Choose n(k) satisfying $m(k) \leq n(k)$ and so that $J_N \subset J_{n(k)}$, $J_n \subset J_{n(k)}$. Then if $B_k = H_{J_{n(k)}} R_{m(k)} H_{J_{n(k)}}$, we have $||B_k|| > \varepsilon$. To see that $||D_k|| \le 2 ||M||$ apply (i) and (ii) of the induction hypothesis above.

Theorem 13. Let $M=(c_{ij})$: $\lambda_s \to l_p$ be a matrix map. Then M is compact.

Proof. If M is not compact, then by Proposition 12 there is an $\varepsilon > 0$ and indices $1 = m(1) \le n(1) < \ldots < m(k) \le n(k) < \ldots$ so that $||B_k|| > \varepsilon$ and $||D_k|| \le 2 ||M||$ for all k. Let $\alpha^{[1]}, \alpha^{[2]}, \ldots, \alpha^{[k]}$ be unit vectors in λ satisfying $||B_k(\alpha^{[k]})||_p = ||B_k||$. This choice is possible because each B_k is a finite matrix. Let $\xi = (1, 1, ..., 1, ...)$. Clearly ξ is a unit vector of λ_s . By f.m.p. we may choose $\beta^{[l]} \in \lambda$, where $\beta^{[l]} = (b_1^{[l]}, \ldots, b_i^{[l]}, \ldots)$ satisfies:

$$b_i^{[l]} = \begin{cases} a_i^{[k]} & \text{if } m(k) \leqslant i \leqslant n(k), & \text{where } k = 1, 2, \dots, t, \\ 0 & \text{if } n(k) < i < m(k+1), & \text{where } k = 1, 2, \dots, t-1, \end{cases}$$

and $\|\beta^{[t]}\| \leq \|\xi\| = 1$.

Thus,
$$\|D_t(\beta^{[t]})\|_p = (\sum_{k=1}^t \|B_k\|^p)^{1/p} = t^{1/p} \, \varepsilon.$$

A contradiction now results because $2 ||M|| \ge ||D_t|| \ge ||D_t(\beta^{[t]})||_p = t^{1/p} \varepsilon$, where t is arbitrary.

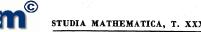
Remark. It is not hard to check that the l_a spaces satisfy f.m.p. if $1 < q < \infty$ and that c_0 also satisfies f.m.p. Arguing as in Theorem 13 we may apply Theorem 12 to show that there are no non-compact operators $T: l_n \to l_n$ or $T: c_0 \to l_n$, if $1 \le p < q < \infty$. This is the Littlewood-Pitt Theorem [6].

References

- [1] D. Arterburn and R. Whitley, Projections in the space of bounded linear operators, Pacific J. Math. 15 (1965), pp. 739-746.
- [2] M. Day, Normed linear spaces, New York 1962.
- P. Halmos, Measure theory, New York 1950.
- [4] A. Pelczyński and Z. Semadeni, Spaces of continuous functions, Studia Math. 18 (1959), pp. 211-222.
- Uncomplemented function algebras with separable annihilators, Duke J. Math. 33 (1966), pp. 605-612.
- [6] H. Pitt, A note on bilinear forms, London Math. Soc. 11 (1936), pp. 174-180.
- H. Schaefer, Topological vectors spaces, New York 1966.
- [8] E. Thorp, Projections onto the subspace of compact operators, Pacific J. Math. 10, (1960), pp. 693-696.

