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The uncomplemented subspace K (E, F)

by
ALFRED E. TONG and DONALD R. WILKEN* (New York)

1. Introduction. For Bamach spaces B and F, let B(E, F) denote
the space of bounded linear operators from ¥ to F and K (E, F) the sub-
space of compact operators. Give B(H, F) and K(E,F) the operator
norm. In this paper we study the following question: When is K (&, F)
complemented in B(FE, F)? That is, it K(E, F) is a proper subspace of
B(E, F) we try to determine the existence of a bounded projection from
B(E, F) onto K (F, F). This question has been studied by Thorp in [8]
and Arterburn and Whitley in [1]. In all known eases the answer is either
that K (E, F') = B(H, F) or that there does not exist a bounded projection.
However, there were simple cases for which the question was unanswered.
For example Arterburn and Whitley [1] pointed out that in the case
where B is the space of all bounded sequences m and F the space of
convergent sequences ¢, the question remained open. In this paper we
solve the problem for a large class of Banach spaces not only including
the simple case mentioned above, but also for most examples, where
FH is C(S), the space of continuous functions on a compact Hausdorff
space 8, and where F' is an appropriate I, space. The answer (see Corollary
to Theorem 6 and Theorem 13) is given in the same form as all previously
known cases, i.e., either K(F, F) = B(E, F) or K(E, F) is not comple-
mented in B(E, F), and there are still no known examples where this
division of possibilities does not occur.

Using direct computations analogous to Pitt [3], we also show that
if B = C(8) (where § is compact and dispersed) andif F' =1, (1 < p < o0),
then every bounded operator from F into I is compact. See [2] for ter-
minology and notation used below.

2. Stable Operators. Let 7 be a Banach space with Schauder basis
{f;» fi}- We denote by II,: F— F the operator defined by:

() = D)9, £)fs-
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To introduce the notion of stable operator we begin with a proposition
which is well known and is the original motivation for defining the concept

of stable operator.
PROPOSTTION 1. Suppose F has a Schauder basis {f;, f;}. Let T« B(E, F).
Then the following statements are equivalent:
1. T 48 a compact operator,
2. im|7—I1,T| =0,
n

3. im|/Z,T—
n, M

The proof is an immediate consequence of Theorem 9.6, p. 115, of
Schaefer [7].

DeriNiTIoN. Let F be a Banach space with Schauder basis {f;, f;}.
A gequence of indices 1 = m(1) < n(l) <m(2) < n(2) < ... < m(k) < nk)
< ... is said to be a slability sequence for an operator TeB (¥, F) if
there exists an e>0 such that [(Zym—Lup-) Tl > 2 for all k.

Denote IT,p— ng—1 bY Il so that for each yeI' we have Iy (y) =
n(k
Z(‘) (y, f,)fj An operator T for which there exists a stability sequence

HmT” =0.

1s saad to be a stable operator.

PROPOSITION 2. Let F have a Schawder basis {f;, fi}. Then T eB(H, I
is stable if and only if T is non-compact.

Proof. This follows directly from the definition and part 3 of Propo-
sition. 1.

We need one more preliminary result about Schauder bases.

TumoreM 3. If F has an unconditional basis {f;,fi}, then F can be

given an equivalent norm, ||, so thai:
if 3 of;eF and if sup {lag: § =1,2,...} < oo, then 12 a;0;f;€F
j=1 =1
and || %) a;ef;ll < sup {lay[} H.Z{' il
§=1 Vs

Proof. The proof consists in a reformulation of Theorem 1, p. 73
together with Remark 4, p. 60, of Day [2].

Hereafter we assume the norm on a Banach space with nnconditional
basis satisfies the inequality of Theorem 3 above.

Let T be a stable operator in B(H, F), where F has a Schauder basis.
Let Il be as described in the definition of a stable operator. For each

= (G Byy veny Ugy ...)emy Lot T ( Za%H{k]oT( ), for each weX.

ProposITION 4. If F has an unconditional basis and T eB(E,F)
is stable, them the mapping j: m— B(B, F) defined by j(a) = T, defines
a norm isomorphism from m into B(E, F). Moreover, if ¢ >0 is the number
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given by the definition of siable operator, then:
S @< BTN sup {lazl: k =1, 2, ...}

Proof. By Theorem 3, T,(x )eF for each x < F. Applying the inequality
of Theorem 3 we have:

n(k)
a0 T (2) H = ”2% .#2 (T(2), f;')fg“

esup {lapl: £ =1,2,...}

I ()] = |[

<sup {lag: k=1,2,..}] > 2 (T(@), 1)1

k j=m(k)
< sup {Jay: ST @)l

(The last inequality follows from Theorem 3.)

