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Components and open mapping theorems
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NIELS JORGEN NIELSEN ({Aarhus)

Introduction. In a recent paper of De Wilde [8], strictly netted locally
convex spaces are defined and some closed graph theorems are proved.
It seems, as it is not the striet net itself in such a space which plays the
essential role, but that it is only a tool for constructing a general structure
on the space, & structure, which is independent of the actual construction
and from which the closed graph theorems are a consequence. This is the
background for this paper.

After the preliminaries are given in section 0 and 1, section 2 brings
a general open mapping theorem for closed mappings from a pre-(F)-
sequence into a not necessarily metrizable topologieal group, a genera-
lization of Theorem, 2 in [6], and it is from this that all other open map-
ping — and closed graph theorems presented here will be derived.

In section 3 come the main mnotions, those of a component and an
overwhelming set of components for a locally convex space. The existence
of such sets is responsible for the validity of the open mapping and closed
graph theorems proved here. The notions are slightly different from those
introduced by Stowikowski [7]; this enables us to include new cases, for
example, it turns out (section 4) that the structure of strictly netted
spaces and of Souslin spaces gives the possibility of constructing sets of
components, which overwhelme.

In section 4 also examples from [7] are taken, and it is indicated
that the class &, considered by Raikov [3] is contained in the class of
spaces having an overwhelming set of components.

I would take this opportunity to thank Dr. W. Stowikowski for his
willingness to discuss the subject with me and for his encouraging attitnde
in general.

0. Notation and Terminology. All vector spaces in consideration are
supposed to be over the complex numbers, and all locally convex spaces
are supposed to be Hausdorff, unless something else is stated.

As it is customary, we shall write “the topological space X” instead
of “the topological space (X, t)”, where no confusion about the topology
7 will arise.
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Besides the standard notation on set theory, topology, vector spaces,
ete., we will use the following special notations:

N stands for the natural numbers.

O stands for the complex number.

N stands for the set of all sequences of natural numbers.

1. Preliminaries. Let us recall the following two definitions from [6]:

1.1 DeFINITION. A sequence {(V,, [|'|.)| neN} of vector spaces,
each V,, equipped with a seminorm [|-|l,, will be called a pre-(F)-sequence,
if the following conditions are satisfied:

(i) For each nelN, V., c V, and ||, < |#ll,.. for all @V, .
(ii) The projective topology on () V, is Hausdorff.
n=1 .
I {(V,, ') neN} is a pre-(F)-sequence we can define the fol-
lowing positive functions on V,:

llell, :
— for 2¢V,,
on(@) =1 1+l ‘
1 for weV,/V,
and
o(x) =Z2‘"gn(w) for all weV,.
n=1

) Since all the g,’s are subadditive, o is subadditive and also o (z) = 0
if and only if @ = 0; hence o defines a translation invariant metric on
V., which turns the additive group (V,,+) into a topological group.
In the following this group assigned to the pre-(F)-sequence {V,} will
always be denoted by [V,].

1.2. DEFINITION. A pre-(F)-sequence {(V,, || [,)| #neN} is called an
(F')-sequence, if the assigned group [V,] is complete.

Remark. Note that in case [V,] is complete, (1} V,, is a Frechet

n=1

space for the projective topology.

Let us end this section with the following :

1.3. DEFINITION. A pair (¥, z), where V is a vector space and. 7 a to-
pology on V, will be called an additive topological group with continuous
sealar multiplication, if

(@) (V,+) is a topological group under 7.

(if) For each t<C the map # — iz of V into itself is continuous for 7.

Nof:e that the group assigned to a pre-(F)-sequence is an additive
topological group with continuous scalar multiplication.

* ©
lm Components and open mapping theorems 279

. 2. The Main Theocrem. We are now able to prove the announced
main theorem:

2.1. THEOREM. Let {W,|neN} be an (F)-sequence and W an additive
topological group with continuous scalar multiplication. Let Dp = W, be &
subspace and T: Dy — W a linear map, such thai:

(i) T 4s closed with respect to the topologies on [W,] and W.

(ii) For each neN, T(Dy n'W,) is of second category in W.

Under these circumstances T is open. '

Proof. Let o denote the metric on [W,, ] and let U, denote the unit
ball of W,; for each ¢ >0 we pub

E, = {weDylo(2) < ¢}

Let us first prove that for all & >0, 0¢(T(K,)~ (Y.