STATE UNIVERSITY OF NEW YORK AT ALBANY ALBANY, NEW YORK

Reçu par la Rédaction le 8. 10. 1969

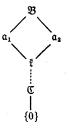


Factorable and strictly singular operators. I

HORACIO PORTA (Urbana)

Let X and Y be Banach spaces; a linear bounded operator $T: X \to Y$ is strictly singular [5] if the subspaces $Z \subset X$ for which the restriction $T|_Z\colon Z o T(Z)$ has a bounded inverse T(Z) o Z are necessarily finite dimensional. Assume X is the cartesian product $X = E_1 \times E_2$ of the Banach spaces E_1 and E_2 . An operator $T: X \to X$ is factorable through E_i (for i=1,2) if it is of the form T=SQ for suitable $Q:X\to E_i$ and S: $E_i \to X$. Denote by a_i the (uniform) closure of the set of operators factorable through E_i . We prove below that under special conditions, an operator T is strictly singular if and only if $T \in \mathfrak{a}_1 \cap \mathfrak{a}_2$. This is applied notably to the case $E_1=\ell^p$ and $E_2=\ell^q$ for $p\neq q$ (and more particularly, when p > q = 2) to obtain various relations between these types of operators. As a consequence, it can be seen ((3.1. e) below) that in this case, if T_1 and T_2 are strictly singular, then T_1T_2 is compact.

Finally, the lattice of all closed two-sided ideals of the algebra of all bounded linear operators on $X = \ell^p \times \ell^2$, for p > 2, is studied in (3.4): it consists of six elements 0, C, f, a1, a2, B ordered as follows:



where solid lines mean that there are no ideals strictly between the ideals joined by them.

1. Terminology. We observe the standard terminology concerning Banach spaces, operators, sequence spaces ℓ^p and Lebesgue spaces $L^p = L^p[0, 1]$.

For any Banach spaces X and Y, $\mathfrak{B}(X,Y)$, $\mathfrak{F}(X,Y)$, $\mathfrak{C}(X,Y)$ and $\mathfrak{f}(X,Y)$ shall denote, respectively, the Banach space of all bounded linear operators $T\colon X\to Y$, and the subspaces consisting of operators of finite rank, compact operators and strictly singular operators; we set $\mathfrak{B}(X)=\mathfrak{B}(X,X)$, $\mathfrak{F}(X)=\mathfrak{F}(X,X)$, $\mathfrak{C}(X)=\mathfrak{C}(X,X)$ and $\mathfrak{f}(X)=\mathfrak{f}(X,X)$. $\mathfrak{F}(X)=\mathfrak{C}(X)=\mathfrak{f}(X)$ are two sided ideals of $\mathfrak{B}(X)$ and, moreover, $\mathfrak{C}(X)$ and $\mathfrak{f}(X)$ are closed in $\mathfrak{B}(X)$.

All throughout, when we consider the product $X = E_1 \times E_2$ of the Banach spaces E_1 and E_2 , we shall (try to) use consistently the following notation: $P_i \in \mathfrak{B}(X, E_i)$ is the projection $P_i(x_1, x_2) = x_i$ for i = 1, 2; $J_i \in \mathfrak{B}(E_i, X)$ are the injections $J_1(x_1) = (x_1, 0)$ and $J_2(x_2) = (0, x_2)$. Every $T \in \mathfrak{B}(X)$ has a matrix representation that will be denoted by $T = (T_{ij})$, where $T_{ij} \in \mathfrak{B}(E_j, E_i)$ for i = 1, 2 and j = 1, 2, and

$$T(x_1, x_2) = (T_{11}x_1 + T_{12}x_2, T_{21}x_1 + T_{22}x_2).$$

Clearly,

$$T_{ij} = P_i T J_j$$
 and $T = \sum_{i,j} J_i T_{ij} P_j$.

