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Extreme points in tensor products
and a theorem of de Leeuw

by
! J. A. JOHNSON (Stilliwater)

In this paper we show how an idea due to de Leeuw (see [2], lemma
3.3) can be adapted to vector-valued measures to yield a result concerning
extreme points of the dual ball of a tensor product of Banach spaces
(Theorem 1.1). In Section 2 we give an elementary non-measure-theoretic
proof of de Leeuw’s lemma which yields a stronger result than the original
statement. This idea is then applied to obtain results on exposed points
of the dual ball o% a tensor product of Banach spaces.

1. We will denote the dual of a normed space I by E’, the unit ball
of B by Ug, and the seb of extreme points of & convex set K by ext (K).

It E and F are normed spaces, then B ® I denotes their (algebraic)
tensor product, E ®, F denotes B @ F endowed with a crossnorm «
(see [7]) and ¥ &JKF the completion of B®,F.

We will restrict our attention to the erossnorm 1 (see [7]) for the
following reason: every extreme point of Upger 18 of the form #'®y’,
o' B,y <F', it and only if a = 2. This follows from the definition of
1 and the K2— M3— R theorem (see [1], p. 80).

T § is a compact Hausdorff space and F a Banach space, we let
C(8) denote the H-valued continuous functions on § with sup-norm
and C(S) denofe the scalar-valued continuous funetions. If feO(S) and
weB, f-u: s —~f(s)o defines a function in Cg(S). If F is considered as
a subspace of C(8), then H®,F is isometrically embedded in Cz(8) by
the canonical linear mapping which sends 2®f to f-.

X will denote a subspace of Cx(8), and for se8, let &;: X > X be
defined by @,(f) =f(s). For each 2'<H’, the composition #'o @, of z”
and @, is in X', ’

LEmva 1.1 {@/o®, : @ eUg, seS} is weak” compact i Ug.

Proof. If B and X’ are given their weak* topologies then the mapping
(%', §) — @’ 0 D, is continuous from Uy x § into X', g. e. d.

LEnra 1.2. Every ewtreme point of Ux: is of the form 2’0 D,, where
o' eUg and sel.
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Proof. Since |fle = sup{l (@ oD, () #'eUg,5€8}, the conclu-
sion follows from lemma 1.1 and the E*—M*—R theorem (see [1], p.
80), q. ¢. d. .

Remark. Lemma 1.2 is a vector-valued generalization of [4], lemma 6,
p. 441.

PROPOSITION 1.3. If @,(X) is dense in B and if o'0 D, is an exireme
point of Ux:, then o' e ext(Ug:).

Proof. Since @,(X) is dense in ¥, the adjoint &F of &b, is a linear
isometry of B’ into X’ and hence, an affine homeomorphism of Uy, onto
{#'o®,; o' <Ug}, q.e. d

Following the technique of de Leeuw in [2], lemma 3.3, we will next
establish a condition under which all functionals of the form #'o®,,
o' ext(Usg), s¢8, are extreme points of the dual ball of a tensor product.
First we need the following easy lemma. For notation and basic facts
concerning vector-valued measures, see [3].

LEMMA 1.4. Tet O (8), |flle = 1. Let meCy(8) (4. 6., m is an B'-valued
regular Borel measure on S) with ||m| = Mm(8) = m(S) =1 ().

. If |ffam|| =1, then 7 ({&: |f(1)] < 1}) (and hence ‘m ({&: 1F ) <1})
s zero. :

Proof. [|fldm = |[fdm| =1. Also 0<|fl<1 and @m(8) =1, so
JIftam<1. Hence [|f|dm =1 Tet g =1—|f]. Then 0<<g<1, m is
a positive meagure on § and [gdm = 0. Thus, g = 0, #-a. 6., q.o.d.

THEOREM 1.1. Let A be a subspace of C(S), £ a Banach space, and
X = A®,F < Cx(8). If there is a function in A that peaks at s relative
t0o A, then a'od,cext(Ux,) for each a'ecext(Uy).

Proof. Suppose ¢, and ¢,eUx, with 2'0P, = %(p,-+¢,). By the
Hahn-Banach theorem, each g; extends to an element of Cg(S)’ of norm
one and is, therefore, represented by an F'-valued regular Borel
meagure m; on 8 with 1 = [jpyl| = M,(S) = W;(8). 4'o0P, is represented
by the measure m such that m(T) =o' if s and m(T) =0 if s¢T.
Thus, for each feX,

[fam =3 [ fam+3 [ fam,.

It ged and n = m, m,, oT My, then <z, [gdn) = [g-adn for weH.
Hence for each ged,

Joam =4[ gam+3 [ gim,
(as elements of E'). Now suppose hed peaks at s relative to A. Then

o’ =h(s)m.’ =fhdm = Jgfhdml—l—%fhdmz.

(1‘) By [3], prop. 4, p. 54, the variation and m semi-variation # of m are
equal since m is E’-valued.
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But 2’ cext(Ug), 50 [hdm; =a',i =1,2. Let 8, = {t8: b(?) =1},
8. = {teS: h{t) = —1}, and S, ={teS: |R(D <1} =8 ~ (8, U 8_).

