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and, for n =2,3,...

dn = d'n—l'“ gn—l%’ Gn and M (dn) < Jl[(dn-—l_ gn‘—l_l— gn) + 5/2"‘9

from which it follows that d; <d,< ... and, for n = 1,2, ...
2 2"

For all zeex X, lim,d, (2) > lim, g, (%) > 0 hence, from (d), lim,infd, (X)
> 0 and so lim,M(d,) > 0. Combining this with (14), lim,M(g,)> —¢
and the required result follows since & is arbitrary.

04  d,>g, and M(dn)—an)<e(—1—+...+1)<e.
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On the function g; and the heat equation
by

C. SEGOVIA (Princeton, X. J.) and R. L. WHEEDEN (New Brunswick, N. J.)

INTRODUCTION AND NOTATIONS

In the present paper, a function analogous to the g; function of
Littlewood, Paley, Zygmund, Stein (see [13] and [10]) is introduced for
functions u (x, f, ¥) which are solutions of the boundary problem

ou 0% 02 0%
T T s T

y>0

and
limu(w,t,y) = flz, ).

y—0

The definition of g} is given in section 2, (2.1), and its properties
concerning the preservation of I? classes are discussed in theorems (2.2_),
(2.3), and (2.4). The method used here is an adaptation to the parabolic
case of the one found in C. L. Fefferman’s doctoral dissertation [2]. In
section 3, theorem (3.1), the function g} is applied to obtain a charac-
terization of the 2?7 spaces introduced by B. F. Jones in [4] and [5].
This characterization is suggested by those given by Hirschman [3]
and Stein [9]. Also, a generalization of the g-function of Littlewood—
Paley involving fractional derivatives is considered (theorem (2.25)).
For an analogue in the case of analytic and harmonic functions, see [3]
and [8].

We shall denote by E,., the set of all (n+ 1)-tuples (4, ...,'wn., 1)
= (#,t) of real numbers, with the explicit intention of distinguishing
the last variable. E;,, denotes the set of all (n+2)-tuples (1, ..oy Ty T Y )
of real numbers with y > 0. By |z| we denote the absolute value of

n .
(%4, ..., @), which is given by (Ma})'. The eomplement of a set A is
1

denoted by A" and its Lebesgue measure by |4]. The definition of Fourier


GUEST


58 C. Segovia and R. L. Wheeden

transform of a function f(x, t) L} (By11) We use is
flm, 1) = f exp{—i(z2,+ ...+ @2, 1)} f(2, 5)deds.
Ept1
Therefore, Plancherel’s theorem reads as follows:

1 3 N
f Fla, 0g(@, Hdvdt = ——— f Fw, 0§ (@, Hawdr.
. (2)

n+1 B
By & we dgnote the space of all infinitely differentiable functions defined
on E’“‘l with derivatives decreasing at infinity faster than any poly-
nomial. The dual space & is the so-called space of tempered distributions.

n+1

SECTION 1
PRELIMINARIES

. Let us consider the kernel I'(z, ¢, ), y > 0, introduced by B. F. Jones
in [4], and defined as

4 [ o]yt
I'(z,t,y) = (4m)BFOREEaR eXPl_ ol

}! >0,

0, t1<0.

‘We list here some properties of this kernel that will be used later.
1. The kernel I'(z,t,y) is positive and

[ T tyy)deat =1

En+l
for every y > 0.

2. If y, and y, are positive numbers then
I(z,t, Yy *I (@1, y,) = I'@, 1y y14-9,).
3. It f(w,t)elP(B,.)), 1< p< oo, then

W@, t,y) = [ Llo—z, t—s,y)f(z, 5)deds
E,

satisfies "
(@) Ju@, ¢, Yl <|fl,, for every y > 0, and
(b) Llp}u(m, t,y) = f(w,t) a.e. and in norm.
4. I p' = p/(p—1), then

(1.0) ( [ I, s, YPawal)'’" < 4,y

Byt
for y > 0.
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5. The Fourier transform of I'(x, t, y) in the variables z, ¢ is given by
Pla,t, y) = exp{—yVlal*+ it}

for y > 0. The branch of 2" chosen is that assigning positive values
to 21 for positive values of the variable 2.
6. For the partial derivatives of I'(x,t,y) we have the estimates:

L1) (0080 Iz, 1, y)) < et iR hexp {— (2|2t y?) 8t}
(1.1) 20t 0y
and

100805 (i, t, y)] < ey~ VI (@, 2t ).
7. The function

(1.2) (la] 4+ 7+ gy wll— exp{— (24 y9)/8 111}

it
is bounded on E;, , for every » > 0.
Tor the proofs of these and other properties of the kernel I'(z,t, ¥),
see [4] and [5].
The following change of coordinates was introduced by E. Fabes

and N. Riviere in [1]. Let
&z, = QSinq:l e Sin(Pn—lsin‘Pn?

Typ—1 = QSin¢1 vee Sinq‘u—-IOOSqﬁn’

S P
@, = 08iNE; o8¢,
t = p?cos@,,
where 0 < ¢, <2r and 0<g; <= for i =1,...,n—1 We shall refer

to this as the parabolic polar coordinates on B, ;. Tts Jacobian satisfies

= " (1} cos?ey) (singy)" " ... (sing,_1),

or also
dowdt = g" T (14 coslep,) dedf,

where dQ denotes the element of area of the unit sphere in E, .. From
the definition of parabolic polar coordinates it follows that

o M

5+
4 4

which implies that

$o<Vinl*4 1t < 20

4
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We define the funection #°(x,?) as:

1
PO t(a—n—:’.)/z _ 2
syt = |G Tt o0,
0, 1= 0
for 0 < a < n-2. *
By (1.2), this funection is locally integrable, and if f(z,?) is a well
behaved function, say belonging to &, the integral

(1.4) _ [ #w—2,1—5)f(2, 5)deds

Byt

is absolutely convergent and defines an operator that will be denoted
by #.(f) and called the parabolic fractional integral of order . It is easy
to see that the function #°(x, 1) defines a distribution belonging to &’
and we shall compute its Fourier transform. Let ¢(x, f)es”. We have
- 1 = T
f oz, ) (@, t, y)dedt =—(§—n~);—+—1 ffp(:r,t)exp{——yl/lmiz—i—it}dmdt.
Fo!

Bty i+ 1

Multiplying both members by y°~!, integrating y from 0 to co and changing
the order of integration, we get

[ 3@ 0aa [ v re, s pa
0

Byt

1 = =

ZW f q:(w,t)dwdtf g/““‘exp{—yl/fmlz—i—it}(ly,
- Ept 0

or since

d - 2°T((a+1)/2)
I'(x =1 = p(a—n—2)/2 N
Of (@, 8, 9)y" " dy (LI g Moxp {— |a|2/4t}, 130,

2°T{(a+1)/2)

e f D exp {— Jal 41} (w, ) div dlt
) Epiy
I'(a) STy T
= gt f (V|24 68~ (=, t) dao dit.
oty

The c.ha-nge of the order of integration is justified by showing that
T‘Jhe. resulting integrals are absolutely convergent. In order to do this,
it is enough to prove that (Rel/lwlﬁ—}—it)““ and  #“ D oxy {— [w]2/41}
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are locally integrable functions. Passing to parabolic polar coordinates
and observing ReV [z[*-it/|V|z[Z+dt] is bounded below by a positive
constant; we have

M
f [V w2+ it " dedt < cf 0"y < oo
oM 0
if a < n-2. Similarly,
M
[ e exp {— oAt} drdi < [ ¢ o< o0
e<M ]

if @ > 0. Therefore (1.5) holds, and since

F(ai—l)/r(a) _ %mlzap(%)’

we get
Fo(@,1) = (Vial+i) .