Since T(Dy N W,) is of second category in W, we can conclude
that 0¢(T(2™ U, N Dy))~" for all nel, hence if we make # so large that
27"U, N Dy < K, we get the desired conclusion.

We will now prove that for every ¢ >0

(*) (T(E.p))~ = T(E,)

which together with the above will give us our result. Let us first determine
n so large that ze2 "7, ; implies o(2) << &/2.
Let ye(T(K,p))~. Take @,eK,, such that

y— Tz, (T2 T, N Dy))”;
hence we take ®,,; €27 U, n Dy with
Y T2 — T, | T(@ " Upyy 0 D))

Continuing in that way we reach a sequence {#;]k > n} < Dy with
the properties:

1) w275, for k>n,

(2) y— D T, {T(2™™ U, 0\ Dp))"
k=n

oo o0
(1) gives that Y  is convergent in [W,]; put = =k2 .
k=n e

Since

m m
- —n41
B Y 27T, = 27T,
k=n+1 k=n+1

we get o(z—a,) < ¢/2 and hence o(2) <e.

(1) =° denotes the subsegquent formation of closure and interior.
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Let now U be a symmetric neighbourhood of 0 in [W,] and V
a symmetric neighbourhood of 0 in W; from (2) we get:

m
(3) y— 3 T2l (2T, N D)+ ¥V, Fmzn

k=n
m
Determine now m so large that 27" U,, < U and #— ) @,e U, then
k==n

from (3) "

(4) welo— ka) +17 Y Twy) =

k=n k=n

U+T"Yy+T(U 0 Dy)+ 7).

From. (4) it follows that to each U and 7 we can find element
(U, V)eDq, b(U, V)eU, ¢(U, V)eU N Dy and d(U, V)eV such that
(8) @ =a(U, V)+0(U, V), T(alU, V)) = y+T(0(U, V))-l—d(U,V).

Since

lim (T, V) = lim ¢(UT, V) -—hm a(u,V)y=0
(U, 7) CA
we get i
lim (a(T, V)—¢(T, V)) = =,
U,7)
lim T(a(U, V)—e(U, V)) =y,
(U,7)

hence by the closedness of T, zeDy and T = y. Q.E.D

Remark. In case W is the group assigned to some (F)-sequence
the above proof can be much simplified, see [6], Theorem. 2.

3. Locally convex spaces with an overwhelming set of components.
In this section we will define a wide class of locally convex spaces in which
we can apply Theorem 2.1.

Let in the following (#, 7) denote a locally convex space.

3.1. DEFINITION. A pre-(F)-sequence {(V,,, |- |l,| 7N} is called a com-
ponent for (B, ), if the following conditions hold:

(i) V, is a subspace of H.

(ii) The injection [V,]-> (%, z) i3 continuous.

(iii) The injection in (i) can be extended to a continuous map from
the completion [Vﬂ] into (H, 7).

A component for (¥, z) is called a complete componem if it is an
(F)-sequence.

3.2. DEFINITION. A set X' of components for (¥, ) is called overwhelm-

ing, if to any pre-(F)-sequence {(Vp, lI'1lp)] #<N} and to any linear map
T from a subspace Dy of B onto a second category subset of [V,], there

iocm°®
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is {W,|neN}eX such that I'(Dy N W,) is of second category in [V,]
for every meXN.

A set X of components is called strongly overwhelming, if it has the
above property with the pre-(F)-sequence {V,|peN} inferchanged by
an. arbitrary additive topological group with continuous scala.r multi-
plication.

3.3. LemMMA. If (B, <) has & component, then it has also a complete

COTPONENt.

Proof. Let {V,|neN} be a component for (¥, v); by assumption
the injection 7T':[V,]— (¥,t) can be extended to a continuous map

T:[V,]— (¥, ). Using now Proposition 2 of [6], we can find an (F)-
sequence {W, | neN} such that [W,] = [ﬁ_].

Since [W,] is an additive topological group with continnous scalar-
multlphca,tmn we get by the linearity of T and the continuity of T that
T iy a linear map of W, into E, and hence L = T“I(O )is a [W,]-closed
subspace of W,. )

From Proposition 4 in [6] it now follows that there is an (F)-sequence
{H,| neN}, such that [H,] is isomorphic to [W,]/L.

