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Minimal sublinear functionals *

by
S.. SIMONS (Santa Barbara, Calif.)

0. INTROD UCTION

Tn Section 1 we consider a class # of sublinear functionals on a real
linear space B and show that & contains elements minimal with respect
to the pointwise ordering on R®. The general existence theorem is Theorem
15 and involves the definition of a “boundary” for # in Notation 13.

In Section 2 we give conditions for an element of # o dominate
2 unigue minimal element of #.

In Section 3 we give 2 Shilov theorem for sublinear functionals on E.

Under certain conditions (Theorem 12, Notation 23 and Lemma
27(b)) the minimal elements of # coincide with the linear elements of #.
In Section 6 we deduce various forms of the Hahn-Banach theorem and
generalizations of results of Kelley and Sikorski (see Remark 29).

Tn Section 7 we deduce, with a number of improvements over the
known results, Shilov theorems and conditions for the existence and
uniqueness of balayages defined by a cone in #(X) (X compact Hausdorff)
(see Remark 32). There is also a short diseussion of the Choquet boundary
of a subspace of #(X) (see Remark 35).

In Section 8 we suppose that X is a compact convex sef in a Haus-
dorff locally convex space and deduce, with a number of improvements,
results of Milman, Bauner and Choquet-Meyer (see Remark 38) as well as
the Choquet—Bishop—deLeenw theorem.

We use mainly linear space techniques — the only places where any
measure theory is mentioned are Theorem 30(g), Theorem 33(a) and
Theorem 36 (¢). In Section 9 we apply our results to a “non- # (X)” situation,
replacing ¢ (X) by the set of continuous affine functions on a compact
convex set (in a Hausdorff locally convex space).

In Section 10 we make some further observations about the uni-
queness problem.

* This research was supported in part by NSF grant GP 8394.
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Sections 1-10 of this paper are at quite a high level of abstraction.
In Section 11 we present a proof of the linear space part of the Choquet—
Bishop-deLeeuw theorem that uses the same ideas as our general results
but is completely self-contained. This proof does not use the Hahn-Banach
theorem or Tychonoff’s theorem. Section 11 might well be read before
Sections 1-10 to provide an insight into the techniques we use.

1. THE EXISTENCE OF CERTAIN SUBLINEAR FUNCTIONALS

1. NorATiON. We suppose that F iy a nonzero real linear space. We
say that F (< E)is a cone if 0eF, F+F < F and, for all 1 2= 0, AF < F.
It ' (c E) is a cone we say that v is sublinear (vesp. linear) on F if yeR¥
and for all fufzeF Ay A2 0, p(Afy+ Aafa) < (resp. =)y () +Aap (fa).
We' write

= {8: § is sublinear on E}.
‘We suppose that | is a relation on ¥ such that, for all geF, there exists
deF such that d—g, for all d;, d,, gy, goeF, Ay, Age 20, di|—¢g, and dy-g,
imply that A;d;+Asdy - A1gy+ 2.9, and, for all d,gell, d |~ g implies
that d [~ d. We write
= {d: deE, there exists geE such that d | g}.
D is a cone (the set of “dominators”). We write
={8: 8¢, for all g, deH, d |- g implies that S(g—d) <0,
and, for all geF, S(g) = inf{S(d): deB,d |~ g}}.
We write 3 for the pointwise ordering on R” and, if 0=£F c H, <5
for the pointwise ordering on R”. If § % (resp. § « #) we write ¥ (resp. Zg)
for {T: T'eS (resp. #), T 3 8}. We observe that if §¢% and P %y then
g, helE and S(g—h) < 0 imply that P(g) < P(h)
and
geB implies that P(g) >

2. ExampLE. If “d

—8(—9).

g” means “d = g” then D =T and & = 2.
3. Examere. X is a compact Hausdorf space, & = #(X), (' is a cone
in F containing the positive constants and ¢—( is norm-dense in H.

“4@ - ¢” means “d>g and de0”. Then D = (. If geB we write S(g)
=0 v supg(X). Then Se2.

4. ExaMPLE. X is a compact convex subset of a real Hausdorff
%ocally convex space V, with dual V', B =¢(X) and O = {d: deE, d
is concave}. From the Stone—Weierstrass theorem, ¢'—( is norm-dense
in B. The remainder of the notation is as in Example 3.

icm°®
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5. Exavpie. X is as in Example 4, B = {g: ge¥(X), ¢ is affine},
( is a cone in F containing the positive constants and ¢— C is norm dense
in E. The remainder of the notation is as in Example 3.

6. Lenya. Let P, Qe Then P 3 Q<«P|D 3,Q|D.

Proof. (=) is trivial and (<) follows from the definition of #.

7. REMARK, Lemma 6 shows that in Example 4 the ordering induced
by = on # coincides formally with that usually used in the proof of
Choquet’s theorem. The behavior here is different because the functions
we are considering are not necessarily linear.

8. LEMMA. We suppose that Se# and F (< D) is a cone. We say that
p is 8 — F-admissible if y is sublinear on F and, for all f<F, p(f) > — 8(—1)-
If this is the case then, for all g<E, we write

Sxy(g) =nf{S(g—f)+v(): feF}.

Then the following results are frue.

(a) S*Wf’”s,
(b) S*y|F 3py,
(c) if Qe&,Q 3 S*yp<

1)

and Q|F 3xvp.

(2) Q38

Proofs. These results all follow from routine computations with
infs. We give in detail the only nontrivial one that involves -, the proof
in (a), that S*p(g) = lI]_f{S*’l/)(d d\—g}. If geB,feF and h - (g—f)
then, since f - f, (h+f) - g. If we write d = h+4f then d |- ¢ and
h = d—f. Hence

=i {8(g—+»(): feF} =
> it {8(d—f)+y(): feF,d - g} >

It (S (1) +y(f): feF, b = (9—1)}
inf{Sxyp(d): d - g}.