This expression for the Fourier transform of #° and the next theorem
justify calling (1.4) the parabolic fractional integral of order a.

Parabolic version of the Sobolev theorem on fractional integrals
(see also [7]):
(1.6) TuroreM. Let f(r,t)el?(B,;,) and 1lqg=1/p—af(n+2),
0<a<nt+2 1<p,q<occ The parabolic fractional integral operator
of order a satisfies

el < Epaniifly

where the constant ¢,,, does not depend on I

Proof. We shall show that £, is an operator of weak type (p, )
for every p satisfying 1 < p < (n+2)/a. Let K, and K, be the restrictions
of #%(x,1) to the sets o < p and g > p respectively. Then

P
1.7 WK ol < ef o ldg = ep”,
0

(1.8) Kl < GU Q(u—n—2)2r+n+1dg)1h)’ — -t
p

where p’ = p/(p—1), and
(1.9) I ol < €™ 72
Moreover,

(110)  f(z, 0): |£u(D) @, 0] > 22)]
<, 00 1K oxf (@, 0] > B+, ) 1Earf(@, 0] > 2
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Let us consider first the case p =1, ||f|ly =1. If we choose u to be
2 constant times A~ V®*+2-% then (1.9) implies that the second term on the
right of (1.10) is zero. By Young’s theorem and (1.7), the first term is
majorized by eu®A™! = A~ +DIOH2=4 Therefore,

[, 1) 1Fuf) (@, )] > 20| < ea e,

which shows that £, is an operator of weak type (1, (n-+2)/(n42— a)).
The case 1 < p < (n-+2)/a is similar if we choose u to be constant
times 4”92 and use (1.8) instead of (1.9). The theorem then follows
from the Marcinkiewicz interpolation theorem. (See [14].)
Let us consider now the function ¥°(z, t), « > 0, defined as

( 1 t(u n—2)
(4n)" T (/2)

0, 1< 0.

Pexp{—i— (P[0}, ¢> 0,

G (x, 1) =

It is shown in [4] that %%(z, t) is integrable over K,,, with integral 1,
and that its Fourier transform is (14 |@|*+ it)~%2% For feI? (B,p,),1 <p
< oo, the operator

YN, ) = [ 9 (@—z,1—9)f(z,8)deds

En+1
is therefore well-defined and maps I?(FB,,,) into I? (B, ).

(1.11) Definition. The space 2% (B,.,),a>0 and 1< p < oo, is
defined as the image under ¢, of L?(H,,,); that is, f(z,?)e 2% if and
only if

fl@, 1)
for some @ el (E, ). The norm in 2% is defined by
Ifllpa = llelly-
Now, let feL”(E,,,) and denote by M(f) the function

= Z.(p)(z, 1)

S
M(f) (2, 1) —Sl}plm If IF(e, s)|dzds}

where I denotes a parallelepiped of the form

I ={(3): ln—el < hy...yta—0,l < h, J8—0y] < B*}
containing the point (z, ¢). The transformation from f to M(f) is of weak
type (p,p) for 1< p << co. (See [12].)

‘We now state a theorem whose proof is similar to that of theorem 6
of [0] and will therefore be omitted.

icm
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(1.12) TEEOREM. Let k(z,1) be a function defined on E,., which
satisfies |k(w, )| < (o), where @(s),s>0, s non-negative, decreasing
and such that

5}

[ p(s)s"+ds < oo.
0

Then the function g.(x,t) given by

r—2 t
g.(z,8) = ff(z 5) ( )dzds
En-‘-l
satisfies
%ﬂplgg(w O < e M (f)(x, 1),
where the constant ¢ is independent of f.
The funection g(f)(z,?) defined as
oo
au 2 1/2
s, =([ 9| 3wt @)
0 ay

where w(z,t,y) = flz, t)*I'(z,t,y), was introduced in [5]. In that
paper, it was shown that if feI?(EB,.)),1<<p < oo, then

(1.13) allfl < g (Nl < &l fllp)

the constants being positive and independent of f.

SECTION 2

PARABOLIC ANALOGUE OF THE g;‘ FUNCTION
OF LITTLEWO0OD, PALEY, ZYGMUND, STEIN

We now define our analogue of the ¢" function and study its prop-
erties regarding the preservation of L. The methods we use are those
developed by C. L. Fefferman in his thesis [2]. We also discuss a variant
of the g-function which involves derivatives of a fractional order (see [3]
and [8]) which will be needed in section 3.

Let u(z,t,y) be the convolution of a function feI?(H,..),1<p
< oo, and I(x, t, y). For i > 1, we define ¢} (f) (», 1) as

@21) gD,
)(11+2)A

- (=i

En+2

ou
oy

383 Y

2 dzdsdy \'/*
yn-)-l :
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We shall prove
(2.2) TarorEM. Let 1 < p < oo and p> 2 A There exist two positive
constants ¢, and ¢y such that

exllfll, < 193 (Dllp < eallflly

for feL?(E,.,). The constants ¢y, ¢y depend only on A, p and .

The part of the theorem asserting that (zlnf\lp\l\gZ (f)l]p will be
discussed at the end of this chapter. The part g5 (Nl < ealifl, is 2 conse-
quence of the Marcinkiewicz interpolation theorem (see [14]) and the
following two theorems.

(2.3) TrAEOREM. Let 2> 1 and p > 2. There exists a constant ¢ such
that

lgi (Hlly < eliflly

for every feIP(E,,,). The constant ¢ depends only on 4, p and n.
(2.4) THEOREM. Let 1< p <2 and 1 = 2/p. There exists a constant
¢ > 0 such that

(2.5) {(, 1) g2 (N (@, ) > pd < en™®lflp
for every u >0 and feL”(B, ). The constant ¢ depends only on n and p
Proof of theorem (2.3). Forp = 2, let ¢ = p/(p—2) and h(z, ) =

and hel*(H,,,). From the definition of ¢} (f)(#,t) and a change in the
order of integration, we have

[ #@, 06D, 0} dnd

Bpt1

du ® dedsdy y (o)

° h(z, t)dodt.
f' 6y (2,5‘,:’/)1 yn+1 (19}‘—*2!—{—11-—8]1/2-{—:(/) ( ) )
din Ept1

Since (Jo|+ s"2+1)"0+P* is integrable over K,., for 2>1, we obtain
from theorem (1.12) that

{ : : " M (B (e, 9).
SUP \——7 hz, t)d.)adt} <L eM(h
— y“‘“‘Enf,l( tw—ZIHt—si”“—w)

Thus

[ o, (@, P dwar< o

E, +
‘n+1 En+2

=¢ [ MO0, o) aeds.

Byt

2
M(h)(z, s)dzdsdy

ou
Y 'b“y_(z:'g: y)
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The last member above is less than or equal to

clbllyllg (5

and since h is an arbitrary non-negative function in LY(E,,,), it follows
that

llgz ()l < ellg (-

Applying (1.13) we get that [{g,l(j)[]pgc}]fﬂp, which is the statement
of the theorem.

Proof of theorem (2.4). Let I(z, t) be any parallelepiped containing
(2, t), not necessarily as its center, of the type

Igy = {(=,9):
and let f(z,?) be the function

1
jlz, 1) = zg{[I(xt)[ I(f 1f(z, 8)] dzds}

)]

|z1~—81] < h7 Tty l‘zn—cnl <h7 18*001 <h2}’

where feI?(E,,,). Since |f(2,s)” belongs to L'(X,.,), we have from
section 1 that
a0 flo, 0> i< [ (e, 9P deds.