Then m;(8,) =0 (¢ =1, 2) by lemma 1.4, But
o =[hdm; = [ham+ [ hdm+ [ ham,
Sy . s A

= [dm— [ dm; = my(S)—my(8), ¢=1,2.
St ST
Now, by definition of “peaking”, S, = {te8: g(t) = g(s) for all
geA} and, since A®, F is dense in X, 8, = {teS: f(t) = f(s) for all
feX}. Likewise, S_ = {te8: f(f) = —f(s) for all feX}. Thus, for each
feX, we have
wlf) = [fam; = [fam+ [fam+ [Fam,
55 S_ Sy
= (f(8)y my (80> +<—F(s), my(S_)>
= {f(s), my(83) — mg(S_)>
= 2'(f(s))
=a'od,(f), i=12
q.e. d
Remark. This characterizes the extreme points of the dmal ball
of lipx(8, d%), 0 < a < 1, under certain conditions (see [5] and [6]).
2. We now give the stronger version of de Leeuw’s original resulf.
TemorEM 2.1. Let A be a subspace of C(8), 8 compact Hausdorff.
Suppose there is a function f in A that peaks at s<S relative to A. If peU
and o(f) =1, then ¢ = &(s(g) =g(s) for ged). In other words, e is

a weak® exposed point of Uy and o fortiori an extreme poini.

Proof. Since f peaks at s relative to 4, we have ||fll. = f(s) =1
and, it |f(#)| = 1, then & = 4. Now, let H = {ped”: gl = o(f) = 1}.
Tt is easy to see that if geext(H), then peext(Uy) and hence is
of the form e, for some teS and || = 1. Bubt AgeH = Af(1) =1 =[f(})|
—1 = g = ¢, Thus, every extreme point of H is of the form Aeg
|A| = 1. But As;eH = Af(s) = 1 = 1. Thus H has but one extreme point,
&,. But H is a weak* compact convex set in A’ and is therefore the closed’
convex hull of its extreme points. Hence, H = {5}, d. 6. d.

Remark. This result shows that every extreme point of the dual
pall of lip (8, d%),0 < a< 1, is a weak* exposed pointi (see [2] and [5]).

The idea of the above proof of theorem 2.1 applies to subspaces
X of Ox(8) as follows:

THEOREM 2.2. Suppose that, given any weH with |z =1, there is
an feX such that |\fle =1, f(s) =z, and |f@))| =1 = @, = +B,. If o
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is a weak* exposed point of U, then o' o®, 8 @ weak™ exposed point
of Ugr. : .

Proof. Since o is a weak® exposed point of Uz, we can find zeH,
|zl =1, such that {y: lly'll =% (@) =1} = {¢'}. Let feX satisfy the
hypotheses above. Define H = {p: @(f) = ol =1} If y'oD,eH, then
<1 and ¥/(f@) =1, so |f@) =1. Hence, P, = £P, and f(i)
= +f(s) = +@ Thus, y'(2) = £1, 50 y' = --o'. Hence, the only
extreme point of H is a'0®D;.

Again, since H is the weak* closed convex hull of ext(H), H
= {#'0Dg}.

COROLLARY 2.3. Let A be o subspace of O(8) and X = A®,0 (or
A&,E). If there is a function in A that peaks at s relative to A and if »' is
o weak® emposed point of Uy, then w0 Dy is a weak® exposed point of Ux..

Proof. Let zeH, ||| = 1. Let geA peaks at s relative to A. Then
f =g-@ satisties the hypotheses of theorem 2.2, ¢.e. d.
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On positive functionals
on. a group algebra multiplicative on a subalgebra

by
A. HULANICKI (Wroctaw)

This paper was motivated by two independent facts. One, observed
by Thoma [13], was that if @ is a discrete group in which every element
has finitely many conjugates and 3 is the center of the I-group algebra
of @, then a class-function which defines a multiplicative functional on 3
is positive-definite because 3 is symmetric. The other fact, observed’
by M. Moskovitz (oral communication), was that if & is a loeally compact
group, K a compact subgroup of &, then any bounded K-spherical function
on @ is positive-definite, if L,(G) is symmetrie.

Of course, if L,(G) is symmetric, then any Banach *-subalgebra
of it is symmetric. Thus if one knows that L, (&) is symmetric, one can
establish the positive-definiteness of certain functions by means of the
facts revealed above. However, to decide whether I,(6) is symmetric
may be difficult even for such simple groups as the groups of motions
(cf. [1]). The aim of this note is to propose a property which resembles
symmetry of a Banach *-algebra and which, on one hand, is much easier
to prove for L, (@) for a large and natural (cf. [2], [5], [8], [9], and [147)
class of locally compaet groups G and, on the other hand, implies the
positiveness of multiplicative functionals on a *-subalgebra of IL;(&)
in which the functions with compact support are dense.

This will lead to two theorems in section 4, one of which asserts
that if G is [FC~], then the set of extreme positive-definite, normalized
class functions is equal to the set of the multiplicative functionals on
the center of L,(G). Under a more restrictive assumption a similar
result has been recently obtained on another way by H. Kaniuth.
The other implies e. g. that the spherical functions on a group which
is an extension of a nilpotent group by a compact group are positive-
definite.

The paper is organized as follows. Section 1 is devoted to a theorem
on Banach *-algebras and the crucial property (A) which imples that
multiplicative functionals are positive. In section 2 we turn to group
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