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On certain hypersingular integrals ‘
by
Y. SAGHER* (Chicago)

) 1. Introduction. Let f(z) be a function of a single real variable.
‘We say that f(z) has at a point #,, r—1 generalized derivatives iff

(1.1) Fl@m+1) =P,y (@, )+ (FY),

where P,_,(%,,?) is a polynomial in # of degree r—1.

If f has at x,,r—1 generalized derivatives we define &,(x,, %) by
12)  {flm+0)+ (=1 f(m—1)}

8, (@, t

 Prmalay D)+ (— 1P,y gy — )4 202D

i,
r!

The hypersingular transform of f, of order r, is then defined as

-]

(1.3) ]im{-——l— f i%"-’l)—dt}.

L] 7'C5

Of course, the definition is constructed so as to give for a good function
f(x), the Hilbert transform of its »-th derivative.

The early results of Calderén and Zygmund on singular integrals in
n dimensions, [1]-[3], have been generalized by Muckenhoupt in [4].
He replaced the kernel St(t)/|t|" by R(8)/1t[**™, v real

The starting point for this generalization is that the Fourier transform
of the kernel will be positive homogeneous of degree iy and. so will be
bounded. An important application of this generalization is the construe-
tion of an analytic family of linear operators having as intermediate
values the fractional integral operators, and using appropriate interpola-
tion theorems this enables one to prove the boundedness of these operators
on -various classes of functions. We refer the reader to [4] and [7] for
a discussion of this method.

* Research supported in part by NSF grant number GP-8289, and by the
Multinational Project of Mathematics of the OAS. ’ |
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Our aim here is to extend Muckenhoupt’s results in the one dimensiongl

case to hypersingular integrals. The hypersingular “transform of order
=]

r and type y is defined as
1
(1.4) ]im{-—— f dt}.
>0 .

The main result will be the following theorem: It f has r —1 generalized
derivatives in a set ¥ of positive measure, then a necessary and sufficient
condition for the existence almost everywhere in B of the hypersingular
integral of order » and type y, is that the indefinite integral of f has r-+1
generalized derivatives almost everywhere in H. This theorem in the
case y = 0 was proved by Weiss and Zymgund in [8].

A general remark on complex homogeneity is in order. The intro-
duction of a factor ¢~ to the kernel should in general improve things.
This is so because near ¢ = 0 the factor ¢~% oscillates rapidly and so im-
proves the cancellation near the singularity, while for large values of
t this factor has no effect. (This enabled Muckenhoupt in [4] to take
the integral in summation method rather than taking principal value.)
Thus the fact that a condition which is sufficient for the cage y =0 is
suificient also when y # 0 is to be expected. The main point is therefore
that the same condition i3 necessary when y # 0 ag when y = 0.

This work presents the main results of my thesis, done at the Uni-
versity of Chicago. I wish to thank my advisor Prof. A. Zygmund for
suggesting the problem and for helpful discussions. During the early
part of the work on this problem, I received help and encouragement
from the late Mary C. Weiss. I wish to record my debt to her.

2. The kernel 1/t|#%.
TaeoreM 1. If

8, (@,?)

tl-}—i'y

S N
0 otherwise,
then for every x # 0, '
]{g{: 151_13;1]“(8,1\7(50) = —C,i|s” signa,
where
2.1) 0, = 2] f%f; at.
0

Further, for all ¢, N, = # 0, we have ]Ii,,N(m)|<0, C a constant
which is independent of ¢, N, a. '

icm°®
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Proof. We have

. PR N gt
.KB’N(w) = f mdt-F f Wdt
—N e
rd sinat il sini
-2 f - @t = —2ila]signa f .
- &lx]
If necessary, write
e sint : sing et sint
f Pl ftm-y dt+f P
&lx| &lx] 1

The first integral converges to

1.
sing
t1+'£y

[

dt  as ¢—>0

and never exceeds 1 in absolute value. Using integration by parts, one
proves the uniform boundedness of the second integral as well as its
convergence to

©
smi¥

‘ft“ri?dt ag N — oo.

1

We therefore have

lim LimX, y(#) = —iC, |o[”signa,
N—o &0
and the theorem has been proved.
The existence of the transform

)
p. .—oo ——tmi?

di
for feIP(R), 1 <p < oo, as well as class preservation for 1 <p < oo,
follow from Muckenhoupt’s work. We therefore consider only the periodic
case. .

