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INTRODUCTION

We give here details of the results announced in [21], and also extend
these results to situations involving sets of arbitrary cardinality. Thus
in [21] we proved that every injective Banach space of infinite dimension
contains an isomorph of I*; here we prove that if an injective Banach
space contains an isomorph of ¢o(I") for some set I', it contains an isomorph
of 1°(I') (Corollary 1.5 below). From this we deduce easily the result of
Amir [1] that I®/e, is nob injective, and assuming the continuum hypo-
thesis, that if K is & closed subset of fV such that ¢ (K) is injective, then
X is Stonian (Corollary 1.6). (8N denotes the Stone-Cech compactitication
of N, the discrete set of positive integers).

These results are consequences of the key Proposition 1.2 which
asserts that if T: I°(I") - B is an operator such that T'e, () is an iso-
morphism (i.e. T|e(I") is one-one with closed range), then there is
o I" < I' with cardl™ = cardl" sueh that T[I1°(I") is an isomorphism.
(Throughout, “operator” [resp. “projection”] refers to a “bounded linear
operator” [resp. “bounded linear projection”]. Throughout the intro-
duction, B and X denote Banach spaces and I' and A denote infinite
sets). Proposition 1.2 in turn yields the considerably stronger Theorem 1.3,
which implies immediately that if X is complemented in X and X
contains an isomorph of ¢y(I"), then X confains an isomorph of I°(I).
(We regard X as being canonically imbedded in X**.) Theorem 1.3 can
also be used to prove a result concerning extensions of isomorphisms of
subspaces of I°(I") into injective Banach spaces, thus generalizing a result
in [13]. (Cf. Corollary 1.7 and the Theorem following it.)- e :

* This rescarch was partially supported by NSF-GP-8964.
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Proposition 1.2 and most of the results of this paper are consequences
of a lemma which generalizes Lemma 1 of [21] (which in turn generalizes
“Phillip’s Lemma” [20]). We state this lemma (Lemma 1.1) in Section 1
and deduce there its consequences for injective Banach spaces mentioned
above. Section 2 is devoted to the proof of 1.1; the argument is self-
contained, and is a generalization of the proof of Lemma 1 of [21]. In
a gense this argument combines the approaches of Phillips [20] and
Nakamura and Kakutani [14]. (For applications of the latter, c.f. [11],
[19], and [26]).

In Section 3 we introduce the notions of relatively disjoint and
strongly relatively disjoint families of measures. (We feel that these
notions, already implicit in the literature for some time (e.g., ¢.f. [7],
[9], [10], [16], and [18]), underlie most of the results of this paper. How-
ever, Sections 1 and 2 do not explicitly use these concepts). After showing
in. Proposition 3.1 the essentially known result that infinite relatively
disjoint families in I'(I") span complemented subspaces isomorphic to
1'(4) for some 4, we deduce further consequences of Lemma 1.1 con-
cerning the spaces I'(I') and ¢, (). Thus in Theorem 3.3 (resp. Theorem 3.4)
we give rather weak sufficient conditions on a subset of I*(I") (resp. of
any B) such that it be equivalent to the unit-vectors-basis of I'(I") (resp.
of ¢(I")). (The conditions are trivially also necessary.) 3.3 may be used to
deduce the known result that every infinite-dimensional complemented
subspace of I'(I') is isomorphic to I'(A4) for some A (due to Pelezynski
for countable (I") [18] and Kothe for the general case [101), and it also
yields a new proof of our Lemma 1.1 of [22] (c.f. the second corollary
following 3.3 below). Theorem 3.4 is easily seen to be equivalent to the
assertion that if T'is an operator from ¢,(I") to B such that it | Tyl > 0,

yel'

then there exists a I = I' such that cardl” = cardl™ and T'|c,(I") is an
isomorphism. This yields some new information also for countable I’
generalizing Theorem 5 of [2]. (y,,(f) =1 if y =4, =0 otherwise.)
We conclude Section 3 with applications of strongly relatively disjoint
sequences of measures, deducing the results 1~7 of [21]. The arguments
given there are already implicitly contained in [21], and yield new proofs
of some known results (e.g., of Theorem 1 of [17]).

DEFINITIONS AND NOTATIONS

We follow [3] and [5] for the most part. Banach ypaces are talken
over either the real or complex scalars. Let X and ¥ be Banach spaces.
The unit ball of X, {zeX: |g| <1}, is denoted by Sy. An operator T
from X to Y is called an isomorphism if it is one-one with closed range.
X and Y are called isomorphic (denoted by X ~ X)if there is an isomor-
phism (ie., invertible operator) mapping X onto Y. If X < Y, X ig said

icm
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to be complemented if there is a projection mapping ¥ onto X. A Banach
space is said to be injective if it iy complemented in every Banach space
containing it.

Given a set I', I°(I") denotes the Banach space of all bounded scalar-
valued functions defined on I" under the supremum norm; ¢,(I") denotes
the closed subspace of I*(I') consisting of all f such that for any &> 0
there exists a finite subset F, of I' with [f(y)] < ¢ for all p¢F,. If A4 is
a subset of I', y, denotes the characteristic function of A (i.e. 4, is one
on /A and zero off A.) If f is a scalar-valued function defined on I, f|4
denotes the function x,f. 1'(I") denotes the space of all scalar-valued f
defined on I' such that |Ifl = 3 |f(y)| < oo, under the norm ||-|. AI'

yel’

denotes the Stone—Cech compactification of I' and cardl” denotes the
cardinality of I

¢ denotes the cardinality of the set of real numbers and 8, the
cardinality of the set of integers. If cardl’ =m, we denote I*(I") by I3
and (1) by IL,. In the case where I = N, the set of positive integers,
we denote I (), ¢o(I"), and I'(I") by 1%, ¢o, and I respectively. (We assume
the notation and standard facts concerning cardinal and ordinal numbers,
as exposed in [25].)

If X is a o-algebra of subsets of the set K, ca(E, ) denotes the
Banach space of countably additive scalar-valued set functions on Z,
under total variation norm. If 4 is a countably or finitely additive scalar-
valued measure defined on X, |u| denotes the total variation of u (as
defined in [5]).

Given a compact Hausdorff space 8, C(S) denotes the Banach space
of scalar-valued continuous functions on S, under supremum norm.
We denote by M (8) the space of all regular scalar-valued Borel measures
on 8, and identity C(8)* with M (8) by the Riesz representation theorem.
(Of course we also regard M (8) = ca(§, Z) where X denotes the o-algebra
of Borel subsets of S.) A subset of § is called clopen if it is both closed and
open. § is said to be o-Stonian (resp. an F-space) if open F, subsets of §
have open closures (resp. if disjoint open F.'s have disjoint closures).
More generally, § is said to be m-Stonian if the clopen subsets of § form
a base for its open sets, and if every family & of disjoint clopen subsets
of S with eard F < m is such that | & is open. (Thus ¢-Stonian = 8y-
Stonian).

