P. Uss

158

STUDIA MATHEMATICA, T. XXXVII. (1971)

- and R. S. Phillips, Functional analysis and semi-groups, Providence
- 1957.
 [6] G. Köthe, Dualität in der Funktionentheorie, J. Reine Angew. Math. 191 (1953), p. 30-50.
- [7] J. Leray, Valeurs propres et vecteurs propres d'un endomorphisme complètement continu d'un espace vectoriel à voisinages convexes, Acta Sc. Math. Szeged 12 (1950), p. 177-186.
- [8] Д. А. Райков, О еполне непрерыености сопряженного оператора, ДАН СССР 119. 3 (1958), р. 446-449.
- [9] A. Robertson and W. Robertson, Topological vector spaces, Cambridge 1964.
- [10] J. Sebastiao e Silva, Su certe classi di spasi locamente convessi importanti per le applicazioni, Rend. Math. Appl. 14 (1955), p. 388-410.

Reçu par la Rédaction le 21.10.1969

Ъy

J. A. JOHNSON (Stilliwater)

In this paper we show how an idea due to de Leeuw (see [2], lemma 3.3) can be adapted to vector-valued measures to yield a result concerning extreme points of the dual ball of a tensor product of Banach spaces (Theorem 1.1). In Section 2 we give an elementary non-measure-theoretic proof of de Leeuw's lemma which yields a stronger result than the original statement. This idea is then applied to obtain results on exposed points of the dual ball of a tensor product of Banach spaces.

1. We will denote the dual of a normed space E by E', the unit ball of E by U_E , and the set of extreme points of a convex set K by ext (K).

If E and F are normed spaces, then $E \otimes F$ denotes their (algebraic) tensor product, $E \otimes_a F$ denotes $E \otimes F$ endowed with a crossnorm α (see [7]) and $E \otimes_a F$ the completion of $E \otimes_a F$.

We will restrict our attention to the crossnorm λ (see [7]) for the following reason: every extreme point of $U_{E \oplus aF}$ is of the form $x' \otimes y'$, $x' \in E'$, $y' \in F'$, if and only if $\alpha = \lambda$. This follows from the definition of λ and the $K^2 - M^3 - R$ theorem (see [1], p. 80).

If S is a compact Hausdorff space and E a Banach space, we let $C_E(S)$ denote the E-valued continuous functions on S with sup-norm and C(S) denote the scalar-valued continuous functions. If $f \in C(S)$ and $x \in E$, $f \cdot x : s \to f(s)x$ defines a function in $C_E(S)$. If F is considered as a subspace of C(S), then $E \otimes_{\lambda} F$ is isometrically embedded in $C_E(S)$ by the canonical linear mapping which sends $x \otimes f$ to $f \cdot x$.

X will denote a subspace of $C_E(S)$, and for $s \in S$, let Φ_s : $X \to E$ be defined by $\Phi_s(f) = f(s)$. For each $x' \in E'$, the composition $x' \circ \Phi_s$ of x' and Φ_s is in X'.

LEMMA 1.1. $\{x' \circ \Phi_s : x' \in U_{E'}, s \in S\}$ is weak* compact in $U_{X'}$.

Proof. If E' and X' are given their weak* topologies then the mapping $(x',s) \to x' \circ \Phi_s$ is continuous from $U'_{E'} \times S$ into X', q. e. d.

LEMMA 1.2. Every extreme point of $U_{X'}$ is of the form $x' \circ \Phi_s$, where $x' \in U_{E'}$ and $s \in S$.

Proof. Since $||f||_{\infty} = \sup\{|(x' \circ \Phi_s)(f)|: x' \in U_{E'}, s \in S\}$, the conclusion follows from lemma 1.1 and the $K^2 - M^3 - R$ theorem (see [1], p. 80), q. c. d.

Remark. Lemma 1.2 is a vector-valued generalization of [4], lemma 6, p. 441.

PROPOSITION 1.3. If $\Phi_s(X)$ is dense in E and if $x' \circ \Phi_s$ is an extreme point of $U_{X'}$, then $x' \in \text{ext}(U_{E'})$.

