Correction to the paper

"On relatively disjoint families of measures, with some applications to Banach space theory"
this volume pp. 13-36

by

HASKELL P. ROSENTHAL (Berkeley, Calif.)

All references and notation are given in the above-mentioned paper, which appeared in Studia Mathematica.

As pointed out to us by I. Singer, our proof of Dieudonné's theorem, given preceding Section 2, is incorrect. We restate, then prove the result in question.

Theorem. Let \((\mu_n) \) be a sequence of bounded finitely additive set functions (complex valued) defined on the discrete set \(A \).

(a) (Dieudonné [4]) If \(\sup_n |\mu_n(E)| < \infty \) for all \(E \in A \), then

\[
\sup_n ||\mu_n|| < \infty.
\]

(b) (Phillips [20]) If \(\lim_n \mu_n(E) = 0 \) for all \(E \in A \), then

\[
\lim_n \sum_{\omega \in \Omega} |\mu_n(\omega)| = 0.
\]

Proof. Let \((\mu_n) \) satisfy the hypotheses of (a), put \(\mathcal{B} = \{\mu_n; \; n = 1, 2, \ldots\} \). Let us say that \(E \in A \) is a bad set if \(\sup_{\nu \in \mathcal{B}} |\nu|(E) = \infty \). We assume that \(A \) is a bad set and argue to a contradiction.

(i) Suppose there exists a bad set \(E \) which cannot be written as a disjoint union of two bad sets. Choose \(\nu_1 \in \mathcal{B} \) with \(|\nu_1|(E) > 1 + \sup_{\mu \in \mathcal{B}} |\mu|(E)| \).

Now choose \(F \in E \) with \(|\nu_1(F)| > |\nu_1|(E)/4 \). Then \(|\nu_1(E \setminus F)| > |\nu_1|(E)/8 \). Now if \(F \) is not a bad set, let \(E_1 = F \); otherwise let \(E_1 = E \setminus F \). Thus \(|\nu_1(E_1)| > |\nu_1|(E)/10 \).

Suppose \(E_1, \ldots, E_n \) and \(\nu_1, \ldots, \nu_n \in \mathcal{B} \) have been chosen with \(\bigcup_{i=1}^n E_i \subseteq E \).
and $E \sim \bigcup_{j=1}^{n} E_j$, a bad set. Then $\bigcup_{j=1}^{n} E_j$ is not a bad set, hence $\sup_{m \geq 0} |m| \left(\bigcup_{j=1}^{n} E_j \right) = \lambda < \infty$. Choose $m = \beta$ so that $|\eta_{\beta+1}(E)| > n + 1 + \delta(1 + \beta)$. Then $|\eta_{\beta+1}(E) \sim \bigcup_{j=1}^{n} E_j| \geq \frac{9}{10} |\eta_{\beta+1}(E)|$. Now choose $F' \subseteq E \sim \bigcup_{j=1}^{n} E_j$ with $|\eta_{\beta+1}(F')| \geq |\eta_{\beta+1}(E)|/5$. Let $E_{\beta+1} = E'$. If $E \sim \left(\bigcup_{j=1}^{n} E_j \cup F' \right)$ is a bad set; otherwise let $E_{\beta+1} = E \sim \left(\bigcup_{j=1}^{n} E_j \cup F' \right)$.

It follows that $|\eta_{\beta+1}(E_{\beta+1})| \geq |\eta_{\beta+1}(E)|/10$.

The sequence of subsets E_1, E_2, \ldots of E and functions $\eta_{\beta} \in \mathfrak{F}$ thus constructed are such that the E_i's are disjoint and $|\eta_{\beta}(E_i)| \geq |\eta_{\beta}(E)|/10$ for all i.