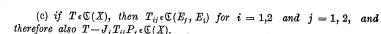
For any set $\mathfrak{a} \subset \mathfrak{B}(X)$ we shall also denote by $\mathfrak{a}_{ij} \subset \mathfrak{B}(E_j, E_i)$ the set $\mathfrak{a}_{ij} = \{T_{ij}, T_{\epsilon}\mathfrak{a}\}$; in particular, $\mathfrak{B}(X)_{ij} = \mathfrak{B}(E_j, E_i)$ and if $\mathfrak{a} \subset \mathfrak{B}(X)$ is a two-sided ideal, $\mathfrak{a}_{ij} = \{S_{\epsilon}\mathfrak{B}(E_j, E_i); J_iSP_j_{\epsilon}\mathfrak{a}\}$. Finally, $\mathfrak{m}_i \subset \mathfrak{B}(X)$ will denote the set $\mathfrak{m}_i = \mathfrak{m}_{E_i}(X)$ (in the notation of [1]) of all operators $T_{\epsilon}\mathfrak{B}(X)$ of the form T = SQ for suitable $Q_{\epsilon}\mathfrak{B}(X, E_i)$ and $S_{\epsilon}\mathfrak{B}(E_i, X)$, and \mathfrak{a}_i will denote the (norm) closure of \mathfrak{m}_i . Clearly, $P_{i\epsilon}\mathfrak{m}_i$ and for every $T_{\epsilon}\mathfrak{B}(X)$, $J_iT_{ij}P_j\epsilon\mathfrak{m}_i\cap\mathfrak{m}_j$.

2. Strictly singular and factorable operators. The following general hypothesis is assumed all throughout this section:

 E_1 and E_2 are Banach spaces isomorphic to their cartesian squares $E_1 \times E_1$ and $E_2 \times E_2$, respectively, and $X = E_1 \times E_2$.

It follows from [7] (or [1], Theorem 5.13) that \mathfrak{m}_i (whence \mathfrak{a}_i) is a two-sided ideal of $\mathfrak{B}(X)$ for i=1,2,...

- 2.1. Lemma. (a) For every $T\in\mathfrak{B}(X),$ $T-J_1T_{11}P_1\in\mathfrak{m}_2$ and $T-J_2T_{22}P_2\in\mathfrak{m}_1;$
- (b) if $T \in \mathfrak{k}(X)$, then $T_{ij} \in \mathfrak{k}(E_j, E_i)$ for i = 1, 2 and j = 1, 2, and therefore also $T J_i T_{ij} P_j \in \mathfrak{k}(X)$;



Proof. Since $T=J_1T_{i1}P_1+S$, where $S=\sum\limits_{i+j\geqslant 3}J_iT_{ij}P_i\epsilon m_2$ (and, similarly, for i=2), (a) follows. Since $T_{ij}=P_iTJ_j$, (b) and (c) follow.

2.2. PROPOSITION. Assume $\mathfrak{k}(E_1) = \mathbf{cl}(\mathfrak{F}(E_1))$ (cl() means "closure"). Then $\mathfrak{k}(X) \subset \mathfrak{a}_2$. In particular, if $\mathfrak{k}(E_i) = \mathbf{cl}(\mathfrak{F}(E_i))$ for i = 1, 2, then $\mathfrak{k}(X) \subset \mathfrak{a}_1 \cap \mathfrak{a}_2$.

Proof. Let $T \in \mathfrak{k}(X)$. From 2.1(a), $T = J_1 T_{11} P_1 + S$, where $S \in \mathfrak{m}_2$. But since $T_{11} \in \mathfrak{k}(E_1)$ (from 2.1(b)) and $\mathfrak{k}(E_1) = \operatorname{cl}(\mathfrak{F}(E_1))$, we have $T_{11} = \lim F_n$, where rank $F_n < + \infty$. Clearly, $J_1 F_n P_1 \in \mathfrak{m}_2$ and, therefore, $J_1 T_{11} P_1 \in \operatorname{cl}(\mathfrak{m}_2) = \mathfrak{a}_2$. Thus $T = J_1 T_{11} P_1 + S \in \mathfrak{a}_2$.

Remark. All ℓ^p , $1 \le p < \infty$ (and no L^p , $1 \le p < \infty$, $p \ne 2$), have the property $\mathfrak{k} = \operatorname{cl}(\mathfrak{F})$. See [3] for a sufficient condition for this property.

2.3. Definition ([9]). The Banach spaces E_1 and E_2 are totally incomparable if E_1 and E_2 have no infinite-dimensional isomorphic subspaces.

It is clear that if E_1 and E_2 are totally incomparable, every $T\colon\thinspace E_1\to E_2$ is strictly singular.

