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Choose n(k) satisfying m (k) < n(k) and so that In < Jugys In © Iy
Then if By = HJWC)RM(R)IIJW), we have . || Byl > e. '.IJo see that
D]l < 21MY| apply (1) and (i) of the induction hypothesis above.

TEroreEM 13. Let M = (cy): As—1, be a matriz map. Then M is
compact. N

Proof. If M is not compact, then by Proposition 12 there is an
s>0 and indices 1 =m(l)<n(l)<...< m (k) < n(k) < so that
Bl > & and | Dyl < 2| for all k. Let o, o ..., a® be unit vectors
in A satistying ||By(d™)|, = IB,]. This choice is possible beecause each
B, is a finite matrix. Tet & = (1,1,...,1,...). Clearly & is a unit vector
of 7. By fm.p. we may choose fMlc2, where BY = (M, .., B, L)
satisfies: ‘
ad i m(k) < i< k), where & =1,2,...,1,
0 if n(k)<i<m(k+1), where k =1,2,...,1—1,
and |89 < |I£] = 1. .

Thus, (D6l = ( X IBall]"” = ¢ e.

=1

A contradiction now results because 2 ||M| = | D] = |D, (8™}, =t"7e,
where t is arbitrary. .

Remark. It is not hard to check that the I, spaces satisfy fm.p. if
1< g< oo and that ¢, also satisfies £am.p. Arguing as in Theorem 13
we may apply Theorem 12 to show that there are no non-compact opera-
tors Tt I~ 1, or T: 6y 1, if 1'< p < ¢ < oo, This is the Littlewood-Pitt
Theorem [6]. :
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Factorable and strictly singular operators, I
by

HORACIO PORTA (Urbana)

Let X and ¥ be Banach spaees; a linear bounded operator T: X — ¥
is strictly singular [5] if the subspaces Z < X for which the restriction
Tiz: Z - T(Z) has a bounded inverse T(Z) -»Z are necessarily finite
dimensional. Assume X is the cartesian product X — E,x E, of the
Banach spaces ¥, and E,. An operator T: X — X is factorable through
E; (for ¢ = 1,2) if it is of the form T = SQ for suitable Q: X — E; and
8: E; - X. Denote by a; the (uniform) closure of the set of operators
factorable through F;. We prove below that under special conditions,
an operator T is strictly singular it and only if Tea, N a,. This is applied
notably to the case E, = ¢” and E, = (% for p # ¢ (and more parti-
cularly, when p >¢ = 2) to obtain various relations between these types
of operators. As a consequence, it can be seen ((3.1. e) below) that in this
case, it T, and T, are strictly singular, then 7,7, is compact.-

Finally, the lattice of all closed two-sided ideals of the algebra of
all bounded linear operators on X = ¢(Px (2, for p > 2, is studied in
(3-4): it consists of six elements 0, G, %, 0y, @y, B ordered as follows:-

where solid lines mean that there are no ideals strictly between the ideals
joined by them. :
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1. Terminology. We observe the standard terminology concerning
Banach spaces, operators, sequence spaces ¢” and Lebesgue spaces
I? = I7[0,1].

For any Banach spaces X and Y, B(X, ¥), (X, T), C(x, v)

cand ¥(X, T) shall denote, respectively, the Banach space of all bounded
linear operators T: X — ¥, and the subspaces consisting of operators
of finite rank, compact operators and strictly singular operators; we

set B(X) =B(X, X), FX) =F(X,X), CX) =¢X,X) and t(X)
= X, X). F(X) c C(X) = §(X)
moreover, €(X) and #(X) are closed in B(X).

All throughout, when we consider the product X = F, x F, of the
Banach spaces E, and F,, we shall (try to) use consistently the following
notation: P;eB(X, E,) is the projection Pywy, @) = @ for i =1,9;

- J;eB(B;, X) are the injections Ji(z) = (2,,0) and J,(z,) = (0, u,).
Every TeB(X) has a matrix representation that will be denoted by
T = (Ty), where TyeB(E;, B,;) for i = 1,2 and j =1, 2, and

Tz, 2) = (Tno+ T2y Ty, + Ty,
Clearly,

Ty=PTJ; and T = YJ,I,P,.
t,§

%y

For any set a c B(X) we shall also denote by a; < B(E;, E;) the
set a; = {I}, Tea}; in particular, B(X); =B(E, B, and if q B(X)
is & two-sided ideal, a; = {S<B(E,, E,); Ji8P;ea}. Finally, m; c B(X)
will denote the set m; =mg,(X) (in the notation of [1]) of all operators
TeB(X) of the form T = 8¢ for suitable Q<B(X, E) and S¢B(E,, X),
and a; will denote the (norm) closure of m;. Clearly, P;em; and for every
TeB(X), J; Ty Prem; 0 m;.