S is called Stomiam, or extremely disconnected, if the closure of every
open subset of § is open. It is easily seen that S is Stonian if and only
i § is m-Stonian for all cardinals m and that pI" is Stonian for all sets I';
it is also known that C(8) is injective for any Stonian § (c.f. [3]). Finally,
we say that § satisfies the Countable Chain Condition (the C.C.C.) if
every family of disjoint open subsets of S is finite or countable.
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SECTION 1

All of our results are consequences of the following lemima whoge
countable case generalizes a lemma of Phillips (see the last result of this”
section):

Lmvma 1.1, Let A be a discrete set and let {u,: ael} be an infinite
Jamily of finitely additive positive measures on A such thal sup u,(A) << co,

ael”
and let {B,: ael'} be a family of disjoint subsets of A. Then for all ¢ > 0,
there exists a I < I' with cardl” = cardl” such that

B (U {8y Bel", p #a)) < e for all uel”,

This lemma has some non-trivial consequences also for families
of countably additive measures defined on all subsets of A (i.e., for families
contained in I'(4)) which we explore in Section 3. We develop its conse-
quences for injective spaces and their quotients in the present section,
and delay its proof until Section 2, where we prove the apparently stronger

LeMMA 1.1 (a). Let m be an infinite cardinal number. Let S be an
m-Stonian compact Hausdorff space, let I' be a set with cardl" =m, and
let {p,: ael} and {B,: ael'} be given, where for all ael', p, is a non-nega-
tive member of M (8) with ||u,| <1 and B, is a clopen subset of 8 such that
Jor all Bel' with § 5% a, B, "B, = @. Then given &> 0, there ewisis
a subset I of I' with card " = card[l, such that for all ael”,

/uu(u {Eﬂ: /36.[”, ﬂ # a}) < e.
(Of course if § is Stonian, this holds for all infinite sets I', with no re-
striction on cardrl)

Remarks. 1. In view of the fact that to every finitely-additive
positive measure p on the discrete set A, there corresponds a unique
positive i e M (84) such that 4 (£) = u(B) for all B 4, 1.1 is an imme-
diate consequence of 1.1 (a). Actually, following an observation of Gro-
thendieck [7], 1.1 (a) is also a consequence of 1.1. Indeed, let §,m,I,
{#at eI’} and {E,: ael'} satisfy the hypothesis of 1.1 (a). For each ael’,
define the set function », on the discrete set I’ by

v(F) =, (UB,) forall Fel.
aeh'

Since § is m-Stonian, it follows that v, is finitely additive with [»,]| <1;
applying Lemma 1.1 to {»,: ael'} and {{a}: ael'} (the family of single-

tons of I'), we obtain for all e >0, a I" = I with cardl” = card]" such
that v,(I" ~ {a}) <& for all ael”, whence 1.1(a) follows.

2. It is easily seen, using a result of Grothendieck, that 1.1(a)
. for m =N, is equivalent to Lemma 1 of [21] (see the last result of
Section 3). :

icm°®

On relatively disjoint families of measures 17

Our next result provides the key tool for applying 1.1 to injective
Banach spaces.

PrOPOSITION 1.2. Let B be a Banach space, I' an infinite set, and
T: I°(I') - B an operator such that T|e,(I) is an isomorphism. Then
there ewists a sot I" = I' with card]” = card I’ such that Te") is an
isomorphism.

Proof. Pub K =||(T]eo(I))”"|. Now fix yel’; then by the Hahn—
Banach Theorem, there exists an f,eB*, |if,| < K, such that

fr (TZ{Y}) =1

Defining the set function u, by u,(B) = T*f,(xz) for all B c I', we have

as is well-known [5] that g, is finitely-additive with ||z, || = []T*f,,]], and

of course sup [|ull < |T| K. Now letting B, = {y}, we have by Lemma 1.1
el”

(since [Ty ll > 1/K).

e
that there exists a set I < I with cardl” = eard.” such that |p,|(I” ~ {a})
< % for all ael”. But then if pel®(I”) and if ael”,

\[oan| =lp@+ [ pau|> p@]—iple
I'~fa}

since py(a) = T*f(x.) = 1.
Thus

1 1
1Tl > ¥d {EP 11 (To)l > oY liplleo s

whence T'|I*(I") is an isomorphism. Q. E. D.

Remarks. 1. The above argument shows that the conelusion of 1.2
holds if we replace the assumption that T'|¢,(I") is an isomorphism by
the assumption that inf|| Tyl > 0. In this connection, see also Theorem 3.4

yel'

below.

2. If I'is countable, 1.2 may be proved without the aid of Lemma 1.1.
We identify I**(I") with C(pI'), and choose a constant K such that for each
yel'y we can choose an f,,eB* with ||f,| <K and f,(_Txm) = ym(B) for
all 8. (This is possible since 7'|¢,(I") is an isomorphism.) Now u, is defined
a3 in the proof of 1.2; then since gI" ~ I" does not satisfy the C.C.C, there
exists an infinite subset I of I' such that |u,|(I" ~ 1) = 0 for all ael
(e.f. the footnote following 1.3 below). Then identifying I°(I"") with all
peC (I suech that ¢ is supported on I" and taking into account that
u,({BY) = 1,(B) for all Bel, we have that for such ¢, [ pdu, = @(y) for

1
all yel”. Hence T|I™(I") &an isomorphism since [|T¢f > —k—]]gvﬂm for
all pel™ ().

Studia Mathematica XXXVIL1 2
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We now deduce our next result (the main theorem of this section)
from 1.2.

THEOREM 1.3. Let I' be an infinite set, and let B and X be Banach
spaces with X complemented in X™. Let T: X -~ B be am operator such
that there ewists o subspace A of X, isomorphic to ¢y(I), with T[4 an iso-
morphism. Then there ewists o subspace Y of X, isomorphic to I°(I'), with
T|Y an tsomorphism.

Proof. We first observe that there exists an operator S: I™(I') - X
such that 8|e,(l) is an isomorphism onto A. Indeed, we identify I™(I)
with (¢ (I))** and regard as always X < X**. Then choose §y: ¢y(I) - X
an isomorphism of e () with A. Then §3*: I°(I") -~ X** iy yuch that
8"\ ey(I) = 8.

Now let P be a projection from X*™* onto ¥; then § = PSt* is the
desired operator.

Thus T'S iz an operator from I°(I") into B, such that T'S{e,(I") is an
isomorphism. By Proposition 1.2, we may choose I < I" with cardl”
= card ", such that T§|I®°(") is an isomorphism. Thus §|¢*°(I") and
T|8(1°(I")) are both isomorphisms; so putting ¥ = §(I°(I™)), the result
follows. Q.E.D.

COROLLARY 1.4. Let X and B be Banach spaces and let T be a non-
weakly compact operator from X to B. Then if X is injeclive, there exisis
a subspace Y of X isomorphic to 1°, such that T|Y is an isomorphism.

Proof. Since X is injective, there exists a O(K) space Z and a sur-
jective operator §: Z — X. Then T8 is not weakly compact, hence by
a result of Pelezynski (Theovem 1 of [17]), there exists a subspace A,
of Z with A, ~ ¢, and S|4, an isomorphism. (We give an independent
proof of this result of Petezyiiski’s in Theorem 3.7 below.) Thus 4 = S(4,)
is isomorphic to ¢, and T'| 4 is an isomorphism, whenee since X is comple-
mented in X**, the result follows from 1.3. Q.E.D.

Remarks. 1. Corollary 1.4 implies, of course, that every injective
Banach space containg a subspace isomorphic to I*° (Corollary 3 of [21]).