Sxp(g)

9. Lemva. (a) If 0<a<<1, 8, F are as in Lemma 8 and vy, y' are
N — F-admissible then so also is ap+(1—a)y’ and then

St (ap+(1—a)p)) 3 a(S*y)+ (1—a)(Sxy').

(b) If Se & and Q P then Q| D is S — D-admissible and Q 3 8*(@\D)
Further, @ = S*(Q1D) <« QeZ.

Proofs. (a) is immediate.

In (b), it follows from Lemma 8{c) (<) that Q < Sx(Q|D). If
Q = 8#(Q|D) then, from Lemma 8(a), @e #. If, conversely, Qe then,

from Lemma 6 and Lemma 8(a), (b), §%(@|D) <3 @.
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10. Lumma. We suppose that Se 2.
(a) If ® # Bc D,

(3) for all b,b'eB there ewists b''eB such that S(b—b") <0 and
Sb'—b") <0,

B = sup—8(—B) < oo,
F is the cone in I generated by B and, for all feT,

w(f) = inf{(A+...+A)B: n= 1, Ay ey A2 0,0y, 00y bye B,
Ayt oAby, = f}

then u is 8— F-admissible and, for all beB, S*yp(b) << p.

(b) If deD then there exists Sze Py such that Sy(d) <. —8(—d).

Proofs. (a) If f = Ab+...+2,b, we choose beB such that, for
all i =1,...,m, 8(b—b;) <0. Then

—8(—f) = —=8(—=Xby—...—A,b,) < —8(—Ab—...—4,D)
= (4 F )= 8(=0) < A+ .+ 4,)8.

It follows that w(f) > — S(—f). It is immediate that ¢ iy sublinear on 1.
Finally, if beB then, from Lemma 8(b), S*u(d) < w(b) < f.

(b) follows from (a) with B = {d} and 8; = S*y.

11. Norarron. We write 4 for the set of all minimal elements of
(#, %) and, if 8¢Z, 4y for {M: Met, M 3 S}

12. TororeM. If M2 the following conditions are equivalent:

(a) For all deD, M(d) < —M (—d).

(b) M| D—D is linear on (the subspace) D—D.

(0) Me .

Proof. Tt is immediate that (a) <> (b). If (a) is true and @ ¢ Z,; then,
for all deD,Q(d)> —M(—d)> M(d) hence, from Lemma 6, M < Q.
‘We have proved that (a) = (¢). If de.P then, as in Lemma 10(b), M e #y;

80, it (c) is true, M 3 M, hence M (d) << M4(d) < —M(—d). We have
proved that (c) = (a).

13.- NorarioN. If & is a convex set in a real linear space, we say
that #isafaceof # £ O #+ % c o/, Bisconvexand 4, A'e £/, 0 < a < 1
and aA'-l—(l——.a)A’eé&' imply that 4, 4’¢%. It Q, S we say that ¢
edges 8 it F is a face of Fg in R¥ (which implies that @ < §). We write

A48) ={M: Me.#, M edges S}.
14. LeMma. We suppose that 8, Me 2.
() If B, F, y are as in Lemma 10(a) then S*v edges S.
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(b) If deD then 8, edges S.

(¢) If A<D and M edges S then M, edges S.

Proofs. (a) If Q,Q %5, 0<a<l and a@+(1—a)@ 3 S*yp
then, given b, b’ ¢B, we choose b''eB as in (3). Then

B = Sxy(d”) =@ (d)+(1—a)@ (D)
2 aQ(b)+(1—a)Q (V") > e@ () — (1 —a)S(—b").
Taking the sup over b’ yields that > «@(b)+(1—«)p hence
(4) for all beB, Q(b) < 8.

If now f = A,b,+...+2,b, then, from (4}, Q) < (A+...+2,)8 and,
taking the inf, Q(f)< v(f). We have proved that Q|F < py and so,
from Lemma 8(c) (<), @3 S*y. A similar argument shows that
Q' =2 S+y. Hence S*y edges S.

(b) is a special case of (a).

(¢) follows from (b) and the transitivity of the relation “is a face of”.

15. THEOREM. We suppose that SeZ.

(a) If T is as in Lemma 8 and v is § — F-admissible then there exists
M e My such that

(5) M|F 3zv.

(b) If Qe # and Q edges 8 then there exists M eA(S) such that M <3 Q.

(e) If O = B < D and B satisfies (3) then there exists MeA(S) such
that sup M (B) = sup— 8(— B).

(A) If deD then there evists M eA(S) such that M (d) = —8(—d).

Proofs. (a) We write # = {P: Pe#,P3 S*y}. 1T s a (-3)-chain
in # and, for geB, we write T(g) = inf{P(g): P77} then Te?. The
result now follows from Zorn’s Lemma and Lemma 8(c) (=).

(b) The nonempty intersection of a decreasing chain of faces is
a face and so, by an argument similar to that in (a), ¥ = {P: Pe?,
P 2 Q,P edges S} has a minimal element M. If deD then, from Lemma
10(b) and Lemma 14(c), M;=3 M and M,e¥ hence M < M, and so
M(d) < My(d) < —M(—d). From Theorem 12, Me.# hence MeA(S).

(¢) f MeA(S) and beB then M(b) = —8(—b) so sup M(B)
= sup— 8 (— B). If sup—8{— B) = oo then the result follows from (b)
with Q = 8. If, on the other hand, sup— 8(—B) < o then, from (b)
withQ = S#ypand Lemma 14 (a), there exists M  4(S) such that M =3 S=*vp.
Then, for all beB, M (b) < S*y(b) < p = sup— S(—B) hence sup M (B)
< sup—S(—B).

(d) is a special ease of (c).
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16. TarorEM. We write B for the algebraic dual of B and, if Se¢9
By =B n 5.

(a) The linear functionals on B are the (=3 )-miniinal sublinear func-
tionals on H. :

(b) If Se and geE then there exists LeHy such that L(g) = S(g).

(¢) Any sublinear functional on E is the upper envelope of the linear
Sfunctionals on E that it dominates.

