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Throughout this paper § is a linear operator with domain D(S)
dense in Banach space X, kernel N (8) and range R(8) in Banach space Y.
T'is a linear operator with domain dense in ¥ and range in Banach space Z.
T’ and X' denote the conjugate of T and X, respectively.

In [3], Schechter proved the following theorem (Gustafson, Bull.
A.M.S. 75, no. 4, proved the theorem for Hilbert space):

1. TEEOREM. If 8 and T are closed and R(S) has finite codimension,
then (TS) =8'T.

We show that in a Hilbert space setting, Schechter’s theorem is best
in the following sense: - .

9. TumorEM. Let S be o densely defined closed linear operator with
domain and range in Hilbert space H. The adjoint (T8Y* = 8*T* for all
odlosed densely defined limear operators T with domain and range in H if
and only if R(8) has finite codimension.

In proving theorem 2 the following lemma is used:

3. LEMMA. Given a closed-infinite-dimensional subspace M of Hilbert
space H, there exvists a dlosed linear operator with domain a proper dense
subspace of H and ramge contained in M.

Proof. Choose an infinite orthonormal subset &, s, ... of M with
closed linear span denoted by N. Define the map K from N into N by

Kz = 22._?(3; B B -
el

Then K is compact and 1-1. Since Kaz; = 277g; and K is compact,
R(K) is a proper dense subspace of N by [2], IIL. 1.12. Hence D = R(K)®
@N* n M@ M+ is a proper dense subspace of H and B:D — M, defined
by B(Kz+u+1v) =2, 2elN, weNt N M and veM?, is easily seen to be
closed. )
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Returning to the proof of theorem 2, suppose (T'9)* = §*T* for

all closed densely defined linear operators T from H to H. Since &8 is

" self-adjoint, [1], XIL 7.1, and N(8*) = N(88%, we have N (8L
= N(88*)t = R(8S"). Hence H = R(88%) ® N (8*) and
D = {8r+n:7eR(8%) N D(8), neN(8*)}

is dense in H. Define linear operator T on D by T'(Sr+mn) = 7. T is well

defined since 8 = S§r, implies r—r, e R (8%) n ¥ (8) = B(§") n R(§)L =(0).

T'is closed, for suppose v+ m;, — # and 7y, — 7, where {rnt < IT(IS'T) ND(8}

and {n;} = N(8*) = B(8)*+. Then {ny} converges to some neN(S*) and

87, —~a—mn. Since § is closed, » is in m N D(8) and Sr = g—an.

Hence = S8r+ne¢D(T) and Tx = » which shows that T is closed. In -

addition, D((T8)*) = H, for suppose weD(T8); i.e., Su = 8r+n for some
reR(8%) N D(8) and neN (§*). Then

neR(8) N N(§") = R(8) n R(S)L = (0)
and, therefore, u—reN(8) = R(§*)+. Hence
D(T8) = {r+7=:7r<R(8%) N D(S), 2 R(S*)*}.
Given yeH and u = r+zeD(T8S),

IKT8u, )| = KT8, gy = 1<r, yd| < il Iyl < o) ]

which shows that y is in D(T8)*). Thus H = D((T8)*) = D(§*T*y
< D(T*) which in turn implies
1) H =D(T") = D(T) = R(8) N (5").

Assert that NV (8¥) is finite-dimensional. Suppose this is not the case.
Then by lemma 3 there exists a closed linear operator B with D(B)
& proper dense subspace of H and range in ¥ (S*). By hypothesis, (B*8)*
= §*B"™ = §*B. Since (B*§)* is closed, D(B) = N (8" B) is closed which
contradicts the property that D(B) is a proper dense subspace of H.
Hence N (S*) is finite-dimensional which, together with (1), proves that
R(8) has finite codimension. ) .

By fixing T and letting § “vary” we have

4. THEOREM. Suppose T is closed. Then (T8) = 8T for
defined 8 if and only if T is bounded on Y.

Proof. It is easy to see that if 7 is bounded on ¥, then (78) = §'7"
for all densely defined §. Assume that (I8) = 8'T’ for all densely defined
8 but D(T) 5 Y. Choose y ¢ D(T) and &' + 0 in X'. Define the bounded
operator § on X by 8z = #'(z)y. Then D(T8) = N(z') which is not
dense in X thereby contradicting the hypothesis that 78 ig densely defined.
Thus T is defined on all of ¥ and is bounded by the closed graph theorem.

all densely
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The remaining portion of the paper is concerned with conditions under
which (T8) = 8'1'.