Identifying now the H,’s with subspaces of F and carrying the re-
spective seminorms over to B we get the desired result.

The.following proposition is now trivial to prove:

3.4. PropOSITION. Let (E,7) be a locally comvex space having
a (strongly) overwhelming set of components, then (E, ) also has a (sirongly)
overwhelming set of complete components.

Having Lemma 3.3 and Proposition 3.4 in mind, one may ask why
a component is not once for all defined to be complete instead of having
condition (iii) of Definition 3.1. The reason for this is that in concrete
cases, where one perhaps is not so much interested in the components
themselves, but merely the properties they induce on the space under
consideration, it is often easy to find components, which need not be
complete, while complete components are not straightforward at hand,
s0 that ome has to go through the procedure in 3.3 in order to
find them.

In section 4 we will give some important examples of locally convex
spaces with overwhelming sets of components.

If B is a locally convex space with a component {V,|neN} and
M is a linear subspace of B, then we will denote the subgroup [V,] n M
of [V,] by [V, n M1

The following theorems are all corollaries of the main Theorem 2.1:

3.5. THEOREM. Let E be a locally convez space, V an additive topological
group with continuous scalar multiplication and Dy a subspace of B. Further
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let T: Dyp— V be a linear map, Mappmg Dy onto o second category subspac
of V. If one of the two conditions ) .

(i) E has an overwhelming set of components, V is metrizable and
T is sequentially closed,

(i) B has o strongly overwhelming set of components and T is closed,
is satisfied, then there is @ complete component {W,|neN} for B such that
T|[W, N D] is an open map.

Proof. Direct application of Theorem 2.1.

3.6. COROLLARY. Let F be a locally convex space with a strongly over-
whelming set of components, F a locally convex space and Dy o subspace
of B. If T: Dy~ F is a closed linear map, then either T (Dy) is of first
category in F or T(Dg) = F and T is open.

The conclusion is still true, if B has an overwhelming set of components,
T is @ Fréchet space and T 1s sequentially closed.

From the foregoing we now get the following closed graph theorem,
which at the same time is a kind of localization theorem for locally convex
spaces with a (strongly) overwhelming set of components:

3.7. THEOREM. Let B be a Baire space and F a locally conves space
having a strongly overwhelming set of components. If T: H— T is a closed
linear map, then there is a complete component {W,| neN} for F such that
T(E) = F] W, and T is continuous from E into () W, (hence also contin-

=1 .

L% N=1

wous from H into F).

The same is true for a sequentially closed map from a Fréchet space
into @ locally comvew space with an overwhelming set of components.

Proof. From Theorem 3.5 we can conclude that there is a complete
component {W,|neN} such that T(H) ¢ W, and T is continuous from
F into [W,], and using [6], Proposition 1.D we get that actually
TE <MW, QED.

Let"u;; end this section by defining an inductive limit topology on
a locally convex space with an overwhelming set of components, which
geems to play an important role in the theory:

Let (E,r) be a locally convex space with an overwhelming set 2
of complete components, say X = {{W;};.,| aed}. Define for aed,

F, = W, and equip it with the projective topology; from Theorem

n=1
3.7 it easily follows that B = | ) F,. We can order A partially by putting
aed

a< f if F,  Fy, and since every F, can be mapped continuously into
(B,7), we see that if a < g, then the imbedding of F, into F, is closed and
hence ‘continuous.
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Let now {a),0,...,a,) = 4 and define ¥ = span (U F,); the
=1
topology on F induced by the guotient topology on

[[72, B=(@)e[[Fel Y, =0}

=1

turns ¥ into a Fréchet space, which can be mapped continuously into
(B, 7), hence using Theorem 3.7 we find an ae4 with F < F,. This proves
that the ordering on A is filtered wpwards.

The induetive limit topology on F with respect to the family {F,| aecd}
exists, since v iy Hausdorif; let nus denote it by z; from Theorem 3.7 we
get that any continuous operator from a Fréchet space into (B, 7} is also
continuous for 7j.

