ‘two measurable spaces. This is established in such a Way that
usual product of two scalars is replaced. by the tensor product of)two
vectors. Namely, let meagurable spaces (S, &) and (T,7), com.p}ete
locally convex topological vector spaces X and Y, and (coymtahly additive)
vector-valued measures u: ¥ —>X and v:J — Y be given. We denote
by & ®,7 the o-ring generated by the sets of the form BExF,EBeS,
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FeJ. We endow the algebraic tensor product X @ ¥ with the topology
determined by the system. of seminorms defined as follows:

k
v,
12 2i®Yi(0,p)
i=1

) ;
@ 8> 9] Il <1, X5 'l <1, ¢/ < X,
=1

=sup{.

2

(a, B)e A% B,

where 4, resp. B is the system of continuous seminorms defining a locally
convex topology in X, resp. ¥; X’ and ¥’ denote dual spaces of X and ¥,
respectively; for o'<X’ we denote ||, = sup {Kw, 23: |, <1, e X}
for every aeA. Similarly for ¥. We call this topology (called in [8] the
topology of bi-equicontinuous convergence and in [15] the s-topology)
the biprojective tensor topology (cf. also [14]; where this topology is called
inductive). The completion of the space X ® Y under this topology we
call the biprojective tensor product X & Y -of the spaces X and Y.

In [4] the following proposition is. established:

PROPOSITION 1. Let & and I~ be o-rings. Let S >Xand v:7 >y
be vector-valued measures. Then there exists o unique vector-valued measure
L=p&» PRI >X®Y for which WEXF) = u(E)Qv(F) for Beo,
FeT. '

Let %,(8), B,(T), resp. &(8), Z(T) stand for the o-ring of Baire,
Tesp. Borel sets in a locally compact Hausdorft spaces 8, T (cf. [9] or [2]).
In the sequel we need the results proved in [5].

PROPOSITION 2. If pe: Bo(8) - X is a vector-valued Baire measure
on 8 and vy: By(T)—> Y is a vector-valued Baire measure on T, then.
o = py ®”o= By(8XT) > X SY is a vector-valued Baire measure on S x T.

Recall that every veetor—v@lued Baire measure uy: B,(8)— X is
-regular (cf. [3] and [12]).

PROPOSITION 3. If u: B(8) > X and v: B(T) > Y are regular vector-
valued Borel measures on 8, T, respectively, then there ewists one and only

one regular vector-valued Borel measure 0: BEXT)~+ X R on § x Twhich
extends u Q.

Of course ¢ = u Qv if #(8)®,#(T) = Z(8X T) (for example if all
bounded subspaces of either § or 7 are metrizable, cf. [11]).:

A bilinear mapping U: XX ¥ -> Z, where Z is a locally convex space,
is said to be hypercontinuous (cf. [14]) if the linear mapping U induced
by U on X® Y is continuous in the biprojective tensor topology. From
Proposition 1 we have

PROPOSITION 4. Let U: XX Y2 be a hypercontinuous bilinear
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mapping and let Z be o sequentially complete locally convew space. Let u: & —X
and v: T — Y be vector-valued measures.
Then there ewists a unique vector-valued measure A: F®,9 —Z for
which
MEXF) = Ulp(B),v(F)), Be# FeJ.

The measure A: & Q4T — Z is defined by the equation i = U = U(pu ®v)
{cf. [1], Theorem 2.6.) .

In the remainder of the paper, X and Y are Banach spaces, § a{ld
T are compact Haunsdortf spaces. We denote by rca(% _(S), X) the fanil}lly‘;
of all regular (countably additive) Borel measures with yalues in e
Banach space X. The set xca(%(8), X) is a ‘Ban.a,cp space lf the norm
any werca(#(8), X) is defined as the semivariation of p:

2

e = 8) = sup | 3 aspa(Bo

where the supremum is taken over all finite collections of digjoint sets
By eHB(8),t=1,2,...,m 6 B, =8, and all finite systems of scalars
i ’ \

t=1
Ay eney @ With [o;| <1 (cf. [1] aqld [6], IIL. 7 and IVX 1%; i())'ml,jvgp;ﬁi
[7] the symbol N, (8, X) is used in place of rczb(B(S),;d ).tiﬁe(1 ows from
paper [1] that rea(Z#(8), X) = N(8,X) may be i enfr i e
Banach space of all weakly compact tra;nsfo;-matmns . 03:?1 tiﬁ(;a, he
Banach space of all continuous functions on §, into X. This iden:

is done by means of the formula

Uf = [f(s)an(s)
s

folr U: C(8) -~ X weakly compact, werea(®(8), X) and feC(S).
i - d measures. Let § =7 =G be
. Th volution of vector-value .
a cofnpmc‘ne E(;;Esdorff group, i.e. G is a comj[?a.ct Ha.usg)rﬁGspva‘See ;7?1?;
2 jointly continuous agsociative, binary operation p: Gx G —~G4.
o = my. .
. 7':@1130]:121\{ 1. Let u be in rca(#(@), X) and v be in rea(B(@), ).
Define an operation L on 0(@) by the formula
L(f) = [ fls)de(s, ) feO(6),
e 1 from Propo
b tor-valued Borel measure -
wh (BOGXG)>X QY 8 the wveo: ‘ - :
:it::; g (9(= ,ué)v if BEX @) = B Q,E(G); in this case we may write

() ,—_f fstyd(u @v)(s,1)-

CGxE
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Then L is a weakly compact linear operator from C(@) into X QY.