Proof. Since $\Phi_s(X)$ is dense in E, the adjoint Φ_s^* of Φ_s is a linear isometry of E' into X' and hence, an affine homeomorphism of $U_{E'}$ onto $\{x' \circ \Phi_s : x' \in U_{E'}\}$, q. e. d.

Following the technique of de Leeuw in [2], lemma 3.3, we will next establish a condition under which all functionals of the form $x' \circ \Phi_s$, $x' \in \text{ext}(U_{E'})$, $s \in S$, are extreme points of the dual ball of a tensor product. First we need the following easy lemma. For notation and basic facts concerning vector-valued measures, see [3].

LEMMA 1.4. Let $f \in C(S)$, $||f||_{\infty} = 1$. Let $m \in C_{\overline{E}}(S)'$ (i. e., m is an E'-valued regular Borel measure on S) with $||m|| = \tilde{m}(S) = \overline{m}(S) = 1$ (1).

If $\|\int f dm\| = 1$, then \overline{m} ({t: |f(t)| < 1}) (and hence m ({t: |f(t)| < 1})) is zero.

Proof. $\int |f| \, d\overline{m} \geqslant \|\int f \, dm\| = 1$. Also $0 \leqslant |f| \leqslant 1$ and $\overline{m}(S) = 1$, so $\int |f| \, d\overline{m} \leqslant 1$. Hence $\int |f| \, d\overline{m} = 1$. Let g = 1 - |f|. Then $0 \leqslant g \leqslant 1$, \overline{m} is a positive measure on S and $\int g \, d\overline{m} = 0$. Thus, g = 0, \overline{m} -a. e., q. e. d.

THEOREM 1.1. Let A be a subspace of C(S), E a Banach space, and $X = A \otimes_{\lambda} E \subset C_E(S)$. If there is a function in A that peaks at s relative to A, then $x' \circ \Phi_s \in \text{ext}(U_{X'})$ for each $x' \in \text{ext}(U_{E'})$.

Proof. Suppose φ_1 and $\varphi_2 \in U_{X'}$ with $x' \circ \varPhi_s = \frac{1}{2}(\varphi_1 + \varphi_2)$. By the Hahn-Banach theorem, each φ_i extends to an element of $C_E(S)'$ of norm one and is, therefore, represented by an E'-valued regular Borel measure m_i on S with $1 = ||\varphi_i|| = \tilde{m}_i(S) = \overline{m}_i(S)$. $x' \circ \varPhi_s$ is represented by the measure m such that m(T) = x' if $s \in T$ and m(T) = 0 if $s \notin T$. Thus, for each $f \in X$,

$$\int f \, dm = \frac{1}{2} \int f \, dm_1 + \frac{1}{2} \int f \, dm_2.$$

If $g \in A$ and $n = m, m_1$, or m_2 , then $\langle x, \int g \, dn \rangle = \int g \cdot x dn$ for $x \in E$. Hence for each $g \in A$,

$$\int g \, dm = \frac{1}{2} \int g \, dm_1 + \frac{1}{2} \int g \, dm_2$$

(as elements of E'). Now suppose $h \in A$ peaks at s relative to A. Then

$$x' = h(s)x' = \int h dm = \frac{1}{2} \int h dm_1 + \frac{1}{2} \int h dm_2.$$

But $x' \in \text{ext}(U_{E'})$, so $\int h \, dm_i = x'$, i = 1, 2. Let $S_+ = \{t \in S: \ h(t) = 1\}$, $S_- = \{t \in S: \ h(t) = -1\}$, and $S_0 = \{t \in S: \ |h(t)| < 1\} = S \sim (S_+ \cup S_-)$. Then $m_i(S_0) = 0$ (i = 1, 2) by lemma 1.4. But

$$\begin{split} x' &= \int h \, dm_i = \int\limits_{S_+} h \, dm_i + \int\limits_{S_-} h \, dm_i + \int\limits_{S_0} h \, dm_i \\ &= \int\limits_{S_-} dm_i - \int\limits_{S_-} dm_i = m_i(S_+) - m_i(S_-), \quad i = 1, 2. \end{split}$$