TaEOREM 2. Let f be infegrable over (—m, wr), and periodic (2m). Then:

0 1 . V
(a) P, ff(w——t)t—mi—vdt exists a.e.
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(b) We can find a function p(t) defined in (—m, n) so {hat

pﬁff

. pvff (o—p(0dt,

t|t|“'
1 , ,
p(t) ZW +q(t), gq(t) continuous in (—w, x).
(c) Moreover,
(2.2) p(n) = ~—6¥3—i|n[i”sign%.
' 2
Proof.
QN+ t 1
R I T
© —@N4Yr
jd N
1 1 1
= ? - & df
p-V._f f(w t){ t!t!w + 7; (2kﬁ+t)l+w (2707_5_ t)l'l*’W} ]
N 1 N (2kx— 1+'iv (2707!7—|—t)1+iy
72 (Qkm+ 1) - (2kn— t)“”’ 2 (47.92 Iy ’
2kt
|(2k‘m-—-t)l+w“‘ (2767T+t)1+i7‘ ll—!—’byl | f u”:ydu ’ [1+ 7/,}/‘ [2t|
2heri—1

Thus the series

- 1 1
g; @knt 1) (Qkm— )T

converges abolutely and uniformly in |¢| <

7. Let its sum be ¢(). Since
the integrals

+(2N+8)n
| ifte -—m-m—dt
E@N+Ym
tend to 0 as N - oo, we have the convergence of

=5}

1
pvs i F(w—1) T

icm°®
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and further
©0 kil
pv. [ Jo—tpmdt=v. | fo—vp)a
—oo -7
where

1
.p(t) =W+ Q(t)i

¢(t) continuous in (— =, ).
Taking in partieular f(f) = ™, » = 0, we get %(n) = 2np (n) and so

o, . .
P(n) = ——Lin|"signn.
27

This concludes the proof of the theorem.
Given now a trigonometric series

$ay+ Za cosnw -+ b, sinne = ZA
n=0
we call

oo

2 (@, sinne— b, cosnx) =

n=1

ZBn(w>

its conjugate series. Taking a trigonometric polynomial 2 A, (%), its trans-
form by convolution with p(f) will be, from the expressmn for p(n):
C’,,ZBH (m)n™

PlThis leads us to the following definition:

DEFINTTION 3. Let ' 4,(«) be a trigonometric series. Define
0

00

u, (ZAn(o:)) =0, E’Bn(m)w.

=0
Call the new series the y-conjugate of 2 A, ().

Let feL. Clearly, the n:th partial sum of the transformed series
will be given by

- [0

n

:1|Q

ki’sinkt) i
Therefore

k7 sinks
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can serve as the y-conjugate Dirichlet kernel. This funetion, however, z
is less manageable than its counterpart on the line. We will later prove +2( ) g [—wk“ycosm%-(k-{—iy) f 7 “1+i"cosudu]
that H

GV v . T2 z

- f g, SiD Ut du = f w® sinu du f u® sinudu

0 /2
ig this kernel. For the proof of this we shall need only part (a) of the N L [
following lemma. The other estimates will be needed. later when we shall + 2 ( ) ) (et iy)a™ f W cosudu— ”’WCOWZ(IC) (—1)
deal with the C-means of the kernel. =1 k=1
LevMA 4. Let 0 < j < B be integers. Write -
—f U™ sinw du - iy fu”‘ *eoswdu—
0 2

@
(2.3) Al(z) = m‘ﬁf (—w)P T+ sinwdu .
0
Then, as & — co: ——w”'cosm—{—z 1)"( ) (% 4y) "‘fu" ¥ eog - 27 cos .