Proofs. (a) follows from Theorem 12. (b) follows from Theorem 15 (d)
applied to Example 2. (¢) is immediate from (b),

17. THEOREM. We suppose that S and Qe .
conditions are equivalent:

(a) If PeSy and P|D 3 ,Q|D then P = Q.

(b) QB and if PeBy and P|D <, Q|D then P = Q.

(¢) Qe N B,

Proof. We first observe from Lemma 8(c) that if PeS then
P\D —%DQ[D @f*{ 8%(@1D). If (a) is true then, from Theorem 16(a),
@ = 8%(¢|.D)eE" hence (D) is true. If (b) is true then, from Theorem 16(c),
Q = 8%(Q{D) hence, from Lemma 9(b), @< # and so, from Theorem 12,
(¢) is true. If (c) is true then, from Lemma 9(b), S*(Q|D) = QeB* and
50, from Theorem 16(a), (a) is true.

Then the following

2. THE UNIQUENESS OF CERTAIN SUBLINEAR FUNCTIONALS

18. Norarton. We write 4/ = {§: Se¢#, .#y containg exactly one
element}. ‘

19. THEOREM. If SeZ the following conditions are equivalent:

(a) Se.

(b) There exists Me.#s such that M|—D = 8|~ D.

(e) 8|—D is limear on —D.

(d) For all ge—D, S(g) < inf{—8(—d): d |- g}

(e) If Qe Py then Q|—D =S|~ D.

() If Mety then M|—D = §|—D.

Propfs. If (a) is true, Mg = {M} and deD then, from Theorem 15(d),
gk];ere exists Ne sy such that N(—d) = 8(—d) hence, since N = M,
Th( —1d) = ‘A)S’ (—d). We have proved that (a) = (b). It is immediate from

eorem 12 that (b) = (e). If ge—D and d - g then —de¢— D hence,

it (c) is true, S(g)+8(—d) = §( i i
= R(g—d) <0 and so (d) is true. It (d) is
true and @ e g then, for all ge—D, - e @

V< S@<E{—8(=d: d - g} <MEQA): 4 1 g} = Qg)

©
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and so (e) is true. It is trivial that (e) = (f). If, finally, (f) is true and
M,Ne#y then M|—D = N|—D. From Theorem 12 and Lemma 6,
M =N and so (a) is true.

20. THEOREM. We suppose that Se Z and QeFg. We write y = Q| D.

Then Sxyp|—D is linear on —D <«
for all g, he—D, Sxyp(g)+ 8*xyp(h) < S(g-+h).

Proof. (=) S*y(g)+S*yp(h) = S*y(g+h) < 8(g+h) from Lemma

8(a). («) if g, he— D and deD then, since h—de— D,
S(lg+m)—ad)+Q@) = S{g+ (h—a)+Q(a)

= 8xyp(g) +8*p(h—d)+Q(d)
> 8*yp(g)+8*yp(h—a)+ 8xp{d)
= Bxy(g)+8+y(h).

(using Lemma 8 (b))

(using Lemma 8(a))

Taking the inf over d -yields
S*y(g-+h) = Sxplg)+ S*y(h)

as required.

3. A GENERAL SHILOV THEOREM

21. THEOREM. We suppose that Se #, &/ = Fg and that either

(a) o is closed in Sy in the (possibly non-Hausdorff) topology (1)
of poinlwise convergence on D—D or

(b) o7 is closed in &g in the topology (p), induced from the product
topology of R® and D—D is dense in E in the topology given by the seminorm
g-—>8(9) v 8(—9g).

Then > A(S)<« for all deD,inf{P(d): Pe o} < —8(—d).

Proof. The density condition in (b) implies that (¥,t) is Hausdorff
hence, since (t) < (p) and (&g, p) is compact, (1) = (p). So (b) is a special
case of (2). We shall establish (a).

(=) is immediate from Theorem 15(d).

(<=) We suppose that M4 (S)\ «. Then there exist fi, veesfneD—D
such that if Pe o/ them there exists 4 (= 1,...,m) such that |P(f)—
—M(f) = 1. Now P(f)> —P(—f) and (since fieD—D and M e .Z)
M(f) = —M(—f;). Consequently, if {915 s @y =A{ESF1y o5 +fn} and,
for 4 =1,..., 1,

ot = {P: PeSys, Plg) > M(g:)+1}

then
ol ULy
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We write
" =) A1 F e Ay Ay ey A2 05 AR, = 10

£y is a face of ¥y and, for each i =1,...,%, & NSy = @ hence
' NSy =0, ie,

for all Pe /' there exists heE such that M (h) << P(h).

By the usual “continuous image” argument, &' is compact in R* hence
there exist 6> 0,h,..., lyeF such that

for all Pe /' there exists 7 (=1, ..., k) such that M (k)6 < P ().
The sets

A ={(P(h), ..., Plhy)): Pe o)
and
B = {m: 2R, 5, < M(h)+6 forall j =1,..., I}

are convex and disjoint in B¥, hence there exists a nonzero linear functional

@ on RF such that supg(B) < infe(A4). Tt is immediate that ¢ is of the .

form - 24,23,4+...+ 4@, where 4,,...,%4,=>0. We write h = A.h,+
+.o.+ Al IE Pe o we choose ¢ (=1, ...,n) such that Pe o, From
Theorem 16(b), there exists Le<Ep such that L(g) = P(g,). Then
Le o; « o' hence ‘

(6) P(h) = L(h) = A L(hy)+ ...+ 24 L(ky)
= (M (hy)+ 0) ..+ Ay (M () + )
= M(h)+ (A4 ...+ 4) 6,

from which M (h) < inf{P(a): Pe &7}. Since Me 2, there exists d |- h
(hence deD) such that

M(d) < inf{P(h): Pe &/} < inf{P(d): Pe /).

The proof is completed by the observation that M(d) —8(—d).