Thus ||T|< Tl sup {lazl: ¥ =1,2,...}, and j is a bounded map
from m into B(E, F). To obtain the other inequality note that

1o (@) = llaz o T (x)]] = |ay) 1y — miy—1) T ()| =
for each £ =1,2,...; ie.

Tl = & sup {lag|:

Since it is clear that j is a linear map, it follows from the
above inequalities that j is a one-one norm isomorphism of m into
B(E, F).

To complete the description we need of the injection j, we must
describe what the image of ¢, looks like in B(E, F).

ProposITION 5. Let F be as in Proposition 4. Then
Jle) =j(m) n K(E, F).

Proof. The proof consists of a direct verification using Theorem 3
and Propositions 1 and 4.

We are now in a position to establish the main result of this section.

TEEOREM 6. Let F be a Banach space with unconditional basis. If
B(E, F) contains a stable map T, then K(E,F) is not complemented in
B(R, F)."

Proof. As will become clear shortly, all that remains is to construct
a bounded projection Q: K (E, F) — j(c,), where j is the injection described
earlier. We do this by defining

Q8) = (o S(@), 1), (o 8 (@), vl), -, (g0 8 (), i +-),
where Iy, is the usunal map associated with a stable operator 7 and

E=1,2,..

& laz] el

k=1,2,..}.

. . . 1
@y, Yy, are respective elements of & and F', chosen so that o)< —,
&

lyll =1 and so that (ZgoTl (), yi) =1
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The choices of z, and ¥y, are possible since 7' is a stable map. Now for
S<K (B, F), we have from Proposition 1 that ||ITj08]—0, so that
Q(8) j(6,). Thus @ is linear map from K (B, F) into j(c,). It is a simple
verification that @(j(a)) = j(a) for acc,. Thus @ is a linear projection.
Finally

7 ' 1
“(H[k]os(mk); ?I/a)“ < g o S| el Nyl < ”S”—e—’
[Q(S)] = 1361 < 171 sup (el & = 1,2, ...} < I 18],

where § = (by, by, ..oy gy -..) and by = (g0 8 (), ¥i)

Using the fixed stable operator I' we thus can construct

1. an injection j: m — B(E, F) satistying j(c,) = F(m) n K (B, F),

9. a bounded projection Q: K (B, F) - j(c)-

Now suppose K (B, F) is complemented in B(H, F). Then we have
the following diagram, where P denotes the hypothesized bounded’ pro-
jection ;

B(E, F) 5 K(B, F)
it Jiteq

m o

If we consider the map P, = j~'oQoPoj, it is immediate from
1 and 2 that P, is a bounded projection from m onto ¢,, which is impos-
sible by Phillips’ Theorem. Hence P cannot exist and the theorem follows.

Combining Proposition 2 and Theorem 6 we obtain the

CororrARY. Let F' be a Banach space with unconditional basis. Then
either B(H, F) = K(B, F) or K(E, F) is not complemented in B(H, I).

3. The case: § is non-dispersed. It is clear from the corollary above
that its usefulness depends on being able to determine, for given Banach
spaces B and F, when there exists a non-compact, or stable, operator
in B(E, F). If § is an infinite compact Hausdorff space and B = 0(S),
the Banach space of continuous functions on § with the supreme norm,
and if ¥ is an appropriate I, space, it is possible to produce such an
operator. We split the spaces C(8) into two types — the cases where
8 isnon-dispersed and where 8 is dispersed. Recall that a compact Hausdortf
space is dispersed if and only if it does not support a continuous regular
Borel measure [3].

TemorREM 7. Let 8 be an infinite mon-dispersed compact Hausdorff
space and let B = O(8). If F =6y or F =1,, 2< p < oo, then:

1. B(E, F) has a stable map;

2. K(B, I) is not complemented in B(H, F).
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Proof. That F has an unconditional basis is well known. If § is not
dispersed, the existence of a stable map in B(E, F) is known (e.g. see
Pelezynski [5]). Part 2 then follows from the Corollary to Theorem 6.
Theorem 7 provides a negative answer to the simple case mentioned
by Arterburn and Whitley in [1] and discussed in the introduction, as
follows:

COROLLARY. Let B = m and F = ¢, or 1,,,2 < p < oo. Then K(E, F)
is not complemented in B(E, F).