(a) Af(x) = 0(1).
(b) For 1< p we have All that remains is to show for k> 1,

x
. 1
m“’“f w*= Y gosudy = O (—- as & —> co.
»
0

T2 -
Al (x) =fu”sinudu—]—iyf u?~cosudu-+-0 (i)
- @
0

T2

(¢) For 1<j<B—1 we have Af(z) = O(1/). : For % = 1 this follows from [ «”ecosudu = O(1).
[]
Proof. (a) If § =0, then . For 2 <k we have
A%(a) = [ 4 sinud ' S i ; grm—
o(@) fu s uan w"‘f WY gosudu = m'k[mk‘l“"smw*(k*l‘i'@?)f“k—stmud“]
2 !
—f ¥ sinwdu -+ iy f w? cosudu— o cosz = O(1). - z
v Ciin _ 1
w2 =0 (_1.) mk_—-——H-w m”fu’c‘”wsinuwdu =0 (Z)
If now f>1, then ¢ 0
o . “ ‘ Since, finall
Afl(z) = a:“"f WV ginudu = -w”’cosw-}—(ﬁ—kiy)w“ﬁf w1 cog udu ’ "
0 0

co 1
f wu?teosudy =0 (—),
x
T

1
= ~mi"cosm+(ﬂ—}-iy)w""fuﬂ"”"“’cos(uw)du =0(1).
0

(o) Ab(=z) we have
z x ., T2 oo . 1
= a;—ﬁf(w—u)ﬂuiminudu = fui”sin'udu Ag(w) — f ui”sinudu—{—'iyf %w—lcosudu_l_o(;).
0 0 0 2 ,
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(6) We shall prove Af(x) = 0(1/z) for 1<j< f—1 simultaneously
on f, by induetion on j: ‘ : v
! ]
Al(z) = aF f (@ — )P~ sinu dy

@
=—gF f (@ — )"~ =Dgy? =1+ ginyay dog -

@
g (-1 fa; )P0 =Ny I =3 i gy,
0

and so
(2.4) Al (@) = AT} (@) — Al (2).

We have to prove therefore only 4% (x) = O(1/x). Using (2. 4) however,
with § =1 and part (b) of the lemma we get

A1) = 457 (o) — A (@) = o(%)

This completes the proof of the theorem.

THEOREM 5.
9 @ o 0, I<ow<k,
—f sin &t f u® sinutdu dt = [%7{;”, o =k,
™
é 6 K, k<a.

Proof. Let us first show the existence of the integral
@ 1 wt
fui”sinutdu = Wf wsinudy =
. 0

—— A{ (wl).

1+'Ly

It i3 therefore sufficient to show

wf

fsmktf u”sinududt = O(1) as space T — oo;

wl

f sin k¢ f u”smududt

T

1 - 1 .

= —-Icoska u“'smudu—}—f - 08 kt o (wt)” sin wt db
0 0

T T
= 0(1)—{—%&)1'”"[] #’Vsin(w+k)tdt+f #’vsin(w-k)mt] = 0(1)
0 0

by part (a) of Lerama 4.
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We have therefore shown the existence of the integral.
Calculate it now. Note that for y =0 the theorem reduces o
; 0, O0<ow<k,
— €O
-fsmn “’d 5 w=k,
1, o>k

ag is well known. ’
TFor y £ 0 we use the result for y =0 in the following way:

(=] [}
—i— [ sinmt [ wsinutaua
0 0
[e°] (] ' (=] w
= a)i”—% f sin &t f sinutdudt——% f sin k¢ f (00" — u¥) sin ut du d
[ 0 0 0

0 O0<o<k g © o o
w?l% o=k }-—f sinktffiw'v-lau sinut duds.
. T
1 o>k 0 o u

Assume now that we can interchange the order of integration in the
lagt integral. We get

o 0 (0<i<k)
1 )
wfm l_fgl ot 2SO dtdl:iyflw‘l-lé (h=F) }cu-
0 1 (A>F)

‘We therefore have

w o 0 (w < %) 0 (0 < k)
2 f sinktfu"“‘sinutdudt ='1}7c“’ (0 =k) —[0 (0 = k)]
i 0 o” (0 >k) o k7 (0 >F)
0, o<k,
[%kw, © =k
k7, »>k.