Now, by definition of "peaking", $S_+ = \{t \in S: \ g(t) = g(s) \ \text{for all} \ g \in A\}$ and, since $A \otimes_{\lambda} E$ is dense in $X, S_+ = \{t \in S: \ f(t) = f(s) \ \text{for all} \ f \in X\}$. Likewise, $S_- = \{t \in S: \ f(t) = -f(s) \ \text{for all} \ f \in X\}$. Thus, for each $f \in X$, we have

$$\begin{split} \varphi_i(f) &= \int f \, dm_i = \int\limits_{S_+} f \, dm_i + \int\limits_{S_-} f \, dm_i + \int\limits_{S_0} f \, dm_i \\ &= \langle f(s), \, m_i(S_+) \rangle + \langle -f(s), \, m_i(S_-) \rangle \\ &= \langle f(s), \, m_i(S_+) - m_i(S_-) \rangle \\ &= x'(f(s)) \\ &= x' \circ \varPhi_s(f), \quad i = 1, 2, \end{split}$$

q. e. d.

Remark. This characterizes the extreme points of the dual ball of $\lim_{R}(S, d^{\alpha})$, $0 < \alpha < 1$, under certain conditions (see [5] and [6]).

2. We now give the stronger version of de Leeuw's original result.

THEOREM 2.1. Let A be a subspace of C(S), S compact Hausdorff. Suppose there is a function f in A that peaks at $s \in S$ relative to A. If $\varphi \in U_A$, and $\varphi(f) = 1$, then $\varphi = \varepsilon_s(\varepsilon_s(g) = g(s))$ for $g \in A$. In other words, ε_s is a weak* exposed point of $U_{A'}$ and a fortiori an extreme point.

Proof. Since f peaks at s relative to A, we have $\|f\|_{\infty} = f(s) = 1$ and, if |f(t)| = 1, then $\varepsilon_t = \pm \varepsilon_s$. Now, let $H = \{\varphi \in A' : \|\varphi\| = \varphi(f) = 1\}$. It is easy to see that if $\varphi \in \text{ext}(H)$, then $\varphi \in \text{ext}(U_{A'})$ and hence is of the form $\lambda \varepsilon_t$ for some $t \in S$ and $|\lambda| = 1$. But $\lambda \varepsilon_t \in H \Rightarrow \lambda f(t) = 1 \Rightarrow |f(t)| = 1 \Rightarrow \varepsilon_t = \pm \varepsilon_s$. Thus, every extreme point of H is of the form $\lambda \varepsilon_s$, $|\lambda| = 1$. But $\lambda \varepsilon_s \in H \Rightarrow \lambda f(s) = \lambda = 1$. Thus H has but one extreme point, ε_s . But H is a weak* compact convex set in A' and is therefore the closed convex hull of its extreme points. Hence, $H = \{\varepsilon_s\}$, q. e. d.

Remark. This result shows that every extreme point of the dual ball of lip (S, d^a) , $0 < \alpha < 1$, is a weak* exposed point (see [2] and [5]).

The idea of the above proof of theorem 2.1 applies to subspaces X of $C_E(S)$ as follows:

THEOREM 2.2. Suppose that, given any $x \in E$ with ||x|| = 1, there is an $f \in X$ such that $||f||_{\infty} = 1$, f(s) = x, and $||f(t)|| = 1 \Rightarrow \Phi_t = \pm \Phi_s$. If x'

⁽¹⁾ By [3], prop. 4, p. 54, the variation and \overline{m} semi-variation \tilde{m} of m are equal since m is E'-valued.

is a weak* exposed point of $U_{E'}$, then $x' \circ \Phi_s$ is a weak* exposed point of $U_{X'}$.