Let us call a topology v, on E mawimal with respect to X, if X is an
overwhelming set of ‘components for (B, ;) and 7, is the finest locally
convex topology on F with this property. It is not difficult to see that
such a topology exists and that it is weaker than 5. One may pose the
following:

3.8. QUESTION. Is 75 = 17,?

Probably the answer is negative in general, but in many concrete
cases it is positive. If for example (¥, 7) is an ultrabornological space,
then v = 7 and hence maximal; this shows that the inductive topologies
of the families which have an overwhelming set of components in the
sense of [7] are all maximal.

Let us {inally prove the following proposition concerning 3.8:

3.9. PROPOSITION. If there is a co-complete locally convex topology
& on B, such that X is an overwhelming set of components for (B, £), then
the answer to 3.8 is positive and X is an overwhelming set of componments
for the family {F,|acA} in the sense of [7]. '

Remark. Co-completeness of (F, £) means that every convex,
balanced, closed and bounded subset of (X, £) spans a Banach space
(see [1], p. 382).

Proof of 3.9. Let {W,|ne¢N}eX and let (x,,) be a Cauchy sequence
in [W,]; denote the unit ball in W, by U,. To each neN we can find
a number m, such that °

(1) (B — T Jen T U, for all m=m,

and this implies that there is a bounded, convex balanced and closed seb
B in (B, &) with:

G {n(wm'—mmn) l m = mn} = B:
n=1

Studia Mathematica XXXVIL3 6
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hence for all p, g= m,:
(2) Bp— Ty = (%"wmn)’f‘(wmnf @,) 207" B.

Since (H, &) is co-complete, there is an aeA such that B is a bounded
subset of F,. From (2) it then follows that (z,) is convergent in F,.The
rest of the proof is now trivial. Q.E.D.

4. Permanence properties and examples. It is seen immediately that
the class of locally convex spaces having a (strongly) overwhelming seb
of components is closed under the following operations: Countable inductive
limits, continuous images by linear maps, going to separated quotients
and going to closed subspaces. Hence for example any countable inductive
limit of Fréchet spaces has a strongly overwhelming set of components.

The type of spaces we are going to discuss in the following examples
often occur in analysis.

Bxample 1. o*-spaces (cf. [7]). Let F be a vector space. By a o*-family
in B we understand a family {By . 5. |neN T, %, ..., k eN} of subspaces,
each By, equipped with a seminorm [ [l,,... x, Such that

(i) For each k = (k)eN®, {By 1, |neN} is a pre-(F)-sequence.

(ii) For each keN*, By, = (1 B, 1, is & Fréchet space under the
n=1
projective topology.
(i) It ke = (k) eN®, k' = (%) N and %, <%, all neN, then
Ekl,... %,

B
i S By

N
and

lolle,....x, < lolk,,...n, for all weBy o .

iy BE=U Ek17 Ekl,,..,lcn_l = Eklkn
k=1 k=1
DEFINITION. A locally convex space (H,7) is called a o?-space if
there is a o?-family {Ekl,u-,knl neN, k, ..., &k, ¢eN} in B such that (¥, 7)
is the inductive limit of the family {&,|keN*}.
It is not difficult to see that if E is a o®-space with respect to the
otfamily {E; . |neN, ki,..., k,eN}, then the set

Z = {{By,,..p, o] keN™}

is & strongly overwhelming set of components for F; it can even be proved
that X consists of complete components (this is heavily dependent on
conditions (ii) and (iii) above).

The class of o%-spaces is & subclass of the class of spaces occurring
in the next example.

Example 2. Stricly netted spaces (cf. [87).

icm
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DHFINITION. A locally convex space F is called strictly metted if there
is a family k.. py | N, By Koy oo, By N} of convex and balanced
subsets of B, satisfying the following conditions:
(1) U e, is absorbing in E.

ky=1
oo
(i) For fixed k,, ..., %y, U €3 ooy 1, 18 absorbing in e ..
Tl

(i) I k = (k,)eN>* and {z,}>, < F such that By — By €O gy e
for all neN, then {z,} is convergent in E.

The family {e; ,...,; } is called a strict net in E.

It is readily seen that if ¥ is a strictly netted space, then it is no
restriction to assume about the strict net {eklw--kn} in F that by,
S 6y,...k,_, 10T 2ll nelN, 50 let us always do that from now on.