To complete the proof, now we have to show that we can interchange

the order of integration.
For every T we have

T o o ) ) T ) b )
nf sinktof (uf A"“'”‘ld].) sinut du dt =uf l”"lof smktbf sin wt du dtdA
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@ T
- f Jir=1 f sin kt

0

icm

— 1
1—cosi il

kT (k+HT . (le—2)T
t 1 14
—fl”‘“ [f smtd_i sin = f sin dt] .
2 i 2
0 0

Thus for every 1 the integrand has a limit a8 T — co. The integrand
is obviously bounded as T — co, uniformly in 0 < e¢< 1< w. To show
uniform boundedness near 1 = 0, note that the expression inside the
brackets vanishes for 1 = 0, and using the mean-value theorem it is

sin(k+2,) T sin(l—4y) T }

equal to :
A {T
2 (k4 4,)T (bk—A)T

with 0 < 4, << 4 < ¢ < 1 and so the integrand is uniformly bounded. This
concludes the proof of the theorem.

DEFINITION 6. Let ) 4;(x) be a trigonometric series. Write
0
(2.5) 8 (@) =0, Y B, (),
0<k<

where the star indicates that if w is an integer, then the term. corresponding
to k = iz multiplied by }
DEFINITION 7.

o, .
W, () =& f w® sinut du .
™
]
TeEOREM 8. If feL(— =, =), then
8yu(@) = [ flo—1) W,(t)dt

" Proof. (a) Tf fis a trigonometric polynomial, we may assume that
it consists of a single term:

f(@) = ), coskx+b, sinkw.
‘We have then

f Flo—1) W, (0)dt = B,c(w) f sinké f W sin ot du di
0, w<k,
=0,By@k" )3, =1,
L, o>k
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(b) feL(—

T, ).

W) = G f u™ sinwt du
k13
0

is of bounded variation over any finite interval [— T, T']. Thus

2 fAk(m—t) W, (t)d

=1 —T

=D [ dylz—1) Wm(t)dt—z [ Arla—1) W, (0)ds.

w<k Tt k<o T<IY

f fla—1) W) dt =
=8,.(%)
The last sum tends to 0 as T'— co and. so all we have to show is that

f Alz—1) Wo()dt = o(1)

a<k T<[t]

as T — co.

Since W, (t) is an odd function of ¢, we have

2 [=] w ) R
2 _ 26 ZBk(m) f sin &t f w7 sinut du di.
T <k r 0
‘Write
(2.6) G(T) = [ sinkt [ w7 sinutdudt.
T 0
‘We have
) . _ " o ) oo 1_ Zt
G (T) = o f sinkt—l—%"idt—iy f i1 f sinkt " gan,
T ) 0 g
y Fsint 1 [ sint 7 sint
fsinkt oS M fsm @ in b gy 1 fsﬂ-dt
7 kDT (e-nr
coskT fmeost 1 cos(k+21)T —I—E f cost d—
kT # 2 AT T2, g
1 cos(k—A)T 1 ~F cost it
2 (k—MNT 2 J e
. (k~4T
_ 2coskT—cos (k-4 4) T —cos(k— )T /Icos(k—l—ﬂ).’l'_ Acos(k—A)T
h 2KT ok (k+ )T (k—2)T
cost - cost Emcost
3 f f a W ®
(k+2)T (k 3T kT

Studia Mathematica XXXVIIL,3
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cos kT [1~cosiT] {cos(k—i—l)T cos(k——l)T} n

= T oh(k+ T 2(b— )T
3 1 cos(k+4)T 1 cos(k— lo)T}
_ + { 2 T T2 (AT |’
where 0 < A, < i< o <k.
Thus
.cos kT (L—coswT) 1
() = o g 0| ~

1
iy 2 “";“’fw coszT)dZ—l—O(-T”

[ #71(1—cosaTyar = I f A7 (1—cos2)dA = O(1)
[ 0
ag T'— oo, and 80

. 1 277 1 . 1
Zaksmkak(T) = O(»T—)Z—I?smkmoosklw—o (»;172 o] i
o<k w<k w<lk
The last term is clearly O(1/T) as T — co. Denote now by & the

integral of the even part of :

f(v’”)—ZAk(m), D(w) =2—“ﬁsin7m.

k<o <k

‘We have

—[qs(w+T)+q5( —T)] = Z*-smkmeosw
w<k
and. so the last expression is bounded uniformly in T.
This shows

1
2 asinkeGy(T) = 0 (—T—)

.

o<k

" Similarly one shows

i 1
2 breos ke Gy (T) = O (—T—),

a<k
and the proof is complete.
3. Hypersingular integrals.
DEerFINITION 1.