. §2. REMARKS. ?.“11 the above proot we can use a separation theorem
in B .rathe‘r than in RF. This needs an extra application of the axiom
of'chome. See also Remark 29. The appeal to Theovem 16(b) (and the
axiom of choice) can also be avoided. What we need for (6) 5 @ e#p such
that Q(g,) =P(g,) and Q(hy) = —Q(—h) for all j =1,...,% Such
& @ can be constructed explicitly by using the reducing operation of
Lemma 10(b) a finite number of times, taking first d = — g, and then

d =Dy, ..., by in sequence (imagini bhi i
: gining for this construction g
in the case of Example 2). " tht e are
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4. A THEOREM ON SEQUENCES

23. NoTATION. If Sec# we say that S lnearizes |- if #gc B

24. THEOREM. If Se, 8 linearizes — and g, go,...<B are such
that, for all n= 2, 8(gu_y1— 9n) < 0 and, for all MeA(S), sup, M(g,) = a
then, for all PePg, sup,P(g,) = a

Proof. We suppose that Pe Zg. From Theorem 15(a), there exists
Qe Mp (c Mg By). Let ¢ > 0. We choose d, |~ g, such that

Q(dy) < Q(g)+e/2
and, for » =2,3,..., d, inductively such that
dn['_ (d‘n-—-lﬁgn—l_l— gn) and Q(dn) gQ(dnvl—gn—l—" gn)+5/2n'

From these relationships

(M 8{gi—d) <0,

(8) for all n>2,8(dpr—JnatGn—&) <0,

and

(9) for all n>2 Q(d)—Q(gn) > Q(dnt)— @ (gn-r)+ /2"

From (7) and (8) and induction, for each n =1, S(g,— d,) < 0 hence,
for all Me A(S), M(d,) > M(g,), from which
(10) for all M < A(8), sup, M(d,) = sup, M (g,) > a.

From (8), for each n>2, 8(d,_1— ) < S(gn1—gu) <O hence, from
(10) and Theorem 15(c) with B = {d,: n> 1},
(11) sup, (—8(— &) = a.

From (9) and induction, for each n3>1,

1 1y
Q(dn)‘Q(gn) <e 5 ++—‘27[ =&
and so, from (11),
SupnP (gn) = SUP,LQ (gn) = Sup'nQ (dn) —ez= sup,— S(_ dn) —ez a—e.

The result follows.

95. REMARK. The above proof is an adaptation of that of [5],
Theorem 31, p. 233, arranged so as to avoid the lattice operations.
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5. RESULTS ON SUBSPACES AND LINEARITY

26. LeymA. We suppose that Se #, F (= D) s a subspace of E and
peFgp. (We write “ex” for “extreme points of™.)

(&)  is 8— F-admissible.

(b) 1) = S*y|F = y.

(c) @)=@ 38 and Q|F = y.

(@) ()« M|F =y.

(e) There exists Me Mg such that M|T = .

() peexFygp< S*y edges S.

(g) If peexFgy then there exists MeA(S) such that M|F =y,

Proofs. (a) is immediate, (b), (¢) and (d) follow from Theorem 16(a)
applied to F' and . (e) follows from (d) and Theorem 15 (a). (f) (=) follows
from (b) and Lemma 8(c) (<=). (f) (=) follows from (b), Lemma 9(a)

and Lemma 8(b). (g) follows from (f), (¢), Theorem 15(b) and Lemma
8(e) (=).

27. LeMMa. We suppose that Se 2.
(2) If 8 lnearizes | then A(S) = P N exHY.

(b) If D—D is dense in E in the topology given by the seminorm
g —8(g) v 8(—g) then 8 linearizes |—.

Proofs. It is easily seen that exFg = E* nex¥y (cf. the proot
of Lemma 26(f) (=)) hence
PnexBy =2 NnE NnexFPyg=F 0 (M N exFy).

Further, 4(8) = E* n 4(8). However, if L<F* then, from Theorem 16 (a),
&7, = {L} hence L edges S < Leex¥g. The result follows. .

(b) is immediate from Theorem 12 and the fact that if @ % then
@ is continuous in the seminorm topology.

6. APPLICATIONS: THE HAHN-BANACH THEOREM

28. THEOREM. We suppose that Se¥.

(a) If geB then there ewists Leex By such that L{g) = 8(g) (cf. The-
orem 16 (b).) '

(b) If ¥ is a subspace of B and weFS, then there ewists L el such
that L|F = y. vt e

(¢) If ' is a subspace of B and yecex Ty y then there emists Leex B
such that L|F = y.

(d) If @A (< B) is conver then there ewists LeEY such o
= inf§(4). el such that inf L(A)
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(&) If @ # B (< E) is convex, infS(B) > —oco and < is a preorder
on B compatible with the linear space structure then there exists (<)-positive
LeES such that infL(B) = int§(B) <

feB and g=f imply that 8(g) > infS(B).

Proofs. We suppose throughout that the notation is as in Example 2
and we use Theorem 16 (a) and Lemma 27. (a) follows from Theorem 15 (d).

(b) follows from Lemma 26(e). (c) follows from Lemma 26(g).

(d) If infS(A4) = —oc then the result is immediate from (a) or (b).
I infS§(4) = a > —oco then the result follows from Theorem 15(a) with
F ={lg: 1<0,ged) and, for feF, p(f) = inf{la: 210, feid}.

(e) (=) is trivial

(e) (<) We write A = {g: geB, there exists feB such that g > f}.
A is convex hence, from (d), there exists LeBg such that infL(4)
= infS(A). Clearly infS(B)> infL(B) and, since 4 > B, infL(B)
> infL(A4). Thus the hypotheses imply that

inf8(B) = infL(B) = infL(4) = infS(4).
If geE and g >0 then g+ B c A hence
L(g)+-infL(B) = infL(g+ B) = inf L(A) = inf L(B)

and, since infL(B) > —oo, L(g) = 0. We have proved that L is (K)-po-
sitive.