Bty

Let us denote {(@,%): f(z,1) > uP} by Q. Since Q is open and has
finite measure the distance from a point (z, £) 2 to Q" is bounded. Denote
by @, —oo < k< oo, the grid of non-overlapping parallelepipeds of
the form

my+1 1 m m—1

where m; and m are arbitrary integers. These parallelepipeds have sides
of lengths 1/2% in the z; directions and 1/4% in the ¢ direction. In general,
if T denotes a parallelepiped with sides of lengths kb in the #; directions
and 72 in the ¢ direction, then I, I*, and I** denote parallelepipeds with
the same center as I and sides parallel to those of I with lengths 2nh,
4n®h?; Bnh, 250°h%; and 10nh, 100n*h* respectively. We define I7, to
be the family of all I<@, not contained in a parallelepiped belonging
to a IT, with k' <k, and such that I* < 2 but I™ & Q. Observe that
all the /7, with indices less than a certain number are empty. We claim
that the parallelepipeds in all the I, —oo < k < oo, cover £. For if
(%, 1) 2 and is not covered, then for every k we have at least one paral-
lelepiped I, <@, such that (%,%)el, and I;* ¢ Q. Pick a point (xy, %)«
£ NI Since the diameter of I;* tends to zero, the sequence (a, %)
converges to (%, 7), and hence (z, 1)e @', which is a contradiction. Clearly

Studia Mathematica XXXVIIL1 5
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the parallelepipeds belonging to all the IT, ean be ordered in a sequence,
which we shall denote by {I;}. These parallelepipeds are non-overlapping
and

A
@6) 2\ =121 < 5 Ifl5.

If (z,1) ¢ then f(x,1) < 47, so, by differentiation, we get
[fla,)<u 2.
for (»,t)¢R.
Since I'™* & @, there exists (#,1)eI;” N Q. Thus,
1
N flf(z, )P deds < u®
§) I:‘

80
1
o [ e pdeds <2,
T 1-”:
and since |I;*| = (10n)"**|I;|, we obtain
1
) T ?dzds < Ap®.
@10 7] If]f(z,s)\ s < Ay

Let 1, and 2 be the lengths of the sides of I;. Then, if (,1)el; and
s, s are the lengths of the sides of the largest parallelepiped with center
at (x,1) contained in 2, there exist finite constants ¢;, ¢, which are in-
dependent of ¢ and such that

(2.8) o l; <8< 6l

Tn particular, if I; intersects I, we get the fact that the ratio of I; and §;
is bounded above and below by positive constants which are independent
of ¢ and j.

To show (2.8), observe that since I, If c¢ @, then s> ¢l;. Also,
gince It* ¢ 2, we have s < ¢,0;.

We define f' (z,1) as

1 .
—lﬂff(z, sydeds, i (w,1)el;
3 I’:

e t) =
flz, 1), it (2,1)¢8,
and f(w,?) = f(&, )—F (@, 1). Note that |f'(z, )| < Ap ae. (by (2.7)
(2.9) I, <lfl,  and [l < 2(fl

icm°®
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f'" is supported on 2,
1
(2.10) = [ 1@ ores <y @y @),
I )
(2.11) [£(z, 8)deds = 0.
I

To prove the theorem, it is enough to show that (2.5) holds for both
f" and f" instead of f. For f we have from theorem (2.3) that

* ! ‘A e a9 !
iz, 0 g (F) (@, 1) > p}l <F\1f IIE\% .

and by (2.9), the last member is less than or equal to —AFII fl5.
w
Consider now f"'. Let
uw'(z, t,y) =f"(2,1) *I'(z,1,y)

ou" . or 1 or
Ty =y 2 )y

and

i
where %, denotes the characteristic function of I,. Hence denoting

" or
f 'in)*— by h;, we have

oy
LLAN )
oy ~
and
, (24 2 dedsdy |\
*f 1) = f(__,_.y____._ N\, oY
060 = [ (pomiry) |2 Me [
n+2
< !](1) (e, t)+g(2)(ms 1),
‘where
(n+2)2 2 dzdsdy \'2
W (g, 1) = f Yy 5 Rk
w0 =( [ (i) | e
E7T+2 (2. 8)¢1¢
and
(n+2)4 : > dzdsdy \"?
@ (g ) — f(___y_,__) k. \___._ .
PRI (+ ) | e[

F s (z.8)el;
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Consider first ¢®(x,?). We claim that

| 3 hlesim)| < 7‘1

(@8)Wl;

(2.12)

To prove this, we note

\Zhi(z s,y\ 2 B s,n)\\ (o— E,S—n,y)\dEdﬂ

(@8)ef; @al; 1t

or
< 3w |2 ey smn, ) [t miasan,
Esnl; (el 5
which by (2.10) is less than
(2.13) 4 ) . —(z—s,s—n, |-
n)e.

{2,8) ( i

We shall show later that for (z, ) ¢I,, the inequality

(2.132) sup
(Emely

r
—(— &, s—n,y)’

dy
. 2 le—ul’+ ’yz}
—(n+3)[2 g — 7
<1 Jf {s— ol exp{ c ol dudow

holds for positive constants A and ¢ not depending on 4. If so, our last
sum (2.13) is at most equal to

2 2 A
Au f ‘w\—(n+3)l2exp{_0£l’_l_t_y_l dudow = falad

- )
Ep+1 IU)‘ J fl/
which proves (2.12).
Hence,
g9z, )]
(n+2)/2
y dzdsdy
can [ (mpiareny) | S e ol B
# (lm 2|+ t—s'? —i—y) 2 (78, 9) Y+
En+2 (za)eI;
= Aud(z,1).

In order to show that

@.14) (o, 05 6O, > u)l < IS
I

* ©
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it is enough to prove that

(2.15) @, 1): T (@, 8) > <§; T

A
We claim that |[|J]; < —5= Iiflb. If so, we get
u?

(e, 1): J (@, 1) >#}I<7HJ”1\ IIpr,

. A
which proves (2.13). That ||J; < P Ifis can be seen as follows:
! dzds dy Y (n+2)2
]y = v hi(z, 8, l - ( -
(1112 y,)~ (=, :Zl)! 7 . §w—~2]+li—81”2—|—y dzdt
=4 f Zh z,s,y)ldzdsdy AZ J hi(2, 8, Y dedsdy.
B, (z s)el; i (@l
Now,
[ hete s, pldeasay
(z,s)¢fi
f dzds dy ff”(u w)——-—(zv—u s—w, y)dudo
(2 s)fI

which, by (2.11), i
(2.16)

dedsdy

., or
f ”‘ (%, o) —(z~u §— w,y)—-—é—y—(z—u s 8— 05, Y) pdudeo

(=a)T; 1i

where (u;, »;) is the eenter of I,.
We shall prove later that for (u, o)el; the integral

oo
(2.17) | (2
oy
(z,8)¢1;

. ar ‘
—w,Y)— ”@‘(z—ui’s_wi: "J)%dzd'gdy

is less than a constant independent of 4. If so, changing the order of in-
tegration in (2.16) we have that

A f]f” %, o) dudo < A\I]( f]f”(u ) 2’dudco)llp

Il 4
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majorizes (2.16). By (2.10), this is smaller than .A,u |Z;l. Hence

Wl < Ap D) IL)| = AplQI < e == If I

which proves our claim and therefore also (2.14).
Consider now ¢®(x,t). We shall show that
A
(2.18) H(@, 1): ¢® (@, 1) > p} é;;llf\lﬁ

where p = 2/A. By (2.6) we may consider only points (z,?)¢£. Then,
[g(z) (z, )T

=f°f( [mMzH[t_SIM_I—y )(m-z):IZ h(e,5.1) Iz dzdstily

0 (2,8)el;
{(n+2)A-n—1
Yy
< hy ’ deds dy
Z(f If (lo— 2l & [i— s [Py } Z): i(2,8,9) Y-
7 7 (2,8)e.