(3.1) Flo) =pv. ff(m t)W

icm
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If f has at a,r—1 generalized derivatives, define also

(3.2) f(@) = —pv. f 6,(m,t);l—%dt
THEOREM 1. If f<(", f periodic (2x), then
~ r! -
— . ()
1O = e @

Proof. Integration by parts.

THEOREM 2. Lét E < (—=x,w), |B >0. If f has r—1° generalized
derivatives in B, and zf the indefinite integral @ of f has r+1 generalized
derivatives in B, then J.(x) exist a.e. in E.

Proof. We include the proof for completeness. It is analogous to
the proof of the corresponding theorem in [8].

Let P = E be a closed set so that [B—P] < ¢ and so that if we.write
x(w) = distance (#,P), we have a decomposition @ = G+ H, where
G0, and |H(2)| < Oy *'(z) for all  except possibly those belonging
to one of finitely many intervals contiguous to P (see [10], XI, §4).

Since we have @' =f a.e.,, H = ®—@G, H is differentiable a.e. Let
H' =h,6G =g. We have
(3.3) f=g+h,
geC and so0 §,(x) exists a.e. It therefore suffices to show the existence
a.e. in P of h,.

Since |H ()]
P we have
(3.4) H(z+t) = o).

So H has r+1 generalized derivatives at points of density of P all
of them 0. Since f, g have r—1 generalized derivatives at all points of P
80 does %, and from (3.4) follows further that at points of density of P,
(3.8) h(z) =hy(2) = ... =h,_y () = 0.

By a well-known theorem of Marcinkiewicz, we have for almost
every weP

< Oy (#), it follows that if z is a point of density of

7
(3.6) f——*—]‘% ﬂ’lq dt <co.

Let « be a point of density of P where (3.6) holds. To show the
exigstence of h,(z), we have to show only the existence of

Y hz—1)

(3.7) W dt for an 7> 0.

[
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Take 5 so that (#— 7, 2) does not intersect any exceptional interval.

It will also be convenient to take # so that #—neP.
For 0 < 1< g we have |H(z—1)] <O+ ().
Integrate (3.7) by parts,

i
H(x—1)
f e ”"~
0

7'—11 t
< Olr+ wif ~~~~~~~~ o @< oo,

Y n(o—1 )
f-jgéﬁg—MN==w+1+eﬂ
0

and the theorem has been proved.

Our next objective is the following theorem.: Let S[f] be the
Fourier series of f, and 87 [f] the r-th termwise derivative of S[f].
Then, it F,(z) exists, M,(SW[f])(#) converges (C,r+2) to

T2 ’ o0
(f ™ sinwdu -+ iy f
0

2

Ier+itiy) O,

(8.8) T+ iy (r+1) =

utcosu du) Folw)

The proof shall require some intermediate results.

Let us write
L\?
(3.9) o (@) =0 ZZHB, ) (1—m)
k<o
THEOREM 3.
@) = [ (a—1) W),
where -
N o
W (t) f (0 — )P w™ sinut du.
Proof.

&, o(@) = C,0™" ' KBy (a)(w—%)
-k

<o

= o7 [ (0—ufds},(a) = —™" [ 8 ,(0)d(0—u)
; 0 0

=_m~ﬁfm( ff(w~t) W) dt)d(—uy

0
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=—o™ [ flo—0)(f Wat)d(o—uy)d
= ff(w—t) [w—ﬂfm (m—u)ﬂd,Wu(t)]dt
~c0 0
= ff(w—t)[gf—w"ﬂf(m—u)ﬁui”sinutdu]dt.
—00 w 0

We shall now establish some estimates for the kernels W2 (z).
LEMMA 4.