29. REMARKS. In the above theorem, (a) is equivalent to the Krein—
Milman theorem via the bipolar theorem. (If K’ is a compact convex
set in a Hausdortf locally convex space B and F is the dual of ', for each
geE we write 8(g) = sup <K', ¢>. Ef can be identitied with K".) (b) is the
usual Hahn-Banach theorem. (c¢) can also be proved by copying the
usual proof of the Hahn-Banach theorem and preserving the extreme
property of the extension at each stage (ef. [2], Lemma 11, p. 171).

If X = 0, E is the vector lattice of all bounded real functions on X
and, for geH, 8(g) = supg(X) then, from (d), if @ #+ A (c E) is conver
then there eaists a positive linear functional L on E such that L(1) =1
and inf L(A)= inf8(4). This is a vesult used by Kelley in [4]. (e) strength-
ens [7], Corollary T (in which it was assumed that infS(B) > 0) whieh,
in turn, strengthened a result of Sikorski in [4] (in which S was a norm
such that 0 < f < g implies that S(f) < S(g) and B was a set of (<)-po-
sitive elements).

From any of the above results we can deduce: if @ # A (< REy is
conver then there exist Ay, ..., = 0, Li+...+ 24 =1 sueh that

inf{d,a,4...-F A a aed} =inf{a, v ...

V@, aedl.
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This generalizes the result we deduced from a separation theorem in the
proof of Theorem 21.

7. APPLICATIONS: CONES OF CONTINUOUS FUNCTIONS

In this section we use the notation of Example 3. If z¢X and geF
we write e,(g) for g(»). We use the words “directed” and “envelope”
with respect to the usual ordering on Z. (We do not need to assume that ¢
is closed under A.)

30. THEOREM.

(a) There is o subset 0X of X such that

A(8) = {0} U {e,: 20X},

(b) If % is a closed subset of S such thai

for all deC, inf{P(d): Pe#B} > —1 implies that infd(X) = —1
then & o {e;: xedX}.

() If A= X and

for all deC, infd(A)> —1 implies that infd(X) = —1
then 4 o 0X.

(d) If the extended real valued function f on X is the upper envelope
of an wpwards-directed subset B of C and either inff(X) < 0 or there ewists
beB such that infb(X) > 0 then there exists x<0X such that f(x) = inff(X).

(e) If deC and infd(X) # 0 then there exists xedX such that d(z)
= infd (X).

(£) If weX there ewists Me .#g such that M |0 <8 ye,|C and, for all
feO 0 —0, M (f) = f(a).

(g) If M ey then there exists o regular Borel measure y on X such that
w(X)< 1, for all geE, M(g) = [gdu and u(¥Y) = 0 if Y is any compact
@ in X disjoint from 0X.

Proofs. If #is as in (b) we write .o/ = # U {0}. Then, for all d¢0,

inf{P(d): Pe ot} =0 A Inf{P(d): PeB} <0 A infd(X) = —8(—d).
From Theorem 21(b), o = 4(8). Taking & = {e,: weX}
‘ 4(8) = {0} U {e,: weX}.
Tt is easily seen that 0eA(8) and so (a) follows. If, again, & is as in (b),
{0} U {s,: 20X} = B U {0} -
and (b) fOHOV.VS. (e) follows from (b) by writing & = {e,: weAd}.
(d) We first observe that sup,.sintd(X)<inff(X), so that conditions

ensure that sups.pintd(X) # 0. The result follows from (a) and Theorem
15(c). (e) is a special case of (d).
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The first observation of (f) follows from Theorem 15(a) with F = C
and v = ¢,|F. The second observation follows from Theorem 16(a),
with E replaced by ¢ n —C.

(g) If M e Mg then, from Lemma 27, M e g from which M is a positive
linear functional on ¥ and M (1) <1. From the Riesz representation
theorem, there exists a regular Borel measure x4 on X with x(X)<1
such thas, for all geE, M(g) = [ gdu. From Theorem 24, if g,,g,,...¢H,
1< ¢y <... and, for all z<dX, sup,g,(®)> 0 then sup, M(g,)> 0. The
proof is completed as in [6], p. 28, or [5], Theorem 32, p. 233.

31. THEOREM. We suppose that PeSg. If geB we write
§(P) = inf(P(@): d |- g}-

Then (a)—~(f) are equivalent.

(a) There exists a unique M e Mg such that M|C 3, P|O.

(b) There exists Me Mg, M|C 3o P|C such that, for all ge—C
M(g) =g(P). -

(©) If g, he—0, g+h(P) = §(P)+h(P).

() If Me My and M|C 23, P|C then, for all ge—0, M(g) = §(P).

(e) If g, he—C then §(P)+h(P)< 8(g+h).

@) If ge—C and d (- g then §(P)< —(=a)(P).

Proof. If feC then (S(g—f)-1+f) - g hence

§(P)< P(S(g—f)-1+/) < S(g—f+P()
and, taking the int over f, §(P) < (8*(P]0))(g). On the other hand, if
d |- g then
P(d) = 8(g—a)+P(d) = (8*(P|0))(g)

hence § (P) > (8%(P|C))(9). We have proved that
§(P) = (8*(P|C))(g)-

Further, from Lemma 8(c), if Me g, M|C 3, P|C< M 3 S*(P|0).
Hence (a) < (b) < (¢) < (d) follows from Theorem 19 (a) <> (b) < (c) <> (£)
applied to S*(P|C). (¢) < (e) follows from Theorem 20. If (e) is true then
(f) follows by putting h = —d. If (f) is true and g, he—C we write
% = S{g+h)-1. Then keC and, from (f) with d = k—15,

IR+ (P) < §(P)+=a(P)+E(P) < S(k) = 8(g+h),

hence (e) is true.