;) and (2,8)el;, we have

Now, for (w,1)¢2 (so (#,%)¢ 1,
2 o{lw— gl -+ [t—sl"}

lo— 2|+ |t —s"
where (2, s;) is the center of I;. Hence

1
(@) 2
99 (s, OF < 02 T

f f,!/(n-w)). n— 1\2 h (z SyJ

(2, s)cI

dz dsdy.

For the inner sum, we have

(2.19) ‘Zh(z s,y}

(2 s)sI (2. s)eIl

If (2,8)el; N IL, we have from (2.8) that I; c I;. Hence, denoting by
D, the union of those I; which are contained in I,, we obtain that (2.19)
is less than or equal to

[, w1
Dj

<o f T, w) (s —w) ="+ exp{

s—w>0

rr

(w, w)———(z—u s—w, y)|dudw.

du dw

Jal
ay (z_u: 8"‘w7f’/)

le—wl*+y*

8(3— ) }dudw,

icm°®

where f@(u,w) denotes the restriction of |f''(#,w) to D;. This last
integral is equal to a constant times

On the function g5 and the heat equation 71

1 ..
-y—(f(”*ﬂ(z, 8, 9).
Thus,

ffy(wﬂ’—% | 2 Rz, s,y)1 deds dy
(as)sI
<o [yt (2, 8, y)f dzds dy.
B,

n+2

By Plancherel’s theorem, the last expression is equal to

o f Yo n3ay [ (D (e, o) lexp (—yV T is Hededs

Ep+1
¢ | |f(7 (z, s)[2dzds f Y13 oy £ 2y ReV [o|*+is} dy
En+l
—o [ 1D, o) RV ERFim) T dads.
Bp+1

But since ReV|2[24-is < [V lel?+ is| < 3ReV|z|?+1is, the last integral
is majorized by
(n+2)i~-n—2

¢ flf‘/j’\(z, 8)(VIel+is) 2 lzdzds

Ept1 .
= U”[f( (n+2)/1—n—2)(f(]))]l\ (2, 8)”§-

Now, for p = 2/4 we have the identity

1 1 [(n+2)A—n—2]/2
9 P n—+42 '
Therefore, by theorem (1.6), we have
(2.20) L pxsmonca) T < eVl

But by (2.10),

1F9, < ( fjf"(z S)l”dzds)l/péA( Z u”mi)”"

*
Iiclj

which by (2.8) is majorized by
Ap L.
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Therefore, from (2.20) we get
PP
{2) t 2 < A 2 ‘ 7
g% (@, O < du ,Z (1m—sz‘ lt——sjlllz)("“)’l

where (2, s;) is the center of I; and (s, ?)¢2.
To complete the proof of (2.18) it is enough to show that

= ApH(z,1),

A
(@, ): H(w,1)> 13} <*M7Hfli$-
This will follow if we can prove that -

) A
[H(z, tydodi < —; |IfI5.
P )7

dx dt
In

dadt
<2 II ‘ o f lm z ]+It—8 Il/z (n+2)A °

If ; and I are the lengths of the sides of I;, we get

Now

dodt
f < Alye+0=9 < 4101,
o — 2]+ [t — s, |V H2R
7 (1 AR M%)

which implies that

A
fH(w, t)d:vdt< AZ \Ijlzlp' lel-(Z—l) = A 2 ‘IJI =A LQ! < ”/:77 ”f”g-
Q0 7
This completes the proof of (2.18).

To complete the proof of the theorem we must show that (2.13a)
and (2.17) are valid. Changing variables, we see it is enmough to prove
the following two lemmas.

(2.21) Lemwma. Let I denote a parallelepiped with center at the origin
and edges parallel to the azes with lengths h and h* for the z and s directions
respectively. Then, if (2, s) ¢, we have

le—é&2+y? H

sup
|s— 1|

(&m)el

RS-

[ gyt [ g B Y
<|I] If[s 7] exp{ b o dé&dn,

where b and ¢ are constants depending on a and n only.

icm
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Proof. If (2, s) ¢1, then |z > nh for at least one ¢ or else [s| > 2n*h2
This implies J2| > nk or }s| > 2h% We shall consider three cases: 1) [¢] > nh
and |s| > 2h%; 2) l¢] > nh and |sj<< 2h%; and 3) |2l < wh and |s{ > 2h2.

We observe that under the assumption (&,7)eI, the conditions
|2 > nh and |s| > 2R% imply that for a constant ¢>1

(2.22) le—\ lz—¢&l < ekl  and ~]%< ls—n| < clsl,

respectively. Also, we remark that the function i~ (32—l ¢ 0, has
its absolute maximum at ¢ = 2u[(n+3), and that the xalue of this

maximum is
{n+3))2
nAE3 N e
2p

Case 1. Since |z >nh and |s} > 2h* we have

_ (n+3)]2 212
lz Elz+yz}<6 XP{ o 11+ 127 +97)

= g3 - a ]

[s_,}”——(n+3)j2exp{

ls—l
Also,
- 2 lz —&*+y 1 | 2y
s —y| "+ exp { —1l } = ST g exp " be? sl |

which proves the lemma in this case.
Case 2. Since |2| > nh, we have
—_ Z
lz— &2+ 3%} <l
ls—al |7

Now, since |s— | < [s|+ In} <224 R%2 < 3h, our second remark shows
that the last expression is less than

1212 2
,”—(n+3)izeXl)]l_i lel*+y 1

]S_m-(nﬂ)/iexp{—— = ————~‘s_nl (-

1 o l2249% .
WWGXP{ Er Y } i8R (+3)§U 22432, anf}
(2.28)
n+3 o (n+3)/2 a2 [ s .
(P2 E) T eyt B> s (el
Also, we have that
. [ le— gty 1 f lzl"+y2}
_ —(n-+3)/2 ’_ >
S T R AT nl‘"””‘ bl I
22+
(I*WH”” { A r— ls—m}
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Integrating this inequality over I, we get

B2 a2
f‘s“fll—(nﬂmexl){‘b lz \SE_‘_:\ 4 }d‘fdﬁ
I

1 f l21*4-y
Z (3n2)n+A2 IJ =P " be s |8 — | }dgd

ls— l
|

n{(s,m: s —1] >—1—}\

Since |I N {(&, 7): |s—n| > h?[4}] is greater than a constant fimes |I|,
we obfain

Z B exp
I ~{(5,n):18—11>hPja}
1

Z (3R2)nFIR

»|2 2
exp {— 4be? Rty I
h?

Lor e o= £+
—_ — |32 —b 2 g
] J =l e"p{ s } s
- A l2]*+y®
> Wﬁﬁm— exp {— 4bc? 7 ——}
If 302 < —(_? (2124 ¥?), the last expression multiplied by a constant
is greater than (2.28), provided that the constant and b are suitably chosen.
If 3h2 > m*—([z\ +@/Z), then
A [2*+ y* 4 be*
WW exp {—41702 = }2 G exp {— 6(n+ 3)—(;}.