2.4. Proposition. Assume E_1 and E_2 are totally incomparable. Then $a_1 \cap a_2 \subset \mathfrak{k}(X)$.

Proof. Let $T \in \mathfrak{a}_1 \cap \mathfrak{a}_2$ and $S_n^i \colon E_i \to X$, $Q_n^i \colon X \to E_i$ for i=1,2 and $n=1,2,\ldots$ such that $T=\lim S_n^1 Q_n^1 = \lim S_n^2 Q_n^2$ for $n\to\infty$. If $i\neq j,\ Q_n^i J_j \colon E_j \to E_i$ is strictly singular and, therefore, $S_n^1 Q_n^1 J_2 P_2$ and $S_n^2 Q_n^2 J_1 P_1$ are also strictly singular for all n. Hence

$$T = \lim_{n \to \infty} (S_n^1 Q_n^1 J_2 P_2 + S_n^2 Q_n^2 J_1 P_1)$$

is strictly singular, and the Proposition follows.

From 2.2 and 2.4 we obtain the following:

2.5. THEOREM. If $\mathfrak{k}(E_i)=\operatorname{cl}(\mathfrak{F}(E_i))$ for i=1,2, and E_1 and E_2 are totally incomparable, then $\mathfrak{k}(X)=\mathfrak{a}_1\cap\mathfrak{a}_2$.

Now we turn to the consideration of the other possible ideals in $\mathfrak{B}(X)$.

- **2.6.** PROPOSITION. Under the same hypotheses of Theorem 2.5, and assuming moreover that $f(E_i) = \mathbf{cl}(\mathfrak{F}(E_i))$ is a maximal ideal, let $\mathfrak{a} \subset \mathfrak{B}(X)$ be a closed two-sided ideal. Then one of the following must be satisfied:
- (a) $a \subset f(X)$,
- (b) $a \supset a_i$ for some i = 1, 2.

Proof. Every $T \in \mathfrak{a}$ can be decomposed as $T = J_1 T_{11} P_1 + J_2 T_{22} P_2 + S$, where $S \in \mathfrak{m}_1 \cap \mathfrak{m}_2$, so that the only problem is to determine the possible T_{11} and T_{22} . Clearly, $a_{ii} = \{T_{ii}\} = \{S \in \mathfrak{B}(E_i); J_i SP_i \in a\}$ is a closed twosided ideal of $\mathfrak{B}(E_i)$ for i=1,2. If $\mathfrak{a}_{ii}\subset \mathfrak{C}(E_i)$ for both i=1 and i=2. then clearly $a \subset C(X) \subset f(X)$. Otherwise, for some i = 1, 2 we have $\mathfrak{a}_{ii} = \mathfrak{B}(E_i)$ and, therefore, $P_i \in \mathfrak{a}$, whence $\mathfrak{a} \supset \mathfrak{a}_i$.

- **2.7.** THEOREM. Assume that $\mathfrak{k}(E_i) = \mathbf{cl}(\mathfrak{F}(E_i))$ is a maximal two-sided ideal of $\mathfrak{B}(E_i)$ and that E_1 and E_2 are totally incomparable. Then:
- (a) for i = 1, 2, if a closed two-sided ideal $a \subset \mathfrak{B}(X)$ satisfies $f(X) \subset \mathfrak{a} \subset \mathfrak{a}_i$, then either $f(X) = \mathfrak{a}$ or $\mathfrak{a} = \mathfrak{a}_i$;
- (b) for any closed two-sided ideal $\mathfrak{b} \subset \mathfrak{B}(X)$, either $\mathfrak{b} \subset \mathfrak{t}(X)$ or $f(X) \subset \mathfrak{b}$.

From a lattice theoretic standpoint, (a) means that a_i covers f(X), while (b) means that the singleton $\{f(X)\}$ is crosscut of the lattice of closed two-sided ideals of $\mathfrak{B}(X)$.