5. LeMmA. If 8 is closed and R(S) N D(T) = R(8), then T8 is densely
defined, in which case (T'8) is an emtension of §'T'.

Proof. Let § be the 1-1 operator induced by S. Since §~! is closed
and RE(8) is complete, 87! is continuous on R(S). Thus

1) D(®)/N(8) = §R(8) = §7R(S) n D(T) « 8R(S) n D(T)

= D(TS)/N(S).

The assumption that § is densely defined together with (1) imply
D(T8) = X. The last statement in the lemma follows immediately from
the definition of a conjugate operator.

The next theorem is a straightforward generalization of theorem 1.
We have singled out the essential properties used by Sechechter [3].

6. THROREM. Suppose § is closed, Y = R(S) DN (direct sum) and
T is bounded on the closed subspace N < D(TI'). Then (T'S) =8'T".

Proof. By [2], IV.1.12, R(8) i§s closed. Since

D(T) = R(S) nD(T) O N

is dense in ¥ = R(8) @ N, it follows that Rmf) = R(8) = R(8)
and therefore TS is densely-defined by lemma 5. Hence (T'S) is an
extension of §’7’. The rest of the argument is exactly the same as
Schechter’s [3].

7. COROLLARY. Suppose 8 and T are closed and Y =R(8)DY,
where N is o closed subspace of D(T). Then (T8) =8'T".

8. CorRoLLARY. Suppose S is closed and B(8S) has finite codimension
in ¥. Then (T8) =8'T". (T need not be closed.)

Proof. By [2], IV.2.8, there exists a finite-dimensional subspace
N of D(T) such that ¥ = R(8)®N. Thus T is bounded on N and the-
orem 6 applies.

9. CorOLLARY. Let X =Y =2Z be a Hilbert space. Suppose 8 and
T are closed with the following properties:

(i) ¥ = N(8) nD(T) is closed;

(ily Nt n N (8% is finite-dimensional;

(iii) R(8) ds closed (e.g. N (8 « D(T) al}d R(8)
cod R(8) < oo). .

en (TS)* = 8*T".

ll?,zoof(. M) = R(8) ®N is a closed subspace of X and M* —-——R(S)L

AN' = N (8% n N+ ig finite-dimensional by (ii). Since D(T) is dense

is closed or
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in X, there exists, by [2], IV. 2. 8, a finite-dimensional subspace W of
D(T) such that X =M @ W =R(8)@N@® W. Then N, = N+W is
a closed subspace of D(7') and theorem 6 applies.

10. CoroLrARY. Suppose in corollary 9 that T' is also self-adjoint and
R(T) = D(S). Then the adjoint of 8*T'S is §* TS, where T8 is the minimal
closed linear extension of I'S. In particular, if T is self-adjoint, cod R(8) < oo
and 8 is bounded on X, then 8* TS is self-adjoin.

Proof. Let 0 = 8"T = (T8)*. Then C is closed and D(C) = D(T)
is dense in X. Therefore I'§ is closable and by corollary 9 applied to O
and 8, (8*T8)* = (08)* = 8*0* = §*T&S.

In the proofs which follow, use is made of the polar decomposition
theorem which appears in [1], XIL. 7. 7.

11. Leymas. Let T and 8 be closed densely defined linear operators
Jrom Hilbert space H into H. Then for IT| = (T*T)", the Jollowing
statements are equivalent:

() (I8)* = §*1*%;

(i) (I718)* = 8*|T};

(i) ((I+ |TDS)*|T] = 8*|T)(I+|T)).

Proof. Since D(T) = D(|T]), the assumption that 78, |T|8 or
(I+17))8 is densely defined implies that each adjoint operator appearing
on the left side of equations (i), (i) or (iii) exists and is an extension of
the corresponding operator appearing on the right side.

(i) implies (i). ' can be expressed in the form T = VIT|, where

V is a partial isometry with initial set' B(|T]) and final set R(T). Since -

V is bounded on H,
(A) (T8 = (V|T|8)* = (IT| 8 V* = 8* |7 V* = 8*T*.

(i) implies (ii). Given uweD((|T|8)*), w is of the form u — V*ptn
forsome weR(V*): = N(V) = R(IT|)* = N(T)) = D(S*|T)) < D ((T|8)).
Hence veD((|7|8)" 7*) which equals D (8*|T|7*) by (A). Thus V*v and
therefore 4 are in D(8*|T)).