2. SFrit.:tly singular and factorable operators. The following general
hypothesis is assumed all throughout this section:

E, and B, are Banach spaces isomorphic to their cartesian squares
E\x B, and E,x B, respectively, and X = B, X B,.

It follows from [7] (or [1], Theorem 5.13)
a two-sided ideal of B(X) for § — 1, 2,.

2.1, LEMMA. (a) For every TeB(X), T—J,T,Pem, and T—
—Jy Ty Pyem,;

(b) if Te¥(X), then Tye¥(B;, By for i=1,2 and j =1,2, and
therefore also T — ST P e £(X);

that m; (whence q) is

are two sided ideals of B(X) and,,

icm°
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() if TeQ(X), then T;<C(B;, E;) for i =12 and j =1,2, and
therefore also T—J;T;P,eC(X). .

Proof. Since T =J,T),P,+8, where § = 3 J,T,;P;em, (and,

i+7=3
similarly, for ¢ = 2), (a) follows. Since Ty = P;TJ;, (b) and (c) follow.

2.2. PROPOSITION. Assume t(E,) = cl(F(E,)} (cI( ) means “closure”).
Then ¥(X) < ap. In perticular, if ¥(E,) = o(F(B)) for i =1,2, then
{(X) e q 0a,.

Proof. Let T<¥(X). From 2.1(a), T = J,T,,P,+8, where Sem,.
But since T,¢¥(E,) (from 2.1(b)) and E(E,) = clF(E), we have
T, =limF,, where rank F,< + oo. Clearly, J,F,P,em, and, there-
fore, J, T, P ecl(m;) = a,. Thus T' = J,T,,P,+ Sea,.

Remark. All /?,1<p<oco (and no I?, 1< p< oo, p #2), have
the property f = cl(f). See [3] for a sufficient condition for this pro-
perty.

2.3. Definition ([9]). The Banach spaces ¥, and E, are totally
incomparable if B, and FE, have no infinite-dimensional isomorphic sub-

" spaces.

It is clear that if E, and F, are totally incomparable, every T: H,— B,
ig strictly singular.

2.4. ProPOSITION. Assume B, and B, are totally incomparable. Then
a Ng, < I(X).

Proof. Let Tea, na, and 8% B, ~X,Qi X > B, for i=1,2
and # =1,2,... such that 7 =1imS8iQ, = lm&2Q} for n — co. If
i #j, QiJ; E; > E; is strictly singular and, therefore, S.QJ,P, and
83Q3J, P, are also strictly singular for all #. Hence

T =1lim(8,Q.J,P,+ SrlefLJlPI)

is strictly singular, and the Proposition follows.

From 2.2 and 2.4 we obtain the following:

2.5. THEOREM. If H(E,) = d(F(E,)) for ¢ =1,2, and B, and B,
are lotally incomparable, then ¥(X) = a; N q,.

Now we turn to the consideration of the other possible ideals in
B(X).

2.6. ProOPOSITION. Under the same hypotheses of Theorem: 2.5, and
assuming moreover that 1(B;) = l(F(E,)) is a maximal ideal, let o = B(X)
be a closed two-sided ideal. Then one of the following must be satisfied:

(@) a= £(X),
(b) a> a; for some i =1,2.
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Proof. Every Tea can be decomposed as ' = J; T, P+ J, TPy 48,
where §em, N m,, 50 that the only problem is to determine the possible
T, and Ty,. Clearly, a; = {Ty} = {S<B(B,); J;8P;ea} is a closed two-
sided ideal of B(F,) fori =1,2. If a3 = (S( ,) for both ¢ =1 and i =2,
then clearly a = €(X) < f(X). Otherwise, for some ¢ =1,2 we have
a; = B(E,;) and, therefore, P;eq, whence a > a;.

© 2,7. THEOREM. Assume that 1(E;) = ol (F(E;)) is o mavimal two-sided
ideal of B(B;) and that B, and B, are totally incomparable. Then :

(a) for i =1,2, if a closed two-sided ideal a < B(X)
(X)) cac o, then mt}m f(X)=ao0ra=aqa;

(b) for any closed two-sided ideal b < B(X), either b < f(X or
f(X)<b.

From a lattice theoretlc standpoint, (a) means that a; covers ¥(X),
while (b) means that the singleton {¥(X)} is crosscut of the lattice of
closed two-sided ideals of B(X).