1

Proof.

c, P
(t' ' 3l (1—ﬂ) W (sinut)® du
ki Y w

18 gl < 16k
nfudu[ .

o

@
LEMMA 5. For 0 <k < o we have as t — oo, —Wﬂ(t)¢0(tk+l)ﬂw

0 uniform in o, for 0 < w0y < @
Proof.

ot
a 1 w\f .. &
0 =g [ (1] e e
0

C 1
= 7: tk+1+w ( f Slnuza(k: .7 !37 ‘Y (mi_ u)ﬁﬂul-‘-wdu

Since j < k< f we can use Lemma IT 4, and get as wi— oo
k 1 wt
Dot 8,9 f (wt— )P~ 4 sinudu = O(1)
per () J .

and the proof is complete.
LemMa 6. If we write

(] 4 4
Wit) = s +Ho®),
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with Substituting ¥ = f—2 we get the first estimate. To get estimate
o o (3.11):
A = —l(f ™ sinu du 5y fu”’"cosudu) B 7 -
T
2 - A 2)# 3 Hﬁ B2 ?
’ | dt(tﬂ dt“H )) B=2)7 Zp= Ho O+ 0 G Ho
we have for 2< B, 1< ot )
- 0 . =1 30( )+tﬁ~20( tﬁﬂ) =0(—_;),
(3.10) } T H:’;(t)’ <—5 ot
i e o and Lemma 6 is proved. '
— e t —_— LemmA 7. (a) If r< f+1 is odd, we have
(3.11) @ {t dt,g, ol )} e (a) If r< g+ ) i
Proot. . (312) [ {WE@ar = [ AWE@at =... = [ t{WAE}a = 0.
Wﬁ() 0, (—D"Z(k) PB+1)  I(k-+141dp) g ¢ ¢
dtk ™ tk+1+’w = J F(ﬂ—]+1) F(]-{—l—l-'@y) (b) If'r<ﬁ+1 is even, we have
wt o0 o
x(—l)’(ml;)— f (wt—u)f~T o ¥ ginw du. (3.13) f HWE @t = ... = f YW d = 0.
@ o [
We are considering only the cases k = f—1, b =f—2, and so we Proof. WA (t) is an odd function of ¢ It therefore vanishes, with
have j <k < f—1. all its derivatives of even order at ¢ = 0. Moreover, for 0<<k<p we
Using the appropriate estimates of Lemma II. 4 we get have {W5(t)}* = O(1/f**"), and for all k¥ we have
Ok, y) 1 1 O(k, ») 1 8 ()] < L 1
“d;z?Wﬂ(t) = e + e O\ ;) = e 10| we ¥l <—o
with Using these, both (3.12) and (3.13) follow by integration by parts.
3 w2 o F@) . (r) i 9
% ) THEOREM 8. If ) () ewists, then M, (8P [f]) is (C, r4-2) summable to
C(k,y) = &(—1)kf—(j—1-m (f u™ sinudu -+ iy f u1cosudu). ! 4 !
i I'(1+41y) 5 A ) o 2 ”
(3.14) jﬁ‘}"‘_’”’)__y(f u' sinwdu + iy f u"”“cosudu)j‘,(gc).
We have ) T4y I'(r+1) = % A
Oty _ —(k+1+1p)
C(k, y) Proof. The proof is along the lines of that of Lemma 5 in [8]:
and so .
a [0k, )\  O(k+l,y) \ ve oy [ ra2 g
}ﬁ( tk+1’+1:y = .tk-|-z+1;y . 7,0 (m) s'_ _-;[ f(.t) Ww (w t) dt!
Thus a .
&, A 1 and so the r+2 means of S“)[f], which are also 27 % o2 (w) ave given by
iv ar (W )= = (W) -
; it LW o)t = [ [fla— )+ (—17 P )T )0 b
0 EA o . —0oc []
= =2 ¥ si : iy —1
4 =00,y = ([ @snuduriy ,f o cosud. — (21" [ et 4 (e P @
™ 0
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o0

1, ., Since F(s) = o(1) as s— 0, we have A(f) = o(t).

= (=177 [ [Prcalo, 0+ (=17 Prs (o, =)+ 00,00, )] (WL ()0 :