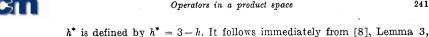
Proof of 2.7. Let $f(X) \subset a \subset a_1$; 2.6(a) and 2.6(b) imply $a \supset a_1$ or $a \supset a_2$. The former implies $a = a_1$ and the latter leads to the contradiction $a_2 \subset a \subset a_1$. Similarly, for $f(X) \nsubseteq a \subset a_2$. Finally, (b) follows from 2.5 and 2.6.

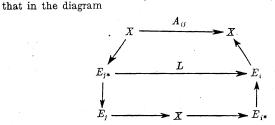
- 3. The case $E_i = \ell^0$ or $E_i = c_0$. We shall consider now the special case in which E_1 and E_2 are the spaces ℓ^p , $1 , or <math>\ell_0$.
- **3.1.** THEOREM. Let $X = \ell^p \times \ell^q$ $(1 or <math>X = \ell^p \times c_0$ (1 . Then:
 - (a) $f(X) = a_1 \cap a_2$;
- (b) there are no closed two-sided ideals $a \subset \mathfrak{B}(X)$ satisfying $f(X) \subseteq a \subseteq a_1 \text{ or } f(X) \subseteq a \subseteq a_2;$
- (c) for every closed two-sided ideal $b \subset \mathfrak{B}(X)$, either $b \subset \mathfrak{t}(X)$ or
- (d) there are no closed two-sided ideals $c \subset \mathfrak{B}(X)$ satisfying $\{0\} \subseteq \mathfrak{c} \subseteq \mathfrak{C}(X);$
 - (e) $\lceil f(X) \rceil^2 \subset C(X)$, i. e., if T, $S \in f(X)$, then $TS \in C(X)$.

Proof. (a), (b) and (c) follow from 2.5 and 2.7, and (d) from the fact that X has a basis. For $T \in \mathfrak{f}(X)$, it is clear that $T_{11} \in \mathfrak{f}(\ell^p) = \mathfrak{C}(\ell^p)$ and $T_{22} \in \mathfrak{f}(\ell^q) = \mathfrak{C}(\ell^q)$ (resp. $T_{22} \in \mathfrak{f}(\ell_0) = \mathfrak{C}(\ell_0)$) (see [2]) so that

$$T = K + J_1 T_{12} P_2 + J_2 T_{21} P_1$$
, where $K \in \mathfrak{C}(X)$.

Similarly, for $S \in f(X)$, $S = K' + J_1 S_1, P_2 + J_2 S_2, P_1$. Hence ST = K'' + $+A_{11}+A_{12}+A_{21}+A_{22}$ with $A_{ij}=J_iT_{ij*}P_{i*}J_iS_{ij*}P_{i*}$, where for h=1,2,





the operator L is always compact, whence each A_{ij} and, therefore, ST, are also compact. This proves (e).

By specializing a little further, we can see that there are no ideals between a, and $\mathfrak{B}(X)$. First we observe that:

- **3.2.** Lemma. Let $X = \ell^p \times \ell^2$, where 2 . Then:
- (a) Every subspace of X isomorphic to ℓ^2 is complemented.
- (b) Every subspace of X isomorphic to l' contains a complemented subspace isomorphic to ℓ^p .

The proof follows from [4], § 3, Cor. 1 and Cor. 2, and the remark that X is isomorphic to a (complemented) subspace of

$$L^p \times (\ell^p \times \ell^2) \sim (L^p \times \ell^p) \times \ell^2 \sim L^p \times \ell^2 \sim L^p$$

(where ~ means "isomorphic to").

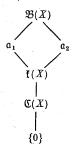
3.3. Proposition. Let $X = \ell^p \times \ell^2$, where $2 . Then <math>a_1$ and a_n are maximal two-sided ideals of $\mathfrak{B}(X)$.