Proof of 2.7. Let ¥(X) < ac ap; 2.6(a) and 2.6¢b) imply a o q
or a o a,. The former implies a = a, and the latter leads to the contra-
diction a; = a « a,. Similarly, for I(X) & ac a,.
from 2.5 and 2.6.

satisfies

3. The case F, = ¢° or B, = ¢,. We shall consider now the special
case in which E, and F, are the spaces 7,1 < p < oo, 0T ¢4.

3.1. THEOREM. Lef X =(PX (7 (1< ps#g<oo) or X =1(PXxc,
(1< p< oo). Then: ‘

(8) I(X) =a; N ay;

(b) there are mo closed two-sided ideals a = B(X)
HX)dadaor (X)) & adg ap

(c) for every closed two-sided ideal b < B(
¥(X) = b;

(d) there are mno
{0} ¢ ¢ &£ C(X)

(e) [E(X)])* = €(X),i. e.,if T, Set(X), then TSeC(X).

Proof. (a), (b) and (c¢) follow from 2.5 and 2.7, and (d) from the fact
that X has a basis. For T'¢ #(X), it is clear that T,,¢f(¢?) = €(¢(?) and
Tone¥(L?) = C(L%) (resp. Tyet(c,) = C(cy)) (see [2]) so that

satisfying
X), either b c ¥(X) or

closed iwo-sided ideals ¢ < B(X) satisfying

T = E+4+J,T,,P,+J,T,,P,, where KcG(X).

Similarly, for 8¢ {(X), § = K'+J,8,,P,+J,8,P,. Hence 8T = K"+
+ A+ A+ A+ A, with Ay =dJ TP ;84 Pjx, where for h=1,2,

Finally, (b) follows °

icm°®
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k* is defined by h* = 3—h. It follows immediately from [8], Lemma 3,

that in the diagram
;oo N

Ej»\ > E,
.E; X o E,‘t

the operator L is always compact, whence each 4, and, therefore, ST,
are also compact. This proves (e). ’

By specializing a little further, we can see that there are no
ideals between a, and B(X). First we observe that:

3.2, Leania. Let X =(7"x{*, where 2 < p < oo. Then:

(a) Ewvery subspace of X isomorphic to ¢{* is complemented.

(b) Every subspace of X isomorphic lo (” contains a complemenied
subspace isomorphic 1o (7.

The proof follows from [4],§ 3, Cor. 1 and Cor. 2, and the remark
that X is isomorphic to a (complemented) subspace of

IPx (P X LY ~ (LPXAP) % {2ms LP X (% ~ IP

(where ~ means ‘“‘isomorphic to‘).

3.3, ProrosiTION. Let X = (7 x (7},
and a, are mazximal two-sided ideals of B(X).

Proof. Let a « B(X) be a two-sided ideal satisfying a,Z a and
Teasuch that T¢q,. Since T = V4 U with Vem, and U em,, we conclude
that Uea and Ud¢a,. Then 3.1(2) implies that Ug¢1(X) and therefore
there is an infinite-dimensional subspace ¥ < X such that U: ¥ = U(Y)
is an isomorphism. Moreover, since Uem,, there exist S: ¢* — X and
§': X —¢* such that U = 8§, whence S ¥ —8(¥)< ¢ must
also be an isomorphism; it follows that Y is isomorphic to ¢* and,
according to 3.2(a), necessarily complemnted. Let P B(X) bea projection
on Y. Since the inverse (S')"%: §'(Y) - ¥ can be’extended (to ¢* (by
0 on the complement of S'(Y) < ¢%), and therefore also) to an operator
LeB(X), we have LUP = Pea and this implies [7] that m, < a. This
means that a > a,+m, = B(X) and therefore a, is maximal. The maxi-
mality of a, can be handled in a similar fashion, except that the corres-
Y) < ¢? need not be complemented and, therefore,

where 2 < p < oco. Then a
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the operator (8')™: 8'(Y) —+ Y carnot be extended to ¢P, and hence
to X. But from [6], Lemma 2, p. 214, §'(Y) contains a subspace Z com-
plemented in ¢” and isomorphic to ¢”. The proof proceeds as above
with Y replaced by (8')"*(Z) and using 3.2 (b) instead of 3.2 (a).

‘From 3.1 and 3.3 we get:

3.4. THEOREM. Let X ={(Px(?% where 2< p << oo. Then the lattice
of all closed two-sided ideals of B(X) contains the following:

{0}

and in fact every other closed two sided ideal is necessarily between C(X)
and ¥(X).

It is clear that the same result holds for 1 <p <2 by standard duality
arguments: just observe that if X is a reflexive space, then B (X ) and
B(X*) (where X* is the dual of X) are antiisomorphic algebras and there-
fore their families of two sided ideals are lattice isomorphie.
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