2. The above argument easily yields that the conclusion of 1.4 holds
provided we agsume that X ig a continuous linear image of some injective
Banach space, or assuming the continuum hypothesis and a result of Linden-
strauss [12], provided X is a continuous linear image of C(X) for some
compact F-space K. It follows from our Theorem 3.7 below that the
conclusion also holds without the assumption of the continuum hypothesis,
provided X is a continuous linear image of C(8) for some o-Stonian §.

It is easily seen (and is well-known) that X is complemented in X**
if and only if X is isomorphic to a complemented subspace of some con-
jugate Banach space. We thus obtain immediately from 1.3.
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COROLLARY 1.5. Let X be injective, or more generally, let X be iso-
morphic to a complemented subspace of some conjugate Banach space, and
let I' be an infinite set. If X contains a subspace isomorphic to ¢o(I"), then
X contains a subspace isomorphic to I™°(I).

Remarks. 1. In [22] we proved that if X is a 2, space (i.e. X = 0(8)
for some Stonian §) containing a subspace isomorphic to ¢,(I"), then X
contains a subspace isometric to 1°(I"). We also proved in Corollary 1.2
of [22] that if B is a Banach space such that B* contains an isomorph
of ¢y(I"), then B contains a complemented isomorph of I*(I") and hence B*
contains an isomorph of I*°(I'). This result is due to Bessaga and Pelezyniski
for the case of countable I" [2]. (The main tool of proof of 1.2 of [22] was
Lemmsa 1.1 of [22]; we give a new proof of 1.1 of [22] using our present
Lemma 1.1 in Seetion 3 (¢.f. the second Corollary following Theorem 3.3
below).)

2. Let X be a complemented subspace of [*(I"), containing an iso-
morph of ¢,({"). Then by 1.5, X contains an isomorph of I°(I). Since I*(I")
is isomorphic to (I(IN@I*(N@D.. ), We obtain by the “decomposition
method” of Pelezynski [18] that X and I*°(I") are isomorphic (c.f. Pro-
position 1.4 of [22]). This result is due to Lindenstranss (unpublished for
uncountable I'; proved in [11] for countable I).

We obtain immediately from 1.5 and known results the following
result of Amir:

COROLLARY (Amir [1]). I®/e¢, 7s not an injective Banach space.

Proof. It is well-known that 1*/e, contains a subspace isometric
to ¢,(I') where cardl” = c.() But sinee eardl™/e, = ¢, it is impossible
that 1*/c, contain a subspace isomorphic to I%(I"), for cardl®(I") = 2°.
Thus the result follows by Corollary 1.5. Q.E.D.

The preceding result shows that C(fN ~ N) is not injective. If we
agssume a hypothesis weaker than the continuum hypothesis, we obtain
a result which implies that if § is a closed subset of SN such that C(S)
is injective, then § is extremely disconnected.

We first need the simple

ProrosIrioN. Let K be a compact F-space satisfying the Countable
Chain Condition; then I is Stonian.

Proof. Let U and V be disjoint open subsets of K. By Zorn’s lemma,
we may choose maximal families & and ¢ of pairwise disjoint open F,

(1) Identify I° with (@) where @ is the set of rational numbers. For each real
number 7, choose a sequence (x7) of distinct rationals tending to », and put
Fp={a}: n=1,2,..}. Then F, n Fy is finite if » 57" Let a: I°>1%/q, be the
quotient map; then the closed linear span of {my Fi T is a real number} is isometric
to ¢, (I") where cardl’ = c.
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subsets of U and V respectively. Then by maximality, (J&F = U and
U—g = V. Since K satisfies the C.C.C., & and % are countable, thus
U # and {J ¥ are disjoint open F, sets, 5o U NV = @. Q.B.D.

Remark. It follows that if ue M (K) and K is an F-space, then the
support of u is Stonian, sinee the support of x is an F-gpace satistying the
C.C.C. This result is due to Seever [24].

COROLLARY 1.6. Assume the ypothesis 2™ < 2. Lot 8 be a compact
F-space with weight 8 = ¢, such that C(8) is injective. Then S s Stonian.
(The wetght of S is defined as the smallest cardinal corresponding to a base
for the open sets of §.)

Proof. By the Proposition, it suffices to prove that § satisfies the
Countable Chain Condition. Suppose that § does not satisfy the 0.0.C.
Then there exists a family 1" of pairwise disjoint open subsets of 8, with
card]' = 8;, and hence C'(S) contains a subspace isometric t0 ¢, (/) (¢hoose
for each pel” a non-zero ¢,eC(S) supported in y, and then take the
closed linear span of {p,: yeI'}). Thus by Corollary 1.3 and our
hypotheses, C(8) contains a subspace isomorphic to I®(I). Since eard
(1) = 2%, card €(8)>2%. But weight§ = ¢ = card 0(8) = ¢ = 2% < 25,
a contradietion. Q.E.D.

QuEsTION: Does there exist a compact F-space § such that ¢(8)
is injective yet § is not Stonian?

We know only that the answer is affirmative if there exiyts a measnr-
able infinite cardinal m. (m is said to be measurable, if letting I' be a set
with cardl” = m, there is a non-zero countably-additive measure u defined
on all subsets of I', taking values either 0 or 1, such that w{y} =0 for
all yel)

Our next result may be used to generalize one of the results of [13]
concerning extensions of certain isomorphism; it is a simple consequence
of Theorem 1.3. (If 4 and B ave closed subspaces of the Banach space X,
then we write 4 | B (4 iy perpendicular to B) provided A4 N B = {0}
and A+ B is closed.)

COROLLARY 1.7. Let X be an injective Banach space, A o closed sub-
space of X, and I' an infinite set. Suppose there emists a closed subspace
B of X, isomorphic to oy (I"), such that A B. Then there ewisls a projection
P from X onto & subspace isomorphic io (), such that PA = {0).

Proof. Let #: X — X /A be the quotient map. Then 7z | B is an iso-
morphism. Hence by Theorem 1.3, there exists a subspace D of X with
D ~1°(I) such that =|D is an isomorphism. Since I°(I") is injective,
there exists a projection ¢ from X/4 onto 7w(D). Then P = (x|D)"'Qn
is the desired projection. Q.E.D.

Now an argument similar to the proof of Theorem 3 of [13] yields
the following

On relatively disjoint families of measures 21

TUEoREM. Let X be an injective Banach space, Y a closed subspace
of 1°(I') for some set I'y and T: ¥ — X an isomorphism. Suppose that there
exists & B e X with B ~ ¢)(I') and B T(Y). Then there exists an iso-
morphism T (") - X eatending T (i.e. such that 1751’ =1T).

Remark. As was observed in [13], such a B always exists if I' is
countable and X/T(Y) is non-reflexive (this also follows immediately
from our Theorem 3.7 below). If X = I°(I) itself then it follows from our
Proposition 3.5 below that such a B exists if dim ¥ < dim?™(I") (in fach
it T contains no isomorph of l;m where m = cardl’; see the remark
following 3.5).

We conclude this section by showing that Phillip’s Lemma is a rather
easy consequence of Lemma 1.1 for the case of countable I' (i.e. of
Lemma 1 of [21]).

THEOREM. Let (u,) be a sequence of finitely additive set functions
(complex valued) defined on the discrete set A.