32. REMARKS. If P, Q & we say that “P balays @” it P{0 3,Q|C.
This then extends the notion of balayage introduced in [5], Definition 41,
p. 239, for elements of B§. From Theorem 17 (b) < (¢) and Lemma 27 (b),

Studia Mathematica XXXVII.1 4
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Mg coincides with the family of “maximal measures on X of mass < 1”.
It follows that dX coincides with dyX as defined in [5], Definition 42,
P. 240. (If 30, X then e e M5 = 2 and, arguing as in [3], p. 441, e, cex B
hence, from Lemma 27 (a), &,¢4(s). If, conversely, gped(8) = Mg then
#edyX.) Theorem 30(c) is then [5], Theorem 48(b), p. 241, and The-
orem 30 (b) permits generalizations to (for instance) Shilov sets of measures
of mass < 1. Theorem 30(e) strengthens [5], Theorem 48(a), p. 241, in
that it replaces “<” by “z£”. Substituting P = &, in Theorem 31 givey
a variety of conditions for e, to have a unique maximal balayage — we
observe that § (e,) = § () as defined in [5], Definition 44, p. 240. Thege
results do not appear in [5].

33. TEEOREM. We suppose that —1eC. We write 0" for the family of
extended real functions on X that are the upper envelopes of an upwards-
directed subset of C and G for the family of ewtended veal functions on X
that are bounded below and the lower envelope of a subset of C*.

(a) In Theorem 30(g) we now have u(X) = 1.

(b) If feC then there ewists x<0X such that f(z) = int f(X).

(¢) If feC™ then inff(0X) = inff(X).

(@) If feC™, ge— 0™ and, for all xedX, f(x) = g(x) then, for all zeX,
f(@) > g(@).

() If f,9¢0™ N —C" and f|0X = g|0X then f = g.

Pr'o ofs. (a) is immediate. (b) follows from applying Theorem 30(d)
to f minus a sufficiently large positive constant. (c), (d) and (e) follow
in sequence from (b).

34. TarorEM. We suppose that F is a subspace of B such that 1eF c C
and each deC is the lower envelope of a subset of F.

(2) For all weX, 8% (e,|C) = 8% (e, F).

(b) 0X = {m: weX, &, | Feex Fyp} and ex Flyp = {e,|F': 160X} U{0}.

(e) -If Q 18 a closed subset of Sy such that for all feF inf{P (f): Pe#B}
> —1 implies that inff(X)> —1 then & > {s,: wedX).

(@) If PeSFy and @weX then P|O <208|0<P|F = ¢, | 1.

Proofs. (a) is immediate from the definitions,

(b) If <0X then e, Py and so, from (a) and Lemma 9(b),

Bk (25| F) = 8% (65| 0) = &,
w?:;hpsdg\eso&tfencz from Lemma 26 (f), ez\lf’seglﬂgm. If, conversely,
Y si#\{0} then, from Lemma 26(g), there exists yedX such that
5| F = ¥ The result follows since ¥ separates the points of X.

(¢) is immediate.

((.1) (=) follows from the argument used in the proof of the second
assertion of Theorem 30(f). (d) (<) follows from (a) and Lemma 8(c).
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35. REMARK. If F is a subspace of E such that #>1 and F separates
points we write O ={fian...Afo:n=1,fi,...,f,<F}. The Stone-
Weierstrass theorem then shows that all the results of this section are
valid. From Theorem 34 (b), dX is the Choquet boundary of F as defined
in [6], p. 38. (Fgr = {Ayp: 0< A< 1, p<K(F)} in the notation of [6].
This little problem can be avoided by defining §(g) = supg(X) in which
case Fyp = K(F) and A(8) = {s,: £edX}.) We can now deduce the
real versions of [6], Proposition 6.3, p. 40, [6], Proposition 6.4, p. 40,
and [6], p. 43, from Theorem 33(b), Theorem 34(c), and Theorem 30(g)
and Theorem 33(a), respectively. The remaining parts of Theorems 30,
31, 33 and 34 give further results, including various conditions equiv-
alent to the statement “there exists a unique maximal measure M on X
such that M|F = &,|F”.

8. APPLICATIONS : COMPACT CONVEX SETS

We suppose in this section that the notation is as in Example 4.
We write F' = {f: there exists AeR and o'¢V’ such that, for all zeX,
fl&) = (&, 'Y+ 1}. Since F separates the points of X, the map z — &, |F
of X into Fyy is injective; it is clearly affine. A simple application of the
bipolar theorem shows that _Fglp = {A(e;| F): 0<< A< 1, weX}. It follows
from [5], Theorem 7(2), p. 222, that Theorem 34 is applicable. Then
Theoren. 36(a) follows from Theorem 34(b) and Theorem 36 (b) follows
from Theorem 34(c).

From [5], Theorem 7 (b), (¢), p. 222, any extended real-valued concave
lower semicontinuous funetion on X that is bounded below is in ¢* and
any bounded affine semicontinuous funetion on X is in 0¥ N —0™.
Then Theorem 36(c), (d) follow from Theorem 33(b), (e). Finally, The-
orem 36(e) follows from Theorem 30(g) and Theorem 33(a).

36. THEOREM.

(a) 0X = {e,: weex X}.

(b) If Z# is closed in Fg and, for all z eV,

inf{P(, v | X): PeZ} <inflX, v

then # > {e,: xeex X}

() If f is an emtended real valued concave lower semicontinuous function
on X that is bounded below then there exists xeex X such that f(x) = inff(X).

(A) If f and g are bounded affine semicontinuous functions on X and
flexX =glexX then f =g.

(e) If weX then x is the barycenter of a mazimal measure p on X.
If uis a mazimal measure on X then u(X) =1 and p(Y) = 0 whenever
Y is a compact Gy in X such that ¥ NnexX = @.
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If geB and zeX we write §(2) = inf{d(z): deC, d> g}
37. TEEOREM. If weX then conditions (a)—(g) are equivalent.
(a) = s the barycenter of @ unigue maximal measure on X,

(b) @ is the barycenter of a maximal measure u on X such that, for all
ge—0, [gdu = g (@).