0 o »
o [ oo oo [ e r o ga
= (=17 [ (o, ) (WL () ar. 0 T

[}

1w 1o
The last equality follows from (3.12) if » is odd, from (3.13) if # is I _d:’_ W) dh— ar a A

even. Using now the decomposition of W"’“() given by Lemma 6, we of (@, 1) ar e (t) 5{ » (25 1) prarEll

have

The 2nd integral tends to 0 as w — co, and
'+1f (@, 1) == & W) as

Yeo

dr
& A # S (@, O — Wik () dy
= ~——1)r+1f6 (2, 1) 5 = iy b+ (= 1r+1f6 @, 1) — = () of ar
a Lo g
I'(r+1+4ip) 1 — ADT 2y ]3_ At {t’———W"“ t}dt
= -—Awf 5,.(09, t)r—!'mdt—f- () dtrW::: () 0 bf () ar ()
0
1/o 1w
1\1 ar artt
)r+1f 6 56‘ t)——""zl‘—;ﬂr“z(t)dt =O(;);)Tmr+l—-—f A( )/,-tf‘* _at_TW';I‘?U)dt_f A(t)tTWW:+2(t)dt
0 0 0
L Tr4itd) T N . A, ” 1o
=4 I(14-4y)I(r+1) Jr(@+ (=1 of %(o, 1) rlar B ) s = 0(1)~—f o(t')af“dt—f o(f YAt = 0(1).
0 [
And to complete the proof we have to show that the last integral Finally,

tends to 0 as w — oco.

Estimate (3.10), which is certainl lid for 1<1¢,1< i ! r
im: ( ) certainly va or 1<%, 1l< o, glves‘ f&,(w,t)f%ﬂfn“(t)dt

pag . 1o
]f 8., )1 H’“(tdt‘ fﬂi—’t—)'dho(}—).
- © 1
v Atyr T m ]_1 f A(t)ﬁz—{fa,-ﬂﬁz(t)}
Thus we have to deal only with the integral between 0 and 1. Break N
it info 2 parts, between 0 and 1/, and between 1/w and 1. Write
1
t 1 1
8 = 0()0[— fot)O( )dt~ol
[ ';ﬁ’;) ds = F(1). ~ & (mz)] ) ( (
0
We have and the proof is complete.
t Lo 8,(x, 8) ‘We can now prove, quite easily, the fo]lowmg identity:
a0 = [ g(@,9)ds = [0 200 g
§

(3.15) ZJ- Slf:i (fu”sinudu-l—i}’f u""’“cosudu) = .

i
=81+WF(&)]2——(1—|—7J;/) [ F(s)s”as. ' e
0
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Take in theorem 8, f(#) = sinx,r =1,

8, (x, 1) fe+t)—f (z—1) 1
f1($) = f 1t1+w dt = f Ty a 14y
1 2singsing 1 .
= . f =75 Oysina.
14y ; 1 141y

By theorem 8, however, M, (8P [f]) is (0, 3) summable to
1 #f2 0o

(f u® sinw du iy f u"”‘lcosudu) .
T [

n/2

T@+iy)
I'(14-4y)

However, M,(S®[f])

f1("’7

= C,sinw. Therefore

. /2
sing

TE+iy) O
144y 77

22 v ; iy—1 y
T+ = (ofu smudu—}-wfu cosudu)

/2

C,sing =

and hence (3.15). .
Substituting (3.15) in (3.14) we get: if f,(») exists,

I'(r4+144y)

(8-16) Tr4+1)I141y)

(0, r+2) M,(8® (7 = Flo).

TEEOREM 9. If a trigonometric series Y A, (w) is (0, B) summable in
0

a set B of positive measure, 0 < f am integer, then M, (Y A,(w)) is (C, B)
summable almost everywhere in E.
Proof. This is immediate in view of the main theorem in [9], and
Lemma 3 in [8]. See also [6], where a more general situation is discussed.
00

TamorEM 10. If 3 Ay() s (G, B) summable to s(z) in a set B, |B| >0
1

then if k> 42, and if F(x) is the sum of the k-th termwise integral of
DAy (@), then Fy (o) ewists and equals s(x) almost everywhere in H.

Proof. Since Y A,(z)is (C, §) summable in F, ZBl(w is (0, B) sunumable
a.e. in B (see [51). We next apply Theorem XI. 2. 22 in [10]. For a state-
ment of the theorem see also Lemma 4 in [8].

TeEoREM 11. Let f have r—1 generalized derivatives in a set B, |H| > 0.
Assume also the existence of f, (x) at each point of B. Then let G be the indefi-
wite integral of f. Claim: @ has r-+1 generaliced derivatives in B.

Proof. The proof of this theorem in the case p =0, given in section
4 of [8], goes over without change.

icm
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