By Lemma 1.1, we may choose $n_1 < n_2 < \ldots$ such that for all i, $|\eta_{n_i}(\bigcup_{j=1}^{n_i} E_j) < \frac{1}{2} |\eta_{n_i}(E_n)|$. (We apply 1.1 to the measures $|\eta_{n_i}|$ on \mathfrak{S}_{n_i} and put $j = n_i |\eta_{n_i}(E_n)| < 10$ for all n_i, of course.) Then putting $G = \bigcup_{i=1}^{\infty} E_{n_i}$, $|\eta_{n_i}(G)| = |\eta_{n_i}(G)| + |\eta_{n_i}(G)|$, whence $|\eta_{n_i}(E_n)| \to 2$, a contradiction.

(ii) Now assume that every bad set can be written as a disjoint union of two bad sets. Then assuming A is a bad set, there exists an infinite sequence of pairwise-disjoint bad sets, E_1, E_2, \ldots

We may then choose for all i, $\eta_{i+N}(E_i) \subseteq A_i$, $E_i \subseteq A_i$, and η_{i+N} satisfying the relations: $n_i < n_{i+1}$, $N_i > N_{i+1}$, with N_i infinite, $n_i \in N_i$, $F_i \subseteq E_i$, $|\eta_{n_i}(E_i)| \geq i + 4 \sum_{\beta=0}^{n_i} |\eta_{\beta}(F_i)|$, $|\eta_{n_i}(E_i)| / |\eta_{n_i}(E_i)| \leq 1$, and $|\eta_{n_i}(\bigcup E_i)| < 1$.

Indeed, let $N_i = N_i$, $n_i = n_i$, and choose η_{i+j} and E_i appropriately.

Having chosen everything up to the ith step, but not N_{i+1}, let $N_i = \bigcup_{j=1}^{M_i} M_j$ with $M_j \cap M_j = \emptyset$ and M_j infinite for all j. Then $\sum_{j=1}^{M_i} |\eta_{n_i}(\bigcup E_j)| < \sum_{j=1}^{M_i} |\eta_{n_i}(E_j)| < 1$; hence for some j, $|\eta_{n_i}(\bigcup E_j)| < 1$; put $N_{i+1} = M_j$. Now let n_{i+1} be the first element of N_{i+1} greater than n_i, then choose $\eta_{n_{i+1}}$ and $F_{n_{i+1}} = E_{n_{i+1}}$ appropriately.

It follows that putting $F = \bigcup_{i=1}^{\infty} F_i$, then for each i, $|\eta_{n_i}(F)| \geq |\eta_{n_i}(F)| - \sum_{j=1}^{M_i} |\eta_{n_i}(F_j)| - |\eta_{n_i}(\bigcup E_j)| \geq \frac{1}{4} - |\eta_{n_i}(\bigcup E_j)| \geq \frac{1}{4} - 1$;

whence $|\eta_{n_i}(F)| \to 2$, a contradiction. This completes the proof of (a).

To prove (b), we have by (a) and the hypotheses of (b) that $\lim_{n \to \infty} |\eta_{n}(E)| < \infty$. Suppose that the conclusion of (b) were false. Then we could choose a $\delta > 0$, a subsequence (η_n) of the η_n's, and a sequence (E_n) of disjoint subsets of A such that for all n,

$$\sum_{i=1}^{n} |\eta_{n}(\bigcup E_i)| \geq 9 \delta,$$

$$\sum_{i=1}^{n} |\eta_{n}(\bigcup E_i)| \leq \delta,$$

$$E_n = A \sim \bigcup_{i=1}^{n} E_i,$$

and $|\eta_{n}(E_n)| \geq \frac{1}{4} \sum_{i=1}^{n} |\eta_{n}(\bigcup E_i)|$.

It would follow that for all n, $|\eta_{n}(\bigcup E_n)| \geq \delta$. Then by Lemma 1.1, there would exist an increasing sequence of indices (n_i) such that for all i, $|\eta_{n_i}(\bigcup E_{n_i})| < \delta/2$.

Then putting $E = \bigcup_{i=1}^{n_i} E_{n_i}$,

$$|\eta_{n_i}(E)| < \delta/2$$

for all i, contradicting the hypotheses of (b).

Page 30 line 14 from the bottom; instead of “3.4” read “3.5”. Q.E.D.