(a) (Dieundonné [4]) If sup|u,(B)| < oo for all E = A, then

n

sup flu,ll < oo,
(b) (Phillips [20]) If limy, (E) =0 for all E c A, then

tim M, (j)] = 0.
"ojed

Proof. Suppose first that (u,) satisfies the hypotheses of (a), yet
Sup [lpyl] = oco. Put A(E) = sup |u,(F)| for all E < A, and choose v, v,, ...
n n
a subsequence of the wu,’s and E,, B,, ... subsets of A such that

1

A(E;)  for all n> 1.

i’"n (En){ = “1'11”/5 znt+2

b

7
n—1

Then putting F, = E, ~ | JE; for all » > 1 (and F, = F,), we have
=1

that for all u, (v, (F) > |n,)/10 and F, N F,, =0 for all n = m. By
Lemma 1.1, we may choose n, << n, < ... such that for all 7,

P (U B ) << oy (F ) -
i#i
(We apply 1.1 to the measures |»,|/lr, (F,)| and put & = &; |, [(A4) /b, (F)]
<2 10 for all n, of course.) Then putting # = (J Fnj,
j=1

oy ()] 2 [, )I/10,  whence [r,, (F)] - oo,

a contradiction.
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To prove (b), we have by (a) and the hypotheses of (b) that &111) (2]

< co. Suppose that the conclusion of (b) were false. Then by Lhe same
standard sliding hump alg,umen‘r used in (a), we could choose a > 0,
a subsequence (v,) of the u,’s, and a sequence (I,) of finite disjoint ﬁmbqets
of /A such that for all », |»,(H,)| > 6. Then by Lemma 1.1, there would
exigt an increasing sequence of indices (m;) such that for all <,

(L (}4)1 E"?‘) < 8/2.
Then putting & Lcj ,, ,
[, (B) > 6/2  for all 7,
contradicting the hypothesis of (b). Q.E.D.
SECTION 2

This section is devoted to the proof of Lemma 1.1(a).

We first need some notation. For an ordinal number «, a* denotes
the successor of a, and a denotes the cardinality of the set of ordinals
less than a. For a cardinal number m, let o, be the least ordinal number
a with @ =m. For an ordinal number 7#,, we shall refer to functions f
from the set of ordinals less than 7, into the ordinal numbers as transfi-
nite sequences, and use the notation (f(y); n < n,) or (f(n)) when 4,
is understood. Finally, we say that a cardinal number is of type I if it
is not the limit of a denumerable sequence of smaller cardinals, and we
say it is of type II if it is not of type I.

Our proof proceeds by transfinite induction. Let m be an infinite
cardinal number, and assume the lemma has been proved for all infinite
cardinal numbers m’ with m’ <m. (We allow m = ¥, also, in which case
this is vacuously true.) Now let I' be given with cardl” = n, let § be
a given m-Stonian compact Hausdorff space, let & > 0, and let {py: ael’}
and {#,: ael'} be as in the statement of the lemma. We now assume
(a8 we may) that I' equals the set of all ordinal numbers less than o
“<” denotes the natural order on I

We shall first prove that there existis a set A’ = 1" with card A’ = m,
such that

(*) (U {Bp: B> a,ped}) < of2

We then complete the proof by showing that there exists a set I = A’
with cardl™ = m, such that

(+%) (U Byt < a,Bel'}) < of2

n 7

for all aed’.

for all ael™.
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We proceed with the proof of the existence of A’. We need the following
proposition, which is a variation of a theorem of Tarski (e.f. Theorem 1,
page 448 of [25]):

ProrosrrioN. There exists a family # of subsets of I" such that card &
>m; card A =m for all AeF; and if A and A’ are distinct members of F,
then there is a f << o, such that aed N A’ = a < p.

We shall use this proposition for now; we give a proof of it at the
end of this section, for the sake of completeness.

Choose # a family of subsets of I', satisfying the conclusion of the
proposition. For each /AeF, put

F, =ﬁ{_} U {E,: aed, o= p}.
Since § is m-Stonian, F, N F o = @ for all A, A’ F with A 5 A'. Now
for each a, the set of A<F such that u, (F,) # 0 is countable. Thus the
set of A’y in F such that there exists an ael” with u, (F,) # 0 has car-
dinality at most Ro-m =m < card#. Hence we may choose a Ade&F
with p,(F,) =0 for all ael.

Fixing a, it then follows from the regularity of u, if m is of type I
(resp. the countable additivity of u, if m is of type II) that

(1) int, (U By: 7> B, 7e4) =0,
Now for each fed, put
Ay ={aed: a< p and p(UJ {B,: y= B, yed}) < g/4}.

We now define for some 7, < o,,, a transfinite sequence {a(y); n << 70}
of elements of 4 as follows: Let a(0) be the least element of A. Let 5 < 0.
If a(n) has been defined, choose fed with g > a(x) such that

cardd; n {red: v a(n)} = aln).
(This is possible, since @ < and by (1), 4 = |J 4, (and by definition,
fed

1y, i p1<<fa).) Then put a(n®) = p.
lf 1 is & limit ordinal and a(y') has been defined for all 5’ << 7, then
if supa(y’) < o,, we choose a fe.d such that f> a(y’) for all %" < »,
PES)] _
and put a(n) = B. (This is possible since card.4 =m and 7 < 0, = 7 << m.)
If supau(y’) = o,, we put 5, = and thus complete the definition of

Ay €

3y

the transfinite sequence (a(n)). We then have that (a(n)) is strietly in-

creasing, with supa(y) = o,, and thus supa(y) =m. For each 5 with
1<ng 1<y

7 < 1g, PUb

Ay = Ayyry O {zed: T2 a(n)}.
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We have that the .4’s are pairwise disjoint; indeed (a(y)) is a strictly

*

increasing sequence and if red;, then

(@) alp <7 <a(n®).
Thus

card | A = lima(y) =m.
DR PR
Now let 5 < 5,. Since card /1’,‘7' < a(nt) <m, by induction hypothesis
we may choose a subset A" of A} with cardA}* = card A% such that

(3) (U By Bedy B £ 7}) < e/ for all ved)

it 1} is infinite; otherwise we let A%* be a singleton subset of A,
We now put A’ = {J 4;". Since eard4, = a(y) for all # < Mgy We
7<),

have that cardA’ =m. Now let reA’; 5o choose 5 <5, Wwith 7ed™
Since 4" = A1y, we have that

by the definition of A,,+). But it follows from (2) that if fed’ ~ .13

and B > v, then f > a(n™). Hence by (3) and the definition of Aty

(*) holds. (If m is a regular cardinal (i.e. if o, is a regular initial number,

as defined on p. 403 of [25]), the existence of A’ follows easily from (1).)
Now for each y,, ysed’ with p; < y,, seb

Ayl,vz = {as/l/: /ua(U {Ey: Y1y < sy 'VEAI}) < b//‘l}

We claim that we can choose a yyeA’ such that for all fed" with g > v,
card A, , =m. Indeed, if this were not true, let ¥ be an integer with
1/N < e/4. We could choose a, an arbitrary element of A’ and having
chosen a,, (with n < N), we could choose a,_; > «, such that card A

Uy, €
< 1. Then %+l
N-1
card () A,,m,,n,’_ L <m.
=0
But then we could choose an aeA’ guch that add, . oip for any n with
0<n< N—1. Then !

wa(U {8, : ;,LZ v <a,:;1}) zefl  for all n,
and henqe since 8 is m-Stonian, |u,|| = N(efd) > 1, contradicting our
hypothesis that ||,/ <1 for all a.