. N

(e) If g,he—0,§ (x)+h@) =g+h(2)

(d) If x is the barycenter of a maximal measure u on X then, for oll
ge—0, fgdu = g (2).

() If g, he—C then § (z)+h{z) < S(g+h).

) If ge—C,deC and g<d then § (1) < — (—d)(®).

(@) If, for i =1,...omand j=1,...,0,0;,>0,0,=>0,y,cX,2¢X,
Siap=1, 3B =1, Yy, =z = >, ;2 then there ewist ;> 0,l;eX
such that, for each i, Dy = o; and J;vyty = oy, and, for each §, My, =B,
and Xiyity = Bi%- .

Proof. We apply Theorem 34(d) and then the equivalence of (a)—(f)
follows from the corresponding statements in Theorem 31, with P = &,.

(@) = (g). If a, B;,¥;, 2 are as in (g) then, from Theorem 36 (e),
there exists maximal measures u; and »; with barycenters y; and z,
respectively. Then Y,a;u; and 3,B;7; are both maximal measures with
barycenter =. By (a), J;a,u; = 3:p;%. From the decomposition property,
there exist y; >0 and probability measures ¢,; such that, for each i,
Divs 0y = a;p; and, for each j, 3y, 0,4 = B;%;. The required result follows
with ¢, the barycenter of p;.

(g) = (e). We suppose that g, he—C and Y o4, =z = > f;2;, where
oy B3 Yiy % axe a8 in (g). Since g and kb are convex,

Dg @)+ DB < Y vulg i)+t < S(g+h).
Hence, from [6], Lemma 9.6, p. 66, g}(w)—}—ﬁ(m) < 8(g+ h), as required.

38. ReMARKS. Theorem 36(b) implies Milman’s theorem [3],
Lemma V. 8.5, p. 440. Theorem 36(c), (d) are due to Bauer [1]. Of course,
we can generalize (d) to “if f, g<0™ n —(C¥ ...”. All the functions in
0¥ n — (™ are affine — it might be interesting to find exactly which
affine functions are in 0¥ N — ™. Theorem 36 (e) is the Choquet-Bishop-
deLeeuw theorem [6], p. 24.

‘We can consider the ordering defined on VX R by the cone

Y = {(iw, A): weX, %> 0}.

Then Theorem 37(g) says simply that if, for all 4,j, a;, b;eV %R, a;,
b;> 0 and }a; = (¢,1) = 3,;b, then there exist ¢;<¥ such that, for
each i, D¢y = a; and for each j, Diey; = b;. We can think of this as
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a “local decomposition property” at (x, 1) (cf. [5], Theorem 29, p. 231).
Consequently

(12)  each xeX is the barycenter of a unique maximal measure on X

if, and only if, the ordering on V X R satisfies the decomposition property.
This is, in turn, equivalent to the statement that Y induces a lattice
ordering on Y—Y, i.e., that X is a simplex. This is part of the Choquet—
Meyer theorem ([6], p. 66, (3)<(1)). [6], p. 66, (5) < (4)<>(3) is
immediate from Theorem 37 (a) < (¢) < (d). Finally, (12) is equivalent to

(13) for all ge—C, g is affine

(see [6], p. 66, (2)). (It is immediate from Theorem 37(a) = (f) that
(12) = (13). It follows from Lemma 9(b), Theorem 36(d) and Theorem
37(c) = (a) that (13) = (12).) See Theorem 41 for a different approach.

9. APPLICATIONS: CONES OF CONTINUOUS AFFINE FUNCTIONS

In the context of Section 7 (and Section 8), ex By = {0} U {e,: 3¢ X}
which is closed in RZ. In this section we diseuss a generalization of the
results of Section 7 in which exE§ is not necessarily closed in R”.

We suppose that the notation is as in Example 5. If z¢X and ge P
we write ¢.(g) for g{z). We use the words “directed” and “envelope”
with respect to the usual ordering on E. Then (cf. the introductory remarks
in Section . 8)

T = {Ae;: 0< A< 1, 2eX} and exEg = {0} U{g: veex X}

‘We note from Theorem 16 (¢) that P ey < P is of the form g — sup,g(z,)
where 0 < 1,< 1 and r,eX.

39. THEOREM.

(a) There exists 0X < exX such that 4(S) = {0} U {g;: xedX}.

(b) Theorem 30(c), (4), (e), (f) are true as stated.

(¢) If Me .My there exists 2,0 <A< 1 and yeXY such that M = Ae,
and if giy Gayeo-eB,y g1 < g < ... and, for oll xedX, sup,g,(z) >0 then
sup, g, (y) = 0.

(d) Theorem 31 is true as stated.

Proofs. (a) follows from the remarks above and Lemma 27 (b), (¢)
and (d) are proved by analogy with the proofs we already have.

40. REMARK. It is well known that if X is compact Hausdorf,
%(X) can be identified with the set of continuous affine functions on
a certain compact simplex with closed extreme points. Thus Theorem 39
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in fact represents a considerable generalization of Theorem 30 and
Theorem 31.

We can also make the appropriate modifications and obtain the
analogy of Theorem 33 and Theorem 34.

10. A DIFFERENT APPROACH TO THE UNIQUENESS PROBLEM

In this section we return to the general considerations of Section 1
and Section 2. We suppose that 8, F' are as in Lemma 8 and that o is
a compact convex subset of RF such that each pe " is §— F-admissible.
Further, we suppose that #y is convex.

41. TEEOREM. For all pe A, Sxype N < for all peex A, Sxype N
and, for all ge— D, the map v — S*y(g) is affine on A",

Proof. (=) We suppose that ge— D, v, p'e and 0 < a<{ 1. Then,
from Lemma 9(a),

8+ (ap+ (11— a)y’) > a(S*yp)+ (1—a)(S*y').