(ii) implies (iii). Since T is self-adjoint,

T4+ |T) Suy |T|v) = (| T|Su, (I+]Thvy, weD(T|8), veD(|T]),

. from which it is easily seen that

(T+1T)8* 1) = (718" T+1T)) = 8*|T|(T+|T)).
(iii) implies (ii). Suppose veD((|T|8)"). Since R(I+|T|) = H, there

exists & w such that v = (I+ |T|jw and

<, (IT18) 0y = (|T|8u, (T4 | T))wy = (I+|2]) Su, |T|w)

icm°®
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for all weD(|T]S). Hence
(T80 = (I+1T)8)*IT|w = 8" |T|(I+|T))w = 8| T}

12. TueorEM. Let T and S be closed densely defined linear operalors
from Hilbert space H into H. If N(8"(I+|T))) and R(S) are closed, then
(T8)* = §*T*.

Proof. Since N (8*(I-+|T)) is closed,

(I+|T)' N (S*(I+|T) =N (S*T+IT)7) =N,
iy cloged in Hilbert space D(|T}) with inner product given by
<ty Oy = I+ TN w, (I+]TN)v>,  w, veD(T)).

W(; determine the orthogonal complement of N, in D(|T]) with
respect to <, Yy Suppose veD(|T|) and (v,p}m =0 f.or all neNI;
Then (v,(I-+|T|)*n) =0 for all neN, or, eqmva;lemily, since (I—THT*I)L
is sm‘jectilve, (v, 2y =0 for all ze(I+|T|)2N, = N(§"). »Thl}s veN(87)
= 1—?,_(;37) = R(S). Hence every ueD(|T|) can be expressed in the form
(a) w = Swtn, neN(S*I+ITN).

i i =0 for

‘We now show that D(|T|8) is dense in H. A.ssume {uy o) 0
all weD(|T|8). In particular, spe N(8)+ = R(S"). Since R((I+|T])?) = H,
(a) implies
(b) R(§*) = R(§*(I+IT)?) = R(S"(I+IT])?)8-
| = S = Cu, S*I+

Hence 1, = 8* (I+ |T|)? 8o, for some v, and 0 = {u, Uy = K
+ | T))*8ve) - I+ 1T) Su, (1+th)S%>f01’_ﬂﬂlm_beD(lT1S)-Takmgg I-Tl'lﬂgi
we obtain (I |T])8v, =0 which in turn implies %, = 0. Thus D(

is dense in H. _ ) .
’ eIn order to complete the proof of the theorem, it suffices to verify

(iii) of lemma 11. Assume veD(((I+T8J" |T1); ie.
I+ 1TN) Su, | T)0y = Cu, (T+1TDS) | Tjw)y  for all uweD(|T|8).

In particular, since N (8) = D(|T|8), we have
((I—|~IT\)S)"‘|T|’Uel\T(»S')L = R(8% =R(S*(I+]TI)ZS) .
by (b). Thus ((I-+|T])8)*|T|v = §*(I+|T))*Sw for some w and since

d. Moreover, by (a),
i jective, |T|v = (I+|T|)d for some K .
fzi‘ﬁ‘zf%ﬁ?ziyx ﬂ;»e!N(,g* (I+|T)?). To summarize, ’ueD(((I—r iT)) 8 [T[)

implies )
AT+ 1T)) Su, (L+|T)) (8e+n)> = <, ((I+ 171 8)* | T1o>
' = (u, 8 (I+|T|*Swy  for all ueD(|T|8).
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Since ne N (8*(I+|T1)%), if follows that
(T4 1) Suy (T4 |T)(Se— Sw)y =0 for all weD(|T|S).

Taking # = z—w and recalling that I--|T| is 1-
bt G e e o +|T] is 1-1, we may conclude

((T+1T) S| TI0 = 8 (I+[T))* 8w = 8*(I+ |T))28 = S (I+|T))%a
=8I+ [T)|Tlv = 8*|T|(I+ |T))w.
Thus (iii) of lemma 11 holds. -

13. TerorEM. Let T and S be closed d j
‘ . : ensely defined linear operator
fmeHzlbefrt space H into H. If 8*(I--|T) is closed, then (TS)* ﬁs*;*s
roof. Since I+ |T| is self-adjoint and surjecti * .
is closed, it follows from theorem 1 that uriective and ST
23
SUI+TN) = (8" (T + | 7)) =((I+|T)) 8)".
In particular, (iii) of lemma 11 holds. Hence (TS)* = §*T*
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0. INTRODUCTION

One of the main purposes of this paper is to ‘characterize all the
subspaces of general Banach function spaces admitting contractive pro-
jections onto them, and to extend some of the results when the functions
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