) Now choose such a y, and for all fed with Bz 9,, put
4y = {aed, g f<a}. We thus have that card Ay =m, with

(4) ba(U {B,: o<y < Byyed}) < eft for all aedg.
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The proof now proceeds as in the proof of fhe existence of A'. We
define for some 7, < 0, a transfinite sequence (y(1); y << o) of elements
of A" as follows: y(0) = y,. Let 5 < 0,; if 3 (%) has been defined, let ¥ (3™)
Dbe the least yed’,, such that

(") card{red’, ) T< 7} :_;-'"(7]).
Now suppose that 7 is a limit ordinal, and that «(y’) has been defined
for all 9" < 4. If supy (') < 0y, We may choose a ted’ such that > y(y")

we

for all »’ < 5. Then we put p(7) equal to the least member of .1,. Con-

tinuing in this manner, we will eventunally reach an ordinal 7, < o, such

that supy(n) = o, thus completing the definition of (y(y); 1 < 7)-

<y X
Thus, y(y) is a strictly increasing sequence of elements of A’ with

supy(n) = o0,. Now for each 5 <7, pub

7<)y

n

’

Ay ={ted,y,y: t< MUY

then it fed),v(n) < < y(y*). Now fiz 5 < 1,. Let aed,. Then if
Bed, for some 1y’ # 1 and f < a, then 9’ < 7 and consequently § < y ().
Thus by (4) we obtain that

(6) (U {Bp: B << o and Bed, for some ' 5 n}) < ef4

for all aed, .

We have by (5) that card 4, = (1) < n1, hence by induction hyp?,:

thesis, if A, is infinite, we may choose a set A, = A, with cardA,
= card 4, such that

1

(1) pa(U {Bp: fed), B # o)) <ej4  for all aed,’,

1y

it A) is infinite. Again if 4, is finite, let A, be a singleton subset of A,

Finally put " = {J 4,". Then the A"’ are pairwise disjoint (since
the A;”s are) and by 7(51), card ™ = supy () =m. Thus by (6) and (7),

7<)

I satisfies (**) and hence the coneh)lsion of Lemma 1.1(a). Q.E.D.

We pass now to the

Proof of the Proposition. We first deal with functions f: I — I
We say that such a function respects the ordering if f(z) < o for all 2 < o
and ]T(?) < % for all # with 0 < # < 0,,. (o denotes the first infinite ordinal,
and is identified with the set of finite ordinals.) Evidently f(z) = @ is
a function respecting the ordering. We denote the graph of f: I'— I
by Gy (i-e., Gy = {(z, f(2)): @ < o,}). Given f and g, we say that Gy N G,
is small, if there is a f < o, such that for all a,f() = g() >z < B.
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We next observe that

(A)  if  is a family of functions respecting the ordering with card @ < m,
then there is & function ¢ respecting the ordering such that G, N
is small for all fe%.

To see this, let @ —f, be a surjective correspondence of /' into % (not

necessarily one-one). Now fix 4 < o, and let f = supf,(y). If y is finite
g

then fi is finite, and if ¥ is infinite then since f, I‘GH])g(J‘l}S the ordering for

all 2, f.(y) < 7 for all 2 <y, and thus § < §. Now we define g¢(y) = gt

¢ then serves as the desired function.

Now by Zorn’s Lemma, there exists a non-empty family ¢ of functions
from I" into I', maximal with respect to the property: all members of @
respect the ordering and G; NG, is small for all f + ¢ in #. By (A), we
have that card¥ > m.

Finally, we observe that there is a bijective correspondence ¢: [
XTI I such that ¢, y) < max{&, 7} if cither » or y is infinite, and
¥(x,y) is finite if # and y ave both finite. (For each infinite cardinal
n<<m, let ¢, be a bijective correspondence between {(@,y): %, yeI" with
max{Z, 7} =n} and {wel: T =n}. Let ®o be a bijective correspondence

between v X« and w. Then ¢ = (J ¢, U ¢, is the desired correspondence.)
n<ne

C[-‘hen F = {p(G): fe¥} satisfies the conclusion of the Proposition.
Ogrtamly for all fe%, card@; =m and since ¢ is one-one, ¢(@,) hag car-
dinality m; moreover card # = card® > m. Finally fix f + g in %. Then
there is a # with 0 < f < o, such that f(2) = g(x) s < B. Lefting
¥ =.Sll}){¢(w,f(w)): z<fl,y<Bp<m it g is infinite and y is finite
if § is finite (by the definition of @ and the fact that f respects the ordering).

Hence if zep(Gy) No(G,), then 2 = @ (», f(x)) for some » < f, and thus
2y <o, QED.

SECTION 3

In this sectipn we formalize the notion of relatively dixjoint fanilies
of mea:sures. This notion is of course implicit in much of the preceding
;fjork in. Banach space theory (et e.g., [7],[9], [10], [16], and [18]).

seems to us that one motivation for erystalizing this concept is the
notational ease this provides in its applications.

Throughout this section. (B, X) shall al b

§ 9 ways denote a set I anc

a o-algebra 3 of subsets of I;‘ ’ v ” e
, D.eflnition. Let (E,Z), & family F = {u,: ael} ca(l, ), and
y ¢ With 0 < £ <C § be given. F is said to be (0, &)-relatively disjoint it F

On relatively disjoint families of measures 27

is bounded (i.e. sup|lu.] < co) and if there exists a family {E,: a<l}
uel’

of disjoint members of X such that for all uel’,

D Il (Bp) < e

Ba

(8) g (Bg) >0 and

F is said to be relatively disjoint if F' is (0, e)-relatively disjoint for some
g 0 with 0 < e<C é.

If 7 is a subset of L'(E, X, p) for some measure space (B, X, u),
then F is said to be relatively disjoint provided the associated family
of measures {»: dv = fdu for some feF} has this property. Finally, we
shall refer to denumerably infinite relatively disjoint families as relati-
vely disjoint sequences.

Some of our motivation for explicitly formulating this notion stems
from the first result of this section. Variations of it have appeared el-
sewhere (c.f. [9]) and its proof is essentially known. We first recall the

Definition. Given a set /', let e, = y, for all ael™. We eall {¢,: a<l'}
the wnit-vectors-basis of e,(I) (vesp. of I'(I")). Given a Banach space X
and a subset K of X, we say that K is equivalent to the unit-vectors-basis of
¢o(I") (vesp. of I'(I")) provided there exists an isomorphism 7' from c,(I)
(vesp. from I'(I)) into X such that {Te,: ael'} = K.

(The reader should also note that we use “span” to mean “closed
linear span”.)

PROPOSITION 3.1. Given (B, X), let {u,: ael’} be a relatively disjoint
family in ca(B, X). Then {u,: ael} is equivalent to the unit-veclors-basis
of '(I") and the span of {u,: ael'} is complemented in ca(E, X).