By hypothesis, the left hand element is in 4 and the right hand one is
in #. Hence, from Theorem 19(a) = (e)

Sx(ay+(1—a)y) | =D = (a(S*y)+ (1—a)(S*y"))|—D

and this gives the required result.
(<=) We suppose that g, he—D. From Theorem 19(a) = (c)

for all yeex ", Sxy(g)+ Sxw(h) = S¢p(g+h).

Now the functions p— S*y(g)+S*y(h) and y - S*y(g+h) are both
bounded, affine and upper semicontinuous on o, hence from Theo-
rem 36(d), they coincide on . The result follows from Theorem 19(c)
=> (a).

42. REMARK. We mention two applications of Theorem 41.

In the context of Theorem 28: if Se¢& and F is a subspace of F then
for all yeF, there is a unique LeEY such that L|F =y < for al
yeex Fygp there is a unique Le®} such that L|F =y and, for all gel,
the map p — S*y(g) is affine on Fy.

In the context of Theorem 34 (and Remark 35), for all wslf“’f§| » there
is a unique M e A such that M |F = L|F < for all <X there is a unique
M e #g such that M |F = e,|F and, for all ge—C, the map » — inf{yp(f):

feF,f>g} is affine on F§ . In the context of Section 8 thiy collapses
to the statement (12) < (13).
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11. THE CHOQUET-BISHOP-deLEEUW THEOREM

One might consider Theorem 43 as the linear space part of the
Choquet—Bishop—deLeeuw theorem. The measure theoretic result can
be deduced from Theorem 43 (e) as in [6], p. 28, or [5], Theorem 32, p. 233.

43. TumoreM. Let X be a compact convex subset of a real Hausdorff
locally convew space and weX. We write B = €(X) and O = {d: deE,
d is concave}. If geE we wrile S (g) = inf{d(x): deC,d = g}. We write
=3 for the pointwise ordering on R® and &, ={P: P<RF, P is sublinear
on B, P 28, and, for all geB,P(g) = int{P(d): d<C,d > g}}.

(a) #, = O.

(b) There is a (-3 )-minimal element M of #,.

() M is a positive linear functional on B, M(1) =1 and x is the
barycenter of M.

() If dy,ds,y...€C and d < dy < ...
that lim, d,(x) = lim, infd, (X).

(&) If 911 9ay...€B, 91 < ga<< 0
then lim, M (g,) = 0.

Proofs. (a) is immediate since S e &, and (b) follows from Zorn’s
Lemma.

(¢} It deCand geF we write N(g) = inf{M (g—Ad)—M (—Ad): 2> 0}.
Then Ne#, and N < M. Since M is minimal, M(A)< N (d) < —M(—d)
and so M is linear on C—C. M is |-|-continuous on F and, from the
Stone-Weierstrass Theorem, ¢—C is ||-|-dense in ¥ hence M is linear
on E. If geBl, g <0 then M(g) < 8,(g) < O(x) = 0 hence M is positive.
If deC then M (d) < S,(d) = d(z), i.e., M is a balayage of &,. This implies
that M (1) =1 and x is the barycenter of M.

then there exists weex X such

and, for all reexX, lim,g,(x)>0

(d) For all # > 1 there exists »,¢X such that d,(z,) < infd,b(X)—[—%.
We let y be a cluster point of {m,},,. If n= m then d,(x,) < d,(w,)
< infd, (X)+ ’11 hence, letting n — oo, d,(y) < lim,infd,(X) and so
lim,, d,, (¥) < 1i1i1,hinfd,,(X). On the other hand, for all xeX, lim,d, ()
> lim, infd, (X). It follows that
{y: yeX,lim, d,(y) = lim, infd,(X)}

is a closed face of X and, by the usual argument, contains an extreme
point of X.
(e) Let ¢> 0. We choose dy,ds,...c0 such that

dy>g, and  M(d) < M(g,)+e/2
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and, for n =2,3,...

dn = d'n—l'“ gn—l%’ Gn and M (dn) < Jl[(dn-—l_ gn‘—l_l— gn) + 5/2"‘9

from which it follows that d; <d,< ... and, for n = 1,2, ...
2 2"

For all zeex X, lim,d, (2) > lim, g, (%) > 0 hence, from (d), lim,infd, (X)
> 0 and so lim,M(d,) > 0. Combining this with (14), lim,M(g,)> —¢
and the required result follows since & is arbitrary.

04  d,>g, and M(dn)—an)<e(—1—+...+1)<e.
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On the function g; and the heat equation
by

C. SEGOVIA (Princeton, X. J.) and R. L. WHEEDEN (New Brunswick, N. J.)

INTRODUCTION AND NOTATIONS

In the present paper, a function analogous to the g; function of
Littlewood, Paley, Zygmund, Stein (see [13] and [10]) is introduced for
functions u (x, f, ¥) which are solutions of the boundary problem

ou 0% 02 0%
T T s T

y>0

and
limu(w,t,y) = flz, ).

y—0

The definition of g} is given in section 2, (2.1), and its properties
concerning the preservation of I? classes are discussed in theorems (2.2_),
(2.3), and (2.4). The method used here is an adaptation to the parabolic
case of the one found in C. L. Fefferman’s doctoral dissertation [2]. In
section 3, theorem (3.1), the function g} is applied to obtain a charac-
terization of the 2?7 spaces introduced by B. F. Jones in [4] and [5].
This characterization is suggested by those given by Hirschman [3]
and Stein [9]. Also, a generalization of the g-function of Littlewood—
Paley involving fractional derivatives is considered (theorem (2.25)).
For an analogue in the case of analytic and harmonic functions, see [3]
and [8].

We shall denote by E,., the set of all (n+ 1)-tuples (4, ...,'wn., 1)
= (#,t) of real numbers, with the explicit intention of distinguishing
the last variable. E;,, denotes the set of all (n+2)-tuples (1, ..oy Ty T Y )
of real numbers with y > 0. By |z| we denote the absolute value of

n .
(%4, ..., @), which is given by (Ma})'. The eomplement of a set A is
1

denoted by A" and its Lebesgue measure by |4]. The definition of Fourier
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