Proof. Let $a \subset \mathfrak{B}(X)$ be a two-sided ideal satisfying $a_1 \subsetneq a$ and $T \in \mathfrak{a}$ such that $T \notin \mathfrak{a}_1$. Since T = V + U with $V \in \mathfrak{m}_1$ and $U \in \mathfrak{m}_2$, we conclude that $U \in \mathfrak{a}$ and $U \notin \mathfrak{a}_1$. Then 3.1(a) implies that $U \notin \mathfrak{k}(X)$ and therefore there is an infinite-dimensional subspace $Y \subset X$ such that $U: Y \to U(Y)$ is an isomorphism. Moreover, since $U \in \mathfrak{m}_2$, there exist $S: \ell^2 \to X$ and $S': X \to \ell^2$ such that U = SS', whence $S': Y \to S'(Y) \subset \ell^2$ must also be an isomorphism; it follows that Y is isomorphic to ℓ^2 and, according to 3.2(a), necessarily complemnted. Let $P \in \mathfrak{B}(X)$ be a projection on Y. Since the inverse $(S')^{-1}$: $S'(Y) \to Y$ can be extended (to ℓ^2 (by 0 on the complement of $S'(Y) \subset \ell^2$), and therefore also) to an operator $L_{\epsilon}\mathfrak{B}(X)$, we have $LUP = P_{\epsilon}\mathfrak{a}$ and this implies [7] that $\mathfrak{m}_2 \subset \mathfrak{a}$. This means that $a \supset a_1 + m_2 = \mathfrak{B}(X)$ and therefore a_1 is maximal. The maximality of q, can be handled in a similar fashion, except that the corresponding subspace $S'(Y) \subset \overline{\ell}^p$ need not be complemented and, therefore,

the operator $(S')^{-1}$: $S'(Y) \to Y$ cannot be extended to ℓ^p , and hence to X. But from [6], Lemma 2, p. 214, S'(Y) contains a subspace Z complemented in ℓ^p and isomorphic to ℓ^p . The proof proceeds as above with Y replaced by $(S')^{-1}(Z)$ and using 3.2 (b) instead of 3.2 (a).

From 3.1 and 3.3 we get:

3.4. Theorem. Let $X = t^p \times t^2$, where $2 . Then the lattice of all closed two-sided ideals of <math>\mathfrak{B}(X)$ contains the following:



and in fact every other closed two sided ideal is necessarily between $\mathfrak{C}(X)$ and $\mathfrak{k}(X)$.

It is clear that the same result holds for 1 by standard duality arguments: just observe that if <math>X is a reflexive space, then $\mathfrak{B}(X)$ and $\mathfrak{B}(X^*)$ (where X^* is the dual of X) are antiisomorphic algebras and therefore their families of two sided ideals are lattice isomorphic.

References

- E. Berkson and H. Porta, Representations of B(X), J. Funct. Anal. 3 (1969),
 p. 1-34.
- [2] I. C. Gohberg, A. S. Markus and I. A. Feldman, Normally solvable operators and ideals associated with them, Izv Moldavsk. Filiala Akad. Nauk SSSR 10 (1960), p. 51-69 (= AMS Trans., Ser. 2, vol. 61 (1967), p. 63-84).
- [3] R. H. Herman, On the uniqueness of the ideals of compact and strictly singular operators, Studia Math. 29 (1968), p. 161-165.
- [4] M. I. Kadec and A. Peiczyński, Bases, lacunary series and complemented subspaces in the spaces L^p, ibidem 21 (1962), p. 161-176.
- [5] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), p. 261-322.
- [6] A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), p. 209-228.
- [7] H. Porta, Idéaux bilatères de transformations linéaires continues, C. R. Acad. Sci. Paris 264 (1967), p. 95-96.

[7] - Two-sided ideals of operators, Bull. AMS 75 (1969), p. 599-602.

[9] H. Rosenthal, On totally incomparable Banach spaces, J. Funct. Anal. 4 (1969), p. 167-175.

[10] — On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from L̄^p(μ) to L̄^r(r), ibidem 4 (1969), p. 176-214.

Reçu par la Rédaction le 31. 1. 1970