Proof. Choose 0 < ¢< & such that the pu,’s are (9, ¢)-relatively
disjoint, and choose {E,: cel'} a family of disjoint members of 2 such
that (8) holds for all ael’. Choose for each a, a Z-measureable function
¢, supported on E,, such that f .0, = || (B,) with [l =1.
Now let n scalars A, ..., A, and n distinet members a;, ..., a, of I' be
given. Then for each 7,

0@ (S b= 1206 — D131 ey (Bey)-
f) FES

Hence since the ¢,'s disjointly supported,
‘ \" > | = —_— 5 :
!] _;\J }“f""i,! Z ' f;mr,ifl(_jE?-jM(‘;)! - 612 A ; WI%J 1oy (Hy)

= (0—e) I

Since sup |u,] < oo, this proves that {u,: ael'} is equivalent to the unit-
ael”
vectors-basis of ().
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Now let W be the span of the u’s, Z the span of {u,|B,: ael’},
U: W27 the invertible operator defined by U(X A,u) = X', u,|B,,
and R the projection of ca(X,X) onto Z defined by

R(u) = ‘}; (f Tu ‘Z/‘) (],u,,|(E“))’l/tu B, for all peca(H, ).

Then if we W, a simple compubation shows that |[Up-- Ryl
< e/o|Ugll, which implies that B| W is an isomorphism mapping W onto Z.
Then @ = (R| W)™ R is a projection from ca(F, X) onto W. Q.E.D.

Remark, We know of no subspace of I, isomorphic to I*, which is
not spanned by a relatively-disjoint sequence.

Applying Lemma 1.1 to families of countably additive wmeasures
on a discrete set, we obtain easily

ProrositioN 3.2. Given (B,2), let F = {u,: ael'} be a bounded
infinite subset of ca(E, X) such that there exist a 6 >0 and « family
{E.: ael'y of disjoint members of 2 with \u|(B,) > 6 for all ael’. Then
Jor all & > 0, there exists a I < I" with cardl” = cavdl” such that (8) holds
Jor all ael™ (where the p's of (8) run through I"). Thus ' contains o velati-
vely disjoint family F' with card F = card .

Proof. For each ael’, define u, on all subsets of I' by u, (D)
=ﬁZ’D lua| () for all D < I. Then {,: ael} and {E, = {a}: « el'} satisty

the hypotheses of Lemma 1.1, and 3.2 now follows immediately upon
applying the conclugion of 1.1. ‘

We shall now give applications of the above two propositions; later
we shall formalize the notion of strongly relatively disjoint families and
give applications of the full strength of 1.1 (i.e. of Lemma L.1(a)).

Our first application generalizes o theorem of Kothe [10], and yields
as & corollary a generalization of Lemma 1.1 of [22]. This resuls gives the
wealkest possible conditions that a subset of I* (I") contain a family equiv-
alent to the unit-vectors-basis of I*(I).

T.I—IEOREM 3.3. Let K be a bounded infinile subset of '(I'), such that
ihe.re is @ 6> 0 with |[k,—ky| = 6 for all &, Fyy gy Tewe . Then there
ewists o subset K* of K, such that K* is relatively-disjoint and card K*
= card K. (Consequently by 3.1, letting m = card K*, the span of K* is
isomorphic to Iy, and complemented in M), .

Proof. We first observe that it 4 < I" iy such that card A < card i
then there exists a keX and a finite subset o = I' ~ A, with [k ¢]| = 0 /-1-?
Inf(leed since diml'(4) < card K, we can choose distinet I, an(l' kye I
with ||(ky,—ky) | 4] < 6/8 (dim is defined immediately following the ])r(;()f).
Thus thfere is a finite set « ="'~ 4 with {7y — %3) | af] > 8, so for
one of ¢ =1 or 2, |k|al> §8> 0/4. Now, for each finite subset « of
T, choose if possible a k(a) X such that lk(e)|all 22 6/4. Let I, be the
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family of all finite subset ¢ of I' for which such a k(a) exists, and let 7
be a maximal family of disjoint members of I';.

F exists by Zorn’s Lemma, and our first observation shows that
cardF = card K (since if cardF < cardX, then card |J F << cardK).
Hence by Proposition 3.2, K, = {k(a): aeF} contains a relatively
disjoint family K* with card K" = card K, = card K. Q.E.D.

Given a Banach space X, by dimX we mean the least cardinal nu-
mber corresponding to a spanning subset of X. It is a well-known and
simple consequence of Zorn’s Lemma that given X and given 6«1, there
exists a subset K of Sy with dimX = card K and |lk,— k|| > 6 for all
Ty # ko Ky, ke K. We thus obtain immediately the following result of
Kithe:

COROLLARY. Let o set I be given, and let A be a closed subspace of 1'(I').
Then there ewists a closed subspace B < A with B complemented in 1 (I")
and B ~ T}, where m = dimA.

Remark. By the decomposition method of {18] (c.f. also Proposition
1.4 of [22]), it follows that every complemented subspace of I'(I) is iso-
morphic to I' () for some A. This result is due to Petezyriski for countable
I' [187, and to Kothe for general I" [10].

Our next result generalizes Lemma 1.1 of [22]; it is another simple
consequence of Theorem 3.3. (An application of the result is mentioned
in the first remark following 1.5 above.)

COROLLARY. Let A = X be Banach spaces, I' o set, m an infinite car-
dinal number, and T: X —1(I") an operator be given, satisfying the follow-
ing: there exists @ 8> 0 and a bounded subset K of A with card K =m
such that |Tk,— Tk =6  for all ky, kye K with ky o k».

Then A contains a subspace ¥ isomorphie to I, and complemented in X,
such that T|Y is an isomorphism.

Proof. Choose K* < K with cardK* =m and TK* a relatively
disjoint family in I}(I") (this is possible by 3.3). Then by 3.1, and well-
known properties of the unit-vectors-basis of 1L, letting ¥ be the span
of K*, there is a projection P from I'(I') onto 7(¥), T'| T is an isomorphism,
and T(Y) is isomorphic to I, Then ¥ ~ I} and (T|¥)™'PT is a projection
from X onto Y. Q.E.D.

Owr next result gencralizes Theorem 5 of 2], and yields some rather
weal sufficient conditions that a subset of a Banach space contain a subset
equivalent to the unit-vectors-basis of ey(I) for some [

THEOREM 3.4. Let o Banach space B and an infinite set I' be given,
and let {b,;: aelt = B and K > 0 be such that bl =1 for all ael and

(9) | S?b

< Ksupid
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for any positive integer n, scalars Ay ...,A,, and n distinct members
Uyy ooy ay Of I\

Then there exists a subset I of I' with card!” = cardl’, such that
{by: ael™} is equivalent to the unit-vectors-basis of ¢, (1").

Proof. The argument is similar to that of Proposition 1.2. For each
ael’, choose bfeB* with |bk]|=1=2%(b,). Now define the scalar-valued
function f, on I' by f,(B) = b (D) for all Bel. Then f,(a) = 1, and by (9)
Jfeel(I) with |fll << K. Hence by Proposition 3.2, there exists a I" < I
with cardl” =ecard I" such that {f,: ael"} is (1, })-relatively disjoint.
Then {b,: ael”} is equivalent to the unit-veetors-basis of ¢,(1”). Q.E.D.

Remarks. 1. Theorem 3.4 may be reformulated as follows: Let B
and I" be as in the statement of 3.4, and let T': ¢,(I") — B be an operator such
that int{{[Te,||: yel'}>0, where {e,: yel'} is the unit-vectors-basis of ey(I").
Then there ewists o I < I' with cardI” = cardl" such that T (I") is an
isomorphism.