Proof. Since x' is a weak* exposed point of $U_{E'}$, we can find $x \in E$. ||x|| = 1, such that $\{y: ||y'|| = y'(x) = 1\} = \{x'\}$. Let $f \in X$ satisfy the hypotheses above. Define $H = \{\varphi \colon \varphi(f) = \|\varphi\| = 1\}$. If $y' \circ \Phi_t \epsilon H$, then $\|y'\| \leqslant 1$ and y'(f(t)) = 1, so $\|f(t)\| = 1$. Hence, $\Phi_t = \pm \Phi_s$ and f(t) $=\pm f(s)=\pm x$. Thus, $y'(x)=\pm 1$, so $y'=\pm x'$. Hence, the only extreme point of H is $x' \circ \Phi_s$.

Again, since H is the weak* closed convex hull of ext(H). H $= \{x' \circ \Phi_s\}.$

COROLLARY 2.3. Let A be a subspace of C(S) and $X = A \otimes_{\lambda} E$ (or $A \otimes_{i} E$). If there is a function in A that peaks at s relative to A and if x' is a weak* exposed point of $U_{E'}$, then $x' \circ \Phi_s$ is a weak* exposed point of $U_{X'}$.

Proof. Let $x \in E$, ||x|| = 1. Let $g \in A$ peaks at s relative to A. Then $f = g \cdot x$ satisfies the hypotheses of theorem 2.2, q. e. d.

References

- [1] M. M. Day, Normed linear spaces, New York 1962.
- [2] K. de Leeuw Banach spaces of Lipschitz functions, Studia Math., 21 (1961), р. 55-66.
- [3] N. Dinculeanu, Vector measures, Berlin 1966.
- N. Dunford and J. Schwartz, Linear Operators, Part I, New York 1958.
- T. M. Jenkins, Banach spaces of Lipschitz functions on an abstract metric space, Thesis, Yale University, New Haven, Ct. 1967.
- [6] J. A. Johnson, Banach spaces of Lipschitz functions and vector-valued Lipschitz functions, Bull. Amer. Math. Soc. 75 (1969), p. 1334-1338.
- [7] R. Schatten, A theory of cross-spaces, Ann. of Math. Studies, No. 26, Princeton, N. J., 1950.

Recu par la Rédaction le 2. 11. 1969

On positive functionals on a group algebra multiplicative on a subalgebra

A. HULANICKI (Wrocław)

This paper was motivated by two independent facts. One, observed by Thoma [13], was that if G is a discrete group in which every element has finitely many conjugates and 3 is the center of the l_1 -group algebra of G, then a class-function which defines a multiplicative functional on 3is positive-definite because 3 is symmetric. The other fact, observed by M. Moskovitz (oral communication), was that if G is a locally compact group, K a compact subgroup of G, then any bounded K-spherical function on G is positive-definite, if $L_1(G)$ is symmetric.

Of course, if $L_1(G)$ is symmetric, then any Banach *-subalgebra of it is symmetric. Thus if one knows that $L_1(G)$ is symmetric, one can establish the positive-definiteness of certain functions by means of the facts revealed above. However, to decide whether $L_1(G)$ is symmetric may be difficult even for such simple groups as the groups of motions (cf. [1]). The aim of this note is to propose a property which resembles symmetry of a Banach *-algebra and which, on one hand, is much easier to prove for $L_1(G)$ for a large and natural (cf. [2], [5], [8], [9], and [14]) class of locally compact groups G and, on the other hand, implies the positiveness of multiplicative functionals on a *-subalgebra of $L_1(G)$ in which the functions with compact support are dense.

This will lead to two theorems in section 4, one of which asserts that if G is $[FC^-]$, then the set of extreme positive-definite, normalized class functions is equal to the set of the multiplicative functionals on the center of $L_1(G)$. Under a more restrictive assumption a similar result has been recently obtained on another way by H. Kaniuth. The other implies e.g. that the spherical functions on a group which is an extension of a nilpotent group by a compact group are positivedefinite.

The paper is organized as follows. Section 1 is devoted to a theorem on Banach *-algebras and the crucial property (A) which implies that multiplicative functionals are positive. In section 2 we turn to group