Proof. The regular vector-valued Borel measure ¢ is defined on
#(GX @) and has values in X® Y. According to [1], Theorem 3.2, and
[6], VL7.3, the set

{ [ gdo: lgl <1, ge0(@x @)
a

is weakly relatively compact in X & Y. It follows that the set
L) Il 1, feO(@)}

is also weakly relatively compact in X &Y, ie. L is a weakly compact
linear. operator from ((@) into X @ ¥. The proof is complete.
According to [17, Theorem 3.2, or [6], IV.7.3, it follows from Theorem

1 that there exists a wunique regular vector-valued Borel measure
0s: #(@F) > X ® Y such that

I(f) = [f(s)dex(s), feO(8),
. G
and || = [los](&). '

Definition. Let x and » be as in E[‘heorem 1, and let u*v denote
the unique member of rea(#(G), X @ ¥) such that

L) = [faus»,  J0(6).
& i
Then pxv: #(F)-> X QY is called the convolution of # and .
' THEOREM 2. If 1 s in rca(#(@), X) and v is in rca(B (), T), then
for the weakly compact linear operator from C(@) into XS Y defined by
the formula ‘

L) = [ fstde(s,t), feO(®),
Gx@ .
there holds )

LI < Bl (@) Il .
Proof. We have

IZi = sup L)
Ifl<1
= | [ 16nae, o)

<A1 llell(@ x &) < llell(6 % &).
Take an arbitrary & >0 and consider the number HZ‘HQ(GDH for
any scalars a; with |o;| < 1 and 6;<#(G x @) mutually disjoint. It follows

icm°®
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(121, p- 221), by the regularity of g, that there exist Baire sets H; such
that
<[ X aety)

Further, there exist disjoint Baire sets

| X we@ +e=| 2 0 Sy ()| + .

U Bix Fied,(GX @) such

g=1

that
| 3 awrm)’ <[ X« ; (@) @ (B + 2

= sup | 3o Y <u(E), o'y (F), y3| +e
<1 7 7
lv'li<1

<sup [Ku( ) @y x () YOG X E)+e
<t

= sup [<u( ), &HI(E) S, 9@ 5
<1

llelI<1

= [|ull(@) [P () -

It follows that [lo| (6 x &) < llull(@)[PII(&)-
COROLLARY. If u is in rca(B(®), X) and v is in rca(%(G), X), then
N * ol < Nlpell 1wll-

In fact, if 4 and » are in Tea(#(&), X), rea(#(6), ¥), respectively,
then
|f7)duer )]

o] = sup || ) o (@)
2 <1 G
GG

— sup|| [ st de(s, ] = 121 < Nl ol
)

= gup
<1
1C(@)

<1
e

Tt is easy to see that p*» is bounded(bﬂinea; glgng from the
: i 2(6), X & X).
roduct rea(# (@), X)X rea(#(6), Y) into rca , o
g If X iﬁ( a eoinp{ete locally convex algebra.s‘ueh that multq;hea.tmn
is hypercontinuous, then in virtue of Propositions 3 and 41; f)ra,lig
Uy werca(gl(@), X) there exists a un(lguepz;egﬂa:{E)Bc();e)lf;e;} o;ﬂ Zg(G)
ich X F) = p(B)vy . .
measure o: #(Gx G) - X for which o F) - e
i i if in a Banach algebra
Tn particular, it may be proved that . anach alg -
multipliga,tion is ]:’Lypercontmuous (for exanllpl.e lf'X is ﬁmt;;a-dm;gnillozﬁ);
then rea(ﬂ(G), X) with convolution multlphcat}on is & Bana w—?ﬂ e
which. is commutative if @ is. Further results in this direction

published later. e
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On a theorem of L. Schwartz
and its applications to absolutely summing operators

by
8. KWAPIEN (Warszawa)

1. Imtroduction. -In a recently published paper [12], L. Schwartz
has presented a theory of p-radonifying operators. He has :ﬁmmd_ nUMErous
applications of its main theorem (the “duality the.orem for ra.dom.iy%ng
operators”; ef. [13]). It has been also observed by him Fhat p-ra@onﬁymg
operators and p-absolutely summing are “almost identical”. This creates
the possibility of applying the “duality theorem” to the theory 9f p-abso-
Tutely summing operators. The aim of this paper is to show how this theorem
may be used to obtain in a simple way already known results as well as
new ones in the theory of p-absolutely summing operators. To make
this paper self-contained § 2 restates some of the results of L. Sehw‘vaxitz.
We use here neither the theory of cylindrical measures nor of radonifying
operators. All the theorems are formulated in .the 1amg1-1age of absolutely
summing operators. The “duality theorem® is essen‘tlally the same a8

of this paper.
Theofif: 1:1[s recall fhal,)t it B, F are Banach spaces and 0 <p < + o0,
then an operator w: E—F is said to be p-absolutely summing (w;:al
shall write wem, (B, F)) if there exists a constant ¢ such -that for eac

DByy ooy Byl

RIS Sy

Zn @ <0 sip 3 I, adP-
i=1 *

w is said to be 0-absolutely summing (1 emy (B, F)) if for each £ >0
there exists @ 8 > 0 such that if @, ,,..., v,<H and

1 o ’

sup Y —min{l, @ @} < 8,
L8NS Eoe :
Studia Mathematica XXXVIII
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