2. It is proved in Theorem 5 of [2] that if I" is countable and B, I,
and {b,: ael'} satisfy the hypotheses of 3.4, then the span of the b’s
containg a subspace isomorphic to ¢,. Thus 3.4 contains some new infor-
mation for countable I' also.

The following result is an application of 3.5; it iy motivated by the
theorem stated after Corollary 1.7 above. (The notation A | B is defined
preceding 1.7.)

PROPOSITION 3.5. Let I be an infinite set and let A be a closed subspace
of 1°(I') such that there is no B < I°(I") with B ~ ¢,(I") and A_| B. Then
I°(I) is a continuous linear image of A. If card I’ is mot a limit of & sequence
of smaller cardinals, then 1°(I) is isometric to a subspace of A.

. We do not know if the hypotheses of 3.4 imply that 4 contains an
isomorph of I°(I'), with no restriction on cardl. (It is proved in [13]
that this holds if I' is countable.)

Proof. Let 4 be a set with card A4 = cardl” and let {ly: aed} be
a family of disjoint subsets of I' with card.’, = cardl” for all a. Let ¢ be
fixed with 0 < e< } and let B, be the seti of all ued such that there
exists a @, el*(I,) satistying
(%) loal =1 and  |p,—al=e for all med.

Then card B, < card I'. Indeed, for each aeB,, choose @, <l®(I",) satisfying
(¥). Then let s: I°(I) —1°(I)/A be the quotient map. Now suppose
that card B, = cardl. Then {p,: aeB,;} i3 isometrically-equivalent to
the unit-vectors-basis of ¢,(I"), and by (*), inf{llnp,|l: aeB,}>e>0. Hence
by Theorem 3.4, there exists a subset I of B, with card]” = cardl
such that letting B be the span of {g.: ael"}, m|B is an isomorphism.
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Then B A and of course B is isometric to ¢,(I"), which contradiets our
hypotheses.

Thus sinee eard By, < cardl’, there exists an aeA such that a¢B,),.
Then letting P be the canonical projection of I*°(I") onto I°(I,), P(4)
= [°(l,). For P has norm one, and given ¢<l™(I,) with |¢]| = 1, there
exists an aed with |la—¢} < %, whence |Pa—¢|< 3. The comple-
teness of A and a standard iteration argument then show that there
exists an a;ed with Pa, = ¢. Hence (') is a continuous linear image
of 4.

Finally, if cardI" is not the limit of a sequence of smaller cardinals,

o =]
ecard |J B, < cardl’, whence there exists an aed with ag’U2 By, -

n=2 n=
Since A is closed, this implies that I1°(I,) = 4, and of course I*([,) is
isometric to I°(I"). Q.E.D.

Remark. Let I’ be an infinite set and 4 be a Banach space. It is
an easy consequence of known results that the following three assertions
are equivalent:

1. There exists an operator I': 4 —1”(I") with dense range.

2. A contains a subspace isomorphic to Ijm where m = card/.

3. There exists a surjective operator T: A —1%(I).

Indeed, it follows easily from a result of Hewitt [8], that B is
isometric to a subspace of I°(I'), where cardl” =m (c.f. the proof of
(d) = (f) of Theorem 5.1 of [22]). But then by a result of Pelezyriski
(Lemma 4.2 of [16]), (1) = (2) since 2™ is not a limit of a sequence of
smaller cardinals (c.f. the Remark immediately following 4.2 of [16]).
Since dimI1™(I") = 2™, it follows easily that I°(I') is isometric to a quotient
space of Bm, and hence since I°(I") is injective, it is a continuous linear
image of any space containing Lm, whence (2) = (3).

We pass finally to a formalization of the notion underlying the proof
of Proposition 1.2.

Detfinition. Given a compact Hausdorff space § and a bounded
set T = {u,: ael} @ M(8) = C(8)%, we say that F iz strongly relatively
disjoint if there exist a family {E,: a<I'} of disjoint open sets and & 6 > 0
with & <2 §, such that for all ael),

(10) | () > 6 and l/tul(ﬁy Ep) < e.

We may view our argument for 1.2 as an application of strongly
relatively disjoint families as follows: Let B, I', and T' satisfy the hypo-
theses of 1.2. Identifying 1°(I") with O(BI"), our first part of the proof
of 1.2 applies Lemma 1.1 to show that T*(8p) contains a strongly relati-
vely disjoint family I with eard/J" = cardl. A simple modification of
the proof of 1.2 then shows
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PROPOSITION 3.6. Let m = X,. Let 8 be an m-Stonian compuct Haus-
dovff space, B a Banach space, and T: O(8) —~ B an operator such that
there exists @ I' © Spe with cardl” < m such that (D) is a strongly relati-
vely disjoint family. Then there is a subspace A of C(8) isometric to I° (I
such that T|A 4s an isomorphism.

Proof. For each yel', we define w,e M (8) by [edu, = y(Tq) for
all peC(S). Our hypotheses imply that we may choose 0 << &< § and
{B,: ael} a family of disjoint clopen subsets of § satisfying (10) for
all ael.

Now choose & with e < &' < 6, and for each ael’, choose ¢, continuous
on 8, supported on E,, of sup norm one, and satisfying

f Pl = 0.

Now put F = DﬁF:; and let A denote the set of all feC(S)
ael'

supported on F and such that for all el', f|E, = ¢,¢, for some constant ¢,.

Since & is m-Stonian, F' is open and every bounded continuous function

on | B, extends to a continuous function supported on F (e.f. Theorem
ael’

14.25, page 208 of [6]). Thus A is isometric to (/7). But fixing fed
and ael’,

(11)

which are

J fap>

E

171 Balloo 8~ 1f oo &

o) =| [fdut
Ell

‘A:C

s

94

by (10) and (11). Hence ||7f|= (8'—
igomorphism. Q.E.D.

Proposition 3.6 permits us to give a different proof of a somewhat
stronger result than Corollary 1.4. We first recall the following

THEOREM OF GROTHENDIECK (Théoréme 2, page 146 of [7]). Let 8
be a compact Hausdorff space and let K be a bounded non-weakly conditionally
compact subset of M (S). Then there extsts a d > 0, a sequence (u,) of members
of K, (md a sequence (B,) of disjoint open subsets of S such that for all n,
[fan) (By) > 6.

Now 1.1, the argument of the preceding proposition, and the Theorem
of Grothendieck yield

TuroreM 3.7. Let S be a compact Hausdorff space, B a Bamach space,
and T: C(S) — B a non-weakly compact operator. Then there ewists a sub-
space A of C(8) isometric to e, such that T|A is an isomorphism. Moreover
if 8 is o-Stonian, then A may be chosen isometric to 1° and such T|A is an
isomorphism. Finally, if S is an F-space, then 1° is a continuous linear
image of B.

Remark. The first assertion is due to Petezynski (Theorem 1 of [177).