Proof. The Banach space of all bounded sequences can be identified
with C(N), where N denotes the Stone-Cech compactification of the
integers N. It is well known (see [4]) that SN is not dispersed. Under
this identification, the Corollary becomes a special case of the theorem.

In the case where F is as in Theorem 7 and F =1,,1 < p < 2, the
existence of a stable map in B(E, ¥) is, as far as we know, unknown.
In the case F = I, it is an easy consequence of another theorem due to
Phillips that B(E, F) = K(E, F), where H = ((S) and § is any compact
Hausdorff space. o

4, The case: § is dispersed. In this section, we study the case where
E =0(8), S is compact Hausdortf and dispersed and F =, 1,
(1<p<oo)

For the case where S is dispersed and F' = ¢, the following theorem
obtains, the proof of which is due to A. Pelezyniski and was communicated
to us by him.

TaEOREM 8. If 8 is dispersed, then C(8) contains a complemented copy
of ¢,. Thus setting B = C(8) and F = ¢y, B(E, F) has stable map and
K (B, F) is not complemented in B(E, F).

Proof. Let 8@ denote the set of non-isolated points of S. Since
§ is dispersed and of second category, 8% is non-empty, compact and
dispersed. Therefore we can choose a point s, «8W which is isolated in ™.
Choose a closed neighborhood U of s, in 8 such that U n 8% = {s;}.
Since s, is not isolated in § there exists & sequence {s,} of distinct points
in U~{s}. Since U is closed and, except for s,, consists of isolated points
of 8, the only possible cluster point of the sequence {s,} 18 s,. Since 8 is
compact it follows that s, — ;.

If ¢ is the subspace of C(S) consisting of all functions f such that
F(8~{s,}) =0, then it is a simple verification that ¢ is complemented
in €(8) and that ¢ is isomorphic to ¢.

The case where S is dispersed and F =1,, 1<p < oo will be ap-
proached differently. Whereas previously we proved thab K (B, I') was
a proper subspace of B(H, F) in order to apply the Corollary to Theorem 6,
we now use an argument similar to the proof of the Littlewood-Pitt
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theorem [6] which asserts (as a special case) that every bounded operator
from ¢y to I, (1< p < oc) is compact in order to prove that K (H, F)
= B(F, F) for the appropriate spaces K and F. Our result states that
for the case of a compact dispersed space §, every bounded operator
from CO(8) into I, is compact. Throughout the remainder of this section
we assume 1 < p < oco.

Let T: O(8)—1, be a bounded operator. Then there are measures
Hyy Pay oevy Uiy -.. O0 8 s0 that:

() = ([ fas, [ oy - [ S, ...} <l

for every fe((8). If § is digpersed, every measure on § is atomiec. Thus,
throughout this section, we will study operators 7': C'(8) - 1,, where
8 is compact Hausdorff and where the measures p,, iy, ..., g, ... are
atomic. Leb s, 8,,...,8;,... be the points in § which have non-zero
mass for some u; and write u; = Zj,’cﬁé(s,-) for appropriate scalars oy

(6(s;) denotes unit point mass at s;. Then it follows that
ffd,ui = Zcﬁf(s,-) for each ¢ and for every feC(S).
7

Set A, = {(a;, @y, ... ) & = f(s;) for all j and for some feC(S)}.

Then, A, is a linear space of sequences on which we define the norm,
I, by setting f(ay, ay ..., 6y, .. )| =sup {la,]: § =1,2,..}. It is easy
to check that 1, is a Banach space under this norm. Hereafter an element
(@y; @5y ..., 45, ...) of 2, is denoted by a.

Leawa 9. Let T: C(8) =1, be a bounded operator as above. Then there
exist bounded operators P: (8) — A, and M,: As~>1, so that ||T|| = || M,
and so that the following diagram commautes: |

2 Oy e

N Z
57 Me

Proof. The mapping P is defined by P(f) = f(81), f(83)
and M, is defined as the map from A, into lp. satisf(yin]g, "

_ '
M (o) = (Z 015 Zczjaj, cey Z Cyj ...)elm
7