Let now ® be a strictly netted locally convex space with strict net
{ex,,...x,}; for each (k,, ..., k,) we define the subspace

Ko,

By skyy ooy ny, = span(ey , ..., x,)
and we turn By . into a seminormed space by introducing the Min-
kowski functional for e, . on it.
It follows from the conditions above that

, k=1

PROPOSITION. For every k = (k,) e N, {B . |neN}is a component
for BH.

Proof. Let k = (k,)eN® be given. From (iii) above, it follows that

to any O-neighbourhood U in E there is an neN with iy, = U
this proves

(o] 0
B =1 Ekl -Ekl,...,knAl =kU Ekl,...,kn'
=1
n

oo
1° that the projective topology on B, = M Ey,....x, is Hausdorff,
n=1

hence that {Ekl""!knl neN} is a pre-(F)-sequence;
2° that the injection of [E, _ , ]into F is continuous.
If {,| peN} is a Cauchy sequence in [Bj ;. 1, we can find a sub-
sequence {w, |n =0,1,...} with
By, — B, €l .y, Ior all nelN
and hence {7, } and therefore also {z,} is convergent in H. Q.E.D.
It is now trivial to prove:

ProposITION. The set
2= {By,,..p, o1 | N7} ‘
is a strongly overwhelming set of components for E.
Example 3. Souslin spaces (ef. [2] and [4]). We shall here prove:
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PropPosITION. If B is a co-complete locally convew Souslin space, then
B has an overwhelming set of components. )

Proof. Since F is Souslin, we can find a continuous map f of N*
onto B. Let us for nelN, k,..., % N define

Nl ooy k) ={m = (m)eN®| m, = kyj=1,2,...,n}
It is easy to see that for k = (k )<N*, the set
e (kyy ..oy b, ) nel}
forms a neighbourhood basis 4t k for the product topology on N,
X k = (k,) <N it follows from the continuity of f that

1) (o, <f (¥ (s, .., To,)) for all n) = (2, > f(k), 0~ o).
@) () = S0, By ey B)-

Algo we have

5= 7(¥=(1)),

k=1

(3) f(N“’(kl, Fyy ooy kﬂ,wl)) =kU1 f(N‘”Ual, Feypere kn))'
Define now "

Uk,,....k, = convex balanced hull of fIN>(ky, %, ..., %))
and

Ekl,kz,,..,kn =U MUy, 0y

The gauge function for Uy 4, ., turns By ;. into & seminormed
spaee.

We shall now show that for fixed k = (k,)eN™, {By 4, i |neN}
is a component for K. '

Let U be a convex and balanced 0-neighbourhood. in F; from (1)
it follows thatif @, en ' f(N°(k,k,,...,k,)) all nel, then w,—0 for
n ~— oo; hence we can find an neN such that

n”lf(N‘”(kl, Eyyoony kn)) c U,
and then also

a7t Us, c U.

Fgyeenskiy, =
This proves that {B . |neN} is a pre-(F)-sequence, and that
the imbedding of [Ehw»’%] into ¥ is continuous.

Let now {z,} be a Cauchy sequence in [By,,...5,] and take a subse-
quence such that

= —15-n
B~ T, N2 Ukl,...,k”'
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Then 2"(w,,—ax, )0 for n—oco, lét B be a bounded convex
and balanced closed subset of E with

2"(@p, —®p, JeB  all nelN.
Now .
n n
By, — By = 2 (o, — @, ) e( 2 2") B
T=m+1 i=m+1

and from the co-completeness of # it follows that {z, } and hence {m,}
is convergent in E.
From (3) it is now easy to see that the set

= {{Ekl,kz,...,kn};;l] kENm}

is an overwhelming set of components for #. Q.BE.D.

From the above proposition we see that there is an overlapping
between the graph theorems proved here and the graph theorems proved
by Schwartz [4] and Martineau [2] for Souslin spaces, but it is only an
overlapping; there Is no hope of proving the Borelgraph theorem of
Schwartz within the theory developed here, it requires a completely
different technique.

Example 4. The class 2, considered by Raikov [3].

We will not work out in detail here that any locally convex space
of type 2, has an overwhelming set of components, but just mention
that this follows from conditions (a), (8) and (y) on p. 293 in [3] together
with Lemms 1, p. 469 in [5].
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