But since |2| > h, (2.23) is less than
2\ (n+3)/2
(’n-2i-3 E_) “ PGS LIRS
@
and the lemma follows in this case too.
Case 3. For this case we have

o= £ ) (a)wwz ( ayz
T YA P }

|§—n| @+ exy {
Also,

18’7I|_(n+3)’zexp{——b»|z_ Hied hz_*_y’z»}

1 f
——— 2 ——— exn i — dpome T
ls—7l } (c|s))@+ar Pl on i

exp{—2bcn?} 1
Z mrae |s|ta2 exp | — 4ben 1?/1}

which shows the validity of the lemma for case 3.

icm
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On the function y: and the heat equation

(2.24) Lemma. Let I = {(=,
Then, for every (u,w)el we have

fi— (e—u,s—w,y)—

Proof. Write

8): lyl< 1,2 =1,...,n, and |s] <1}

or
6J (2 s,y)]dzdsdy<c<oo

or Uy S—W, Y) ()I‘(zs)_fddf dr.
% (z—u, 'Y o7 185 Y —0 EA Fy—(z—m s—;W,y)]

Taking absolute values and using (u,w)el, we geb

r a {
e (2— U, 5—W, Y)— (2 313/)‘

n 1 1
orr o:r
< IE oflgawi@y (z~ruv,s~m,y)lldr+of1-(%7y(z-—ru,s—rw,y)

Integrating this inequality, changing variables and enlarging the domain
of integration, we obtain

dr.

deds dy

or or
f}a—yw—u,s—w,y)—ﬁ(z, ,9)

\2 f‘ 50.07 z,s,y)]dﬁdsdy-i—f iy (2,8,9) }dzdsdj

From the estimates (1.1) for the derivatives of I we have that the second
member above is less than a constant times

21 2 - ] PRIpE)
f18|-(n+4)izexp{_ [el* 4y }dzdsdy—k—] ‘;s!"‘""'s)fgexp{_ 2|+ y }dzdsdy.
7 81s] K 81s|

These two integrals are finite, and therefore the proof of the lemma is
complete.

We shall discuss nest a generalization of the g-function in (1.13).
(See [3] and [8])

Let felP(H,.,) and u(z,%,¥) =f(@, t)*I'(z,t,y). We define the
derivative of order p of wu(z,t,y) (8 real and positive) as

—iym 6771.

W 4 y—1
() oy —— @y YT Ay

w(w, t,y) =
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where m is an integer, 0 < y <1 and y+§ = m. To show that u®(z, 1, y)
is well defined for y > 0, we use the estimate

om™r
oy —— (& by < ely+n) "z, 2t, y+n)
(see (1.1)) together with (1.0) to obtain
™y (m __i—i)
o = @ 5y | < elflls (y+n) G

Hence,

n+2

I 0’"1 —f— —
f [y @ by <elfly T

which shows that «®(z,t,y) is finite for y > 0.

(2.25) THEOREM. Let feI?(E,,;), 1 <p<oo,f >0 and u(z,t,¥)
= f(w, t)y*I'(z,t,y). There exist two positive constants ¢, ¢, such that the
Sfunction

5N, ) = ([ 97 1 (@, ¢, ) ay)™

satisfies

el < 9Nl < eallF -

The constants do not depend on f.

This function gs(f)(z,t) may be called the parabolic Littlewood-
Paley funetion of fractional order f. To prove the theorem we need the
following lemma.

(2.26) Lemma. Let 0 < f< B'. Then gs(f)(w, 1)
the constant ¢ is independent of f.

Proof. It is easy to see that

< ogp (N, 1), where

oo
u (@, t,9) = [ (@, 1, g+ n)n iy
0

Hence, using Schwarz’s inequality and changing variables, we have

W@, 6, 9P < W@, t, )y 1— 9 " 2dn [t (g —y)" "y
¥ v
g . &
= oy [ W (w, 1, )Py (g —y)" ="y,

v

icm
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provided that f'— # < u. Multiplying both members by #*! and in-
tegrating with respect to y we get

fu”" HulP (@, 1, y)f dy < ejyﬂ P ’dyf (@, t, ) Pyt (g — ) P .
Interchanging the order of integration, we obtain

fy”"llu‘ﬁ’ (@, t, PPy < e f [w® (@, 2, 9)*n" dn of e (g g .
0

Now, if f+p' > p, the inner integral on the right equals 7% ~#~* times

1
the value of [ g+ ~*~'(1—y)*~*~'dy. Therefore, we get
0

lgs (N, D = [ 97 P, 1, 9)Pdy

o0
<e f ,,72;3'-1 l“(p') (z,1, 77)]2 dn = c[yﬂ‘(f) (2, t):\g:
0
and the lemma is proved.
Proof of theorem (2.25). By lemma (2.26), we have

_ 95Nz, 1) < egn(N (@, 1),
where m > f+2n-+2. Consider the inequality,

b | du amr !
’ oy (z, 8, )| < E£1 —B;(E: Ny ylz)W(m_fy t“"],?/lz)idfdﬂ-
By (1.1), we can write
aﬂ?’l
1 Al
le— 512+y2/4}
2) ~(n+1+m)j2 { dedy.
f \6 (&;n,u/2 11lt uin €xp 8li—1|
Ep+1
Applying Schwarz’s inequality, we obtain
‘ ™ :
1 0]" —— (2, 1, %)
|2 I E|2 24
<o [ |5emum mprimiesp | L= ara
y —
Ep+y
_ 24
o i—nrlme I lo— &+ y?/ }dfd
f {t—n| eX?l - —Sl't“‘__ 771_

Bpty
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where the lagt integral converges to a constant times y~™*'. Then, multi-

plying by 4™ and integrating y from 0 to co we get

. am m 2
of@/z’“ ’a—yﬁ(w,i,y) dy
n 4
lo— &P+ 9?4\ | Ou 2
s¢ +f ESCEEDE exp {" 8li—7] @(5; N, Y[2)| dédn.
e
By (1.2), the second member is less than
?/ n4l+m au 2 dfd d
¢ f ( 172 ) —(&1,9) nzl’,ll
o= g+ t—nlT+y dy l
e = c[gE‘wH»e«m)(f) (@, )T
n+2
) n+1+4+m 3n+3 2n+4
L = = = 2, th 2.2) i ies
Since 2 P PR P , theorem (2.2) implies

lgs (Nl < llgm (Dl < €llgh (Hll < el1F 1l
for every 1 < p < oo.

To complete the proofs of theorems (2.2) and (2.25), it remains for
us to show

alfl <INl and  ellfll, < lgp(f)l,-
Let ¢ and yeCP(B,,,) and 4 = ¢+I",» = p*I. Consider the expression

f dmdtf ¥ @ (@, t, y)oP (@, t, y)dy.

Ep+1 0

Changing the order of integration and applying Plancherel’s theorern,
we gee this is

of ¥y [ ple, t)p(w,1)|Viel*+it]Pexp{— 2y ReV|o]+ it} dwd.
0 Byt

Changing the order of integration once more, we get that this equals

= . Vw24 it
,t )] Eeet L
cEnfﬂqo(m (o )(Rel/\mlz—i—it

Il/mx )Zﬁ is th bol of i tibl bolic si
————=—L] is the symbol of an invertible pa .
Re Va2 +it A ible parabolic in

gular integral (see [1]), we obtain that for a positive constant c,

of
) dedt,

and since (

f da:dtf v Pz, 1, )o@ (o, ¢, y)dy = ¢ f ? (@, Yy, 1) dedt.
Epta 1] Bpt1

icm
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On the other hand, we have by Schwarz’s inequality

[ awdt [ 4 (@, 1, )00, 1,y < [ g0(9)(@, D,(p) (a, 1 dwd.
Ept1 0 Ep+1

Holder’s inequality plus the part of theorem (2.25) already proved shows
that if p’ = p/(p—1) then
[ dwds [ 9 uP (@, 1, 90?0, 8 9 dy
Ep+1 0

< |lga (@M lga (0l < ellgs (@)l vl
We conclude that for every ¢, <05 (B, 1)

[ 3@, 0y, ydzd < clgs @ vl

Ep+1

which implies |1¢]l,;< cllgs (@l and so |lgll, < ellgs(@)lp- The case of an
arbitrary ¢ follows by continuity. ’
The proof for g} is similar and will not be given.

SECTION 3

CHARACTERIZATION OF 27

This chapter is devoted to a characterization of the Z% spaces defined
in [B]. Our characterization is suggested by those given in [3] and [9].
See also theorem 3 of [4].