&) Ifles Proving that T|A is an
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Proof. It follows immediately from the Theorem of Grothendieck
and Proposition 1.2 that there exist a countable infinite I' = Sp., a family
{E,: ael} of disjoint open subsets of 8, and 0 < ¢ < § such that defining
the u,’s as in the proof of 3.6, (8) holds for all ael. We then choose &’
and the functions ¢, exactly as in the proof of 3.6. Then letiting 4 be the
closed linear span of the ¢,’s we have that 4 is isometric to ¢, and 7|4
is an isomorphism.

If § iy in addition o-Stonian, then the F. s may be chosen to be
clopen, whence by Lemma 1.1(a), T*(Sz) contains a strongly relatively
digjoint sequence. Hence by Proposition 3.6, there exists an 4 < C(8)
isometric to I such that 7|4 is an isomorphism.

Finally if S is an F-space, it follows since I" is countable that there
is a closed Stonian subset K of § such that |u,|(~ K) = 0 for all yel.

(Let K = U Sup'p“/:,,; then K is a closed subset of an F-space and hence
yel’

an F-space, and K satisfies the C.C.C. Hence K is Stonian by the Pro-

position preceding 1.6 above.) It then follows as in the proof of 3.6 that

there exists a subspace A of 0(K), isometric to I°, such that

sup|[ fdu| > (8'—#)flle  for all fed.

Then put A; = {feCG(8): f|KecA}, put B, = {peB: y(b) =0 for
all yel'}, and let z: B — BB, be the quotient map. We then have by
(12) that for all fed,,

171 Bl < (8" —

Then defining ¢: tT(4,) - 4 by ¢(zTf) = f|K for all fed,, we have
that ¢ is a well-defined surjective linear map with |lp|| < (8’ —¢)~". Since
I* is injective there exists an operator ¢: B/B; —A extending ¢, whence
@7 maps B onte an isomorph of I®. Q.E.D.

Remarks. 1. As we noted following 1.4, using a result in [12] and
assuming the continuum hypothesis, the second assertion of 3.7 holds
if we assume there that § is an F-space. Without assuming the continuum
hypothesis, however, we do not know if for every F-space 8, C(8) containsg
an isomorph of I,

(12)

‘1511113 I7(Zf)] < (8" — &)~ S|

2, An immediate consequence of 3.7 is that if the Banach space X
is a non-reflexive continuous linear image of C(8) for some F-space S,
then I® is a continuous linear image of X (Theorem 6 of {21]). This result
has application to quasi-complementation problems (¢.f. [23] and The-
orem 9 of [21]).

We have used the results of the present paper in the above argument.
Actually, the proofs of 3.6 and 3.7 are already implicit in the proof of
Theorem 2 of [21], which uses Lemma 1 of [21]. In reality, however,
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this argument may be given by using results established prior to Lemma 1
of [21] to prove the following

PROPOSITION. Let 8 be a compact Housdorff space and let K be a bounded
symmetric (weK = —zeK) convex subset of M (8) such that K is not weakly
compact. Then K contains a strongly relatively disjoint sequence.

Proof. There exists a K, c K such that K, is a convex symmetric
subset of L*(u) for some finite measure u, with K, non-weakly compact.
Then by the proofs of two results of Kadec and Petezytiski (Theorems 2
and 6 of [9]), there exist a sequence (u,) of elements of I, & &~ 0, and
a sequence () of disjoint Borel sets such that

Then by a variation of the Theorem of Grothendieck (c.f. Lemma 1 of
[15]) there exist a subsequence (v,) of the u,’s and a sequence (0,) of
disjoint open sets such that |2,[(0,) > 14 for all ». Hence automatically

[Pl ( U 0;) < 16 for all n sufficiently large, ie., {»,: n>N} is strongly

1elat1ve1y disjoint, for some N.

Remark. It is easily seen that neither the assumption of convexity
nor the assumption of symmetry may be omitted in general. Indeed,
let K, be the convex hull of {6,,—d: n=1,2,...} in M[0,1]
= (C[0,1]" and let K, = {£(6;n—80): m =1,2,...}. (8, denotes the
measure of norm one assigning mass one to the point #). Then for i =1
and 2, K, is not weakly sequentially compact yet contains no strongly
relatively disjoint sequence; XK, is convex, K, is gsymmetric.

Ag our lagt result, we restate Lemma 1 of [21] in terms of the coneepts
introduced in this section.

TaroREM. Let K be a bounded non-weakly conditionally compact
subset of B. Then if B = M (8) for some compact F-space S, K contains
a strongly velatively disjoint sequence. If B =ca(ll,X) for some (B, X),
K contains a relatively disjoint sequence. Finally if B = M (S) for some
arbitrary compact Hausdorff space S, then K contains a relatively disjoint
sequence (u,) such that the disjoint sets B, satisfying (8) may be chosen open
for all a.

This theorem follows immediately from the proof of Lemma 1 of [21]
(c.f. the paragraph following Theorem 6 of [21]). In the present work,
this follows immediately from 1.1, the fact that F-spaces satistying the
C.C.C., are Stonian, and the Theorem of Grothendieck (or its simpler
analogue for the case when B = ca(F, X) (c.f. Theorem 4, page 300
of [5])).

From the Theorem and Proposition 3.1, we obtain immediately
the result of Kadec and Pelezyriski [9] that every non-reflexive subspace
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of I! contains a complemented subspace isomorphie to I*. We also obtain
the result of Grothendieck [7]: If (4,) is a bounded sequence in M (S)
= 0(8)* and if § is o-Stonian (resp. § is arbitrary), then if {1,(F)) is
a convergent sequence of scalars for every clopen set F (resp. for every
open set F) then (4,) is weakly convergent (c.f. the final argument in
Section 1).

This result of Grothendieck in turn implies the Lemma of Phillips
[20] from which all these results stem.
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Minimal sublinear functionals *

by
S.. SIMONS (Santa Barbara, Calif.)

0. INTROD UCTION

Tn Section 1 we consider a class # of sublinear functionals on a real
linear space B and show that & contains elements minimal with respect
to the pointwise ordering on R®. The general existence theorem is Theorem
15 and involves the definition of a “boundary” for # in Notation 13.

In Section 2 we give conditions for an element of # o dominate
2 unigue minimal element of #.

In Section 3 we give 2 Shilov theorem for sublinear functionals on E.

Under certain conditions (Theorem 12, Notation 23 and Lemma
27(b)) the minimal elements of # coincide with the linear elements of #.
In Section 6 we deduce various forms of the Hahn-Banach theorem and
generalizations of results of Kelley and Sikorski (see Remark 29).

Tn Section 7 we deduce, with a number of improvements over the
known results, Shilov theorems and conditions for the existence and
uniqueness of balayages defined by a cone in #(X) (X compact Hausdorff)
(see Remark 32). There is also a short diseussion of the Choquet boundary
of a subspace of #(X) (see Remark 35).

In Section 8 we suppose that X is a compact convex sef in a Haus-
dorff locally convex space and deduce, with a number of improvements,
results of Milman, Bauner and Choquet-Meyer (see Remark 38) as well as
the Choquet—Bishop—deLeenw theorem.

We use mainly linear space techniques — the only places where any
measure theory is mentioned are Theorem 30(g), Theorem 33(a) and
Theorem 36 (¢). In Section 9 we apply our results to a “non- # (X)” situation,
replacing ¢ (X) by the set of continuous affine functions on a compact
convex set (in a Hausdorff locally convex space).

In Section 10 we make some further observations about the uni-
queness problem.
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