Let @(z,?) be an infinitely differentiable function belonging to L"
for every 1< r < oo, together with all its derivatives, and let ¢,(z,?)
denote its parabolic fractional integral of order o, 0< a<<1; that is,
0.y 1) = Fo(p) (@, ). We shall be concerned first with the funetion
T,(¢)(z,t) defined by :

— —8)— 2 2 12
Tolp)(z, 1) =( f lpulo—z, t=)—ga(2, O dzds) ,
B+l

(el IsPyresmee

and will prove the following theorem:

(3.1) TuroREM. Let ¢(z,t) be an infinitely differentiable function
which together with its derivatives of all orders belongs to all L7(B,. 1),
1<r< oo, and let 0 << a<1l. There emist two positive constants ¢, Cy
such that

el < 1 Ta (@)l < callelly
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provided that p > 2(n+2)/(2a+n+2). The constants c,,c, depend on
a, p and n, but not on @.

Proof. Let
w(@,t,y) = plo, )*I'w,t,y) and w.(2,t,y) = . (@, )* (2,1, y).

We denote |2/ |s|'/* by o and observe that this ¢ is equivalent to the
one introduced in the parabolic change of coordinates (1.3). Adding and
subtracting «,(z,t, 0), we have

(.3'2) ‘(pa(m~5, t_‘q)'—"Pu(.w) t)l
<t (B2, 1—8, 0)—uy (2, t, 0)|+ 4. (2, t, 0)—u.(2, 1, 0)].
For the first term on the right we have

U (B—2, 1—8, 0)— (@, T, 0)

,-g d .z 2 s
= —,;J T g m——z—]—7ﬂ9~,t~—s+9 ?—,r”(h.

Integrating by parts, we obtain

e

d
Uy (2—2,t—8,0)—u,(®,t,0) = ——r—~[uu(w—z+r~z—,t——s~|—rz—s—,r)] +
ar e ¢ 0

2

72 d* oz .S
+—2—WZ— Uy w——z-}wz, t—s—+r ?2—,7 \

oz @ 2 y . S p)
— | ———f U lx— p—y t— — .
; 2 dart] * Z'HQ’ . str 92’7)] ”

Performing the indicated differentiations, we obtain

[Ua(@—2,t—8, 0)—u,(z, t, o)

& oIty
< CI 2R+ s
N llhl+7c+l=1 2 ¢ 0m”6t"6 ' (m, ’ Q *
Q
0*u, 2 8
+ 2 rht? -———“——~(m-——z+r— t—sr2— 'r) dr-+
+Fori=3 ¢ oa’* 9¢* 0y' o’ o’
o o 2 s
v 2P gy et e o,

On the function g and the heat eguation 81

For the second term on the right of (3.2), we have
[4

ou,
Uy 1, o) — (w0, 1, 0) =

dy

(x, t, r)dr,
or, integrating by parts,

(7, Ty 0)—u, (2, £, 0)

o, 02 0%u, ¥ e 0% u, 7
=% (@31, 0) = S —=F (et o)+ J?T(’p’t’rw'

Therefore,

(2, €, 0) =t (r, T, 0)]

L Ou, | | o] &u, i Y gy
< oua—y—(v t, 0 )i+? 7‘)1/2 (e, 1, 0) -{—f 2 ‘ oy — (1, r)d;
? 1 R
itk
The Fourier transform of —————— is a constant times
' 9 ot oyt

exp{—yV| w2 iy (Vizp iyt 2t (i, 1),

Hence if we denote by ¢ the function whose Fourier transform is

- ot .
g(r,t) = *“; . ‘i)m::]’\_‘ g(r, 1),
e
then
5.3 0”"*""'1{,‘ _ a!hhzk—%l.ﬁ”

dact at* ay gyl
where @, — £.(p)(x, y#(x,t,y). Tt can easily be seen that ¢ is an
infinitely differentiable function which together with its derivatives
of any order bhelongs to L'(E,.,) for every 1 <r = oo. Moreover, ¢l
< e lgll, for 1 < p < oo (see [1]).
With the expression (3.3) for the partial derivatives of u,({z,?,¥)
and the estimates we got above, we can write

Wali— 2, t—8)— (i, )

2

Sl
x,t
Cl S Sl o)
3 Q P Wy s i 2
+ v J ___72 (1_’+7w P— s+ 92— r)'\dr)—}—
p ‘[()yﬂ‘“ \ 0 o*

i rh‘)ﬂl .

! 0° 4,
+(5{ i B h I

Studia Mathematica XXXVIL1 5
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Multiplying both members by o=@ "+d = (|g| 4+ |s|*2)~C=+n+) gnd  in-
tegrating in (z,s) over E, ., we obtain

(3.4)  [Tu(¢)(@, 0}

B f |pg (B— 2, t—8)— 0, (2, S)F»d&ds
= 2 2atnte "~
Ty 41 (lzl+|Sl )
§ | 2
gc{ g2 2\"" @, 1, o)| deis +
k=1 Tpt1
3 4 f)“‘"ﬁ 2
I Z J Q—Qa»-n—z(f,rQ—Hr W( z—}—'r— 1_g+7~—— ) dr) deds
oy o
k=0 Epiy ¢
| & 2
+ f Q—za—n—2< »2 _a,,g, (2, t,7) (]7‘) (Z::(IS}.

Byt

For the first group of terms on'the right, we pass to parabolic polar
coordinates and obtain

f92k~2a—n~2
Ep+1
0o
< GI RS
0

By theorem (2.25), §u-q (p) has I” norm less than a constant times
i@l < e, ity -

For the second group of terms on the right of (3.4), we apply Sehwarz’s
inequality and obtain the majorization

2
dzds

o,
ayk (z, 1, 0)

0%

2
6:1/’: (, 1, 0)| do = e[g_a(@)(®, )12

(3.5) f o~ g s

Byt
3 alc+3—-
542k~ ,
xuj‘¢+ dy’““( ~+7-— t—s-H!rZ,a) dr,
where & is an arbitrary number between 0 and 2a.
‘We claim that
ak }3
(3.6) j‘+3 ; (u,w,7)
ou L miktd-a Ju— E[*4
<e¢ f @(5,7},7/2) [w— 7] 2 exp{ Y- [ }dél .

Bl

icm°®
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This ecan be seen as follows. By definition of fractional integration, we
have

6k+3— 1
W(’u w, 7 f

o a’sﬂ':'!"

<f ﬁz/" — (u, w, 71—8), s*"lds
[}
55 [ 2 -
( J s,n,r/ﬂ e o (u— &, w—n, 7[2+5) | s AEdyds
[

3 L*l
which, by (1.1), is smaller than a constant fimes

g n+itk

fum(é 7,‘,)¥U, R
— r[2) w— *
’ ay IR/ERA] I | n
Ept1 ¢
— 4
Yexp{ Ju— g7 /_+s} a—lds) dtan
8 lw—n}
| 0% . { lu—EP-Hz/dc}
—_ P 2 _ai(nrdt h)/ R L S
f ‘i’h (&y7,7/2) M"" 7! exp Ry X
Ep+1
e exp{ }s"*‘ds) Asdy
(J 8lw—n '
| o ST lu—EF77/4
= 27(5,17,1/9’&(412 Tk "29XP{*‘ T 8wl }dfdn,
Ept
which proves (3.6).
2a-tnt+2—e nt+2
N batb=2,4> —-—— >
Now let 0<a,b,a+b=2,a> - o T atitk—a
We ean choose such a and b since
3.1) 2atn+2—e n—}:2 < 2n+6 s,
n+d4+k—a ntd+k—a n+3
Applying Schwarz’s inequality in (3.6), we get
Fri, 2
l@—kﬁ—(u,w,r)l:
< f ?E(i: ; - '1]‘a()z+k~a)/2exp{_v lui 5 +”2/4}d5d %
= ey ’ 8lw—] !
Ep+1
a2 lu— &P +r%/4)
w— —b(n+h+4—a)/_ex { b-‘—" dle
[ o Sw—n |

Ept1
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The last integral is a constant times p~P(HE+i-a+nt2  Mherefore (3.5)

is less than a constant times

e
(38) f 0—20-11,—~2+adzdsf1,.7+n~(-2k-s~b(w,»\-l.-+4 ~a) (l’l‘}(
0

Fipt1
f ( (&ymy7f

Bt

—a{n-tk+4—a)/2

t——s—{—r ——-—~n %

7,.'.7./4

aa——z—{—aﬂ— —& ~—{~
4

XexXpP{ —a

aédn.
8
sltﬁs—wﬂ—;z— —nl

A change of variables in &, # gives

Q
0—2(1 n— ”ke(],dsj 9+271+"I —e—h(n+k+4—a) (27 ¢

Byt
12

( / 12 12 —a(n A4k —a)/2
ax—rE, [ 7, 7(2) !

7)—9+347

0% |
i7® e
oy |

Epia
rE—ztre/olP+ "4
|

2 2 8
8|1' N—8-F71 ?

X ex]

a&dy.

Changing the order of integration and then changing variables in e, s,
we obtain

12
dédy X

e o
(3.9) Juzr f\—,—zi(a’—rf,i—wzu,a"/?,)
oy
0 By

—a(n+4+k—a)/2
X

8
n—s-4 —
0

E—ot i\'+1/~1»
4

HeXP{ — @ e drds .
$

8 iﬂ“ $+—
4

We claim that the innermost integral in (3.9) is smaller than a constant
times
(3.10) (18] 2 1) ~Goensa=a),
We consider two cases: (1) |&]--|y9"* < 4m, and (2) |&]-4|9|"* > 4m
where m is a large positive constant to be chosen.
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Case 1. Since the function
| S]—a('n,+4k4a)[2 e~a(1z12+1/4)/sxsl
is bounded on E, Y we see that the integral under consideration is less
than

¢ f g e i e dads < oo,

e>1

and since the function (]&]4|p|'*+1)72*""72** iy bounded below by
a positive number for |£[+ |9['* < 4m, our claim follows in this case.
Case 2. We write our infegral as

fz f + [ =4+B.
o>1 1<e<iEi+m?)  e>10é+1l2)

Cons1der first the integral A. If [£] > in'* then [&+ |y]"* <21&
and since 1 < o< l(]fi-rln]‘“), we obtain |z| << $]£]. Thus

! 2 1 1 .
§£—z+—1> 1] —lel =~ 1€ = = (&4 P +1).
| e | 2 5

It |&] < |5** an analogous analysis gives that

L ! 1/2 2
> = (81 + I 1

| ot
in— —
l e

Henece if 1< g < }(I£]+ Ip]*) and &+ |ni"”* > 8, we have

| | ! 1 e
“E—H—%‘q’—\nws iz; +1>g(]§|+l’7}u'—|~l‘

With this inequality and the fact that

(1E1+ 37]1‘1,'2:‘_ 1)a(n+4+k—a) 1,7l—ﬂ(n+4+k-ﬂ)i2 exp { iEIgT ?‘/4}
n

is bounded on K,., (see (1.2)) we obtain

A< (14 PR 1) Tt [T e
e>1

— c(l§|+]1]111/2+1)—a(n+4+k—a)< (,(1§]+17}1112+1)~2a—n—-2+5.
The last ‘inequality is true since by (3.7)

an+4i+k—a)>2a+n+2—e.
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The value of 53 is less than

4]
(3.11) (“lglq_ 1 LR X

2 1
g | —atntatk-c)2 £—z+—e- +71

X ”"’_3"“5? exXp{ —a . deds.
e>in 817—8—*——9—’-

Consider the change of variables

1 1
2 =z(1—5), s’ =s(1—-—;)

@

'S

for ¢ > m. We shall prove that this is one-to-one and that the absolute
value of its Jacobian is greater than a positive constant. Let (z,, ¢,) and
(23, 82) e two points such that ¢ > ga > m. If #] =4, and s, = s;, then

)

1 1
and since 1 — —> 1——, it follows that |¢] < |2,]. In the same way
€1 Q2
we obtain |[s,| < |s,| and therefore o, < p,, which is a contradiction.
Thus, if $wo points have the same image then ¢, = p,, which in turn
implies 2, = 2, and s, = s,.

a ! ’
To estimate the Jacobian M’ we observe that
d(z, s)
02 1 P 1 s’ 1 gt 1
B [[SSSyuaip Ny SR, Yy N [l —_— =14 = =
32 ¢ et (e)’ G Tt E T 1+0(e)’
oy az 1 e
o e 0] i
9% _ #signs an s’ 26z
8s 2|y’ 9z |ald®”

In particular,

ey 0" |2 —0 1
9 02 el \e)

Therefore, in the expansion of the Jacobian, the term which ariges from
the product down the diagonal is 1+ 0(1/¢) and every other term is
O0{1/e). T we choose m sufficiently large, it follows from the condition
@ > m that the Jacobian exceeds a positive constant.
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Therefore, changing variables and enlarging the domain of integration,
we see that the integral in (3.11) turns out to be less than a constant
times

f |sl—a(n+4+k—a)/2exp {——d Iz]-‘_!_l/'i }dzds.
Epty Slﬂ

2a4n+2—¢

This converges since a > PR

0 < &< 2a, and the proof

of case 2 is complete.
We see that (3.10) implies that (3.9) is less than a constant times

~ 7 o N
T | (e— 1€, 11y r/2)’ atanadr.
T2 q\zatnii—e , s
!En-_[l(lfi-f‘l"]l +1) oy

A change of variables shows this is

P 204n+2~2 ('ﬁ 2 dfd"]df - .
(—-_—-—_—l,r*) ==& 0, 1) —mr— = 92 (9) (=, )T
E;{) lz— &+ lt— |27 oy 7
where A = w.
n+2

By theorem (2.2) the L”-norm of the square root of the second term
on the right of (3.4) is less than a constant times [lpll,, provided that

P >——~2—(In—+ﬂ-. But since ¢ can be chosen arbitrarily small, the
2a+n+2—e
. ) 2(n+2)

condition becomes p > m

Finally, for the third term on the right of (3.4), we have

e
f g ( fﬂ'”[
En+1 0
[
\{\. ¢ f g—zu—n—-z-i-z (J 7,5-—:
0.

Bpt+1

8u,
aya <m’ t’ T)

d'r) ) dzds

Fu,
aya (z,t,71)

‘dr\)dzds,

which by (3.6) is smaller than

e
¢ fg*’“‘”‘“‘“dzdsf’rs"drx
[}

Epq
. EI2 2
]t——nl—("""‘_“)’zexp{—- M}dfdﬂ .

X( f 8 |t—7|

Ept1

ow
—0; (&,7,7/2)
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2a4n+2—e n--2
Let a> ‘ widi—a b>n+4——a’

inequality, the last integral is smaller than

a+b =2. By Schwarz’s

e

f Q—Zq-—n-«Z—i-udzdsfr7+‘n—n—b(n+4—-a) ar %
L]

Ept1
ﬂ (& 7,7/

Ohanging the order of integration and applying (1.2), we get

. EI12
lt"‘ |—a n+4—u)lzexp{ W}dfdﬂ

8li—nt

r oln+s=a)l gu * 4 dndr .
¢ —_—— = 2
+f (s [ e[S e,
n+2
a(n+t4—a)
h A=
where prr
2 2—
Now, since a> —aﬂi—i, it follows that
nt+4—a
a(nt+d—a) 2a+4n+2—¢
RS nt+2
Therefore, the square root of the third integral on the right of (3.4) has
. . 2(n+2)
IP-norm less than a constant times |lg[,, provided that p >2a——l—“'n+2 ,

as before.
To complete the proof of theorem (3.1), we must show that c,|lpll,
< IT.(@)ll,- In order to prove this, we observe that

fa (#y8,y)drds =0 for y>0.
Epty

Therefore
0u, or
@ t,y) = [ o=z, t=8)—gulo, 05 (25, 9)dzds.
Yy oy
Byt
By (1.1), we have
0u,

o (2,%,9)

o+
81s|

fl%(w—z’ t—8)—g@u(x, 1)] |57 exp {_
By 41

} dzds .

iom°
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If o and b satisfy

n+2 n+4—2a
'n+3< < PICRN =2—b,
then, by Schwarz’s inequality,
2t [P+
<o [lnto—zt—o—peof 7 exp{—a ot e
Ep 4
_bn+3 9 9
X f st 2 exp{—-b 4y }dzds
81s|

Ept+1

The last integral converges to a constant times y 2®+3+7+2  Therefore

F —sa| O, 2
’_1/1 Zu‘ d‘y
[ 15
—aE 2}
<o [ nnte—z, =)= pulo, 0P oxp{—a i ddasx
Ept+q 8]8]
Xfy—(b—l)(n+3)—2aex.p{_ ¥ }dy
J 8ls]
2
=c f}«pa(m—z,t—s)-q:u(a:,t)}zls]"("“““)’zexp{—aﬂ} dzds.
Byt 8lsl
Applying (1.2), we get
lz
[9-0(#) (@, O —fy 5y 0| W
f lpa{2—2, 1—8) —ga(@, t)l
(o] + \slllﬁ 2a+n+2

= c[T.(p)(z, )T
Theorem (2.25) gives the inequality

cl “‘P”p < HTa( ‘P)”y!

which completes the proof of theorem (3.1).
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Let P,(f) be the function

e, t)_( f o=z, t=8)=f@ O,

(3.12) (T ]Slxlz)2u+n+z

We shall prove the following theorem, Whlc]l i ‘the main resulﬁ of thls
section.
2(n+2)

(3.13) THEOREM. For 0< a<<l and m

<p< @ J2the follow-
ing two conditions are equivalent:
1) feIP(

(3.14) E,..) and Py(f) eI? (Byyi),

2) feZe ()

Moreover, if feZB(B,y1), there exist two positive constants ¢, c; independent
of f such that ' ’

(3.16)

(3.15)

e11fllp,e < iflp+1Pa(Hllp < sl fllp,a-

To prove this theorem we will need two lemmas.

(8.17) Lemma. For 0 < a<< 4, there emst ﬂwee f@fnu‘e measures ud,
w2 and u® on En+{ satisfying

1) (o) = WD, (L lal it
and

2) (1+ 1w12+u)“’2 =, 1)+ WD @, B (Jolt+ 0.

Proof. The proof of a similar lemma in [11] applies without change,
prowded that 0 < a < 4.

(3.18) Lmyaa. Let peLl’(B,,) for every 1<r << oo cmd Zet 0< a
< n4+2. Then

(3.19) F(pPxp) = 9. (o)

almost everywhere on B, ;.
Proof. The term on the left of (3.19) is well defined and belongs
n42

1 I? with p > ———.
0 every with p P

For y(w,t)es

(3.20) [ v(@,1) Lo(ud *o) (@, ) dudt

Ept1

= f [ f Fo—u, t—w)wﬁ td%dt](u *qv)(u w)dudw
Bpt1 Bpti .

@ ©

icm
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We observed in section 1 that

I'(a)” fr(w, Y)Y “'ldy—f"(w 0.

Thus, if we denote by »(»,t,y) the convolution of p(—az, —1) with
I(z,t,y), we géb that the infegrals in (3.20) are equal to

I'(@™ fy“ ty o o(—u, —w, y) (@) (u, w)dudw.

Ept1

By Plancherel’s theorem, this is
I'(@™! a
(2-:”+1fy Hy %

luf* 4w

X ftp(u w)exp {— yl”'}u —}—zw}(m

Ept1

a2 :
) @, w)dudw.
Changing the order of integration and integrating in y, we geb v

1 ~
T [ Fw 1+W1‘-r“0 "o (u, ) dudo,
E

n+1

which by another application of Plancherel’s theorem gives

[ v L) i@t = [ y(@,0 9.0 dod

Ept1 Bp+y
This proves the lemma.

Proof of theorem (3 13). Let fe:.’Z' ' that is, f = ¥"*¢, where

gelP(B,y,). :Choose a' séquerice {y,} of functions in & which converge
to ¢ in L? and pointwise a.e. Since P, belongs to all L (E,.q),
1< r< oo, we have by theorem (2.2)

(3.21) ea D #ally < T (6 * @i)llp < 2l piely-

By lemuma (3.18), however, T, (u{"*g,) coincides a.e. with- P,(fx)s
where f, = %,(¢;) = 9°*q;,. In particular,

IPa(flllp < callul * iy < 02168 llgellns

and since f, converges pointwise to f we obtain from Fatou's lemma

(3.22) [P (Nl < ellglly-

This inequality and the sublinearity of P,(f) as a function of ¢ imply
that if g, converges to ¢ in I” then |[P,(fy)l; converges to [|P.(f)il,. From
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the first inequality (3.21) we then obtain

(3.23) el * ol < 1P ()l -
Since the identity (see lemma (3.17))
AN N\ AN
1= ud (@, 1) (1+ lof*+ i)+ 4 (@, ) 4 (2, 2)
implies
p(@, 1) = (& *f) (@, )+ (ud* uPxp) (@, 1) e,
we have

Ifllp,e = lolls < oUF o+ % ll,) < ¢ (1fllp+ 1P (D) -
On the other hand, by (3.1), we have
1Flp=+ P (Dl < elillys

which proves
o1llfllp,e < [Ifllp+ 1Pa (Ml < €alifllp,a
for fe Z5(Fnpa)-
To complete the proof of the theorem we have only to show that
(3.14) implies (3.15). If V,,(®, 1),y > 0, is the function defined by
Voo, 1) = (L4 o+ ity exp{—y Vol + 1},
then V,, is integrable and
Vou*¥* =I(2,1,9).
Let f and P,(f) belong to L¥(#,.;). We have
w(@, t,y) = (f+)(@, t,9) = (gﬂ*(va,y*f)) (=, 1),
which shows that u(z, t, y) belongs to £ for every y > 0. Hence, by (3.16),
0l Ve fllp < |[Pafu(e, €, 9o+ lule, £ ).
Since
Polulz, t,y)) < Po(f)* (@, 1, 9)
by Minkowski’s inequality, we get
e[V *flly < WP (Dllp+ Il < €

for every y > 0. This shows that the family of functions V,,*f,y > 0,
is bounded in norm. By a theorem of Banach and Saks (see [6]) there
is a sequence y; — 0 such that

) 1 m

lim — V,,,vk*f =¢

m m
00 oy

©
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for some geIP, convergence being in LP. But since ¥**V,, *f(,1)
= u(x,t,y,) and u(z,t,y;) converges in norm to f(z, t), we obtain

m
. .1
flz, 1) = limu(z, t, y;) = Lim — § u{@, Ty Yr)
k00 m-co M 1

M0

m
1
— lim g"*;{Z(Vﬂsvk*f) — Fxg,
1

which shows that fe 22 and completes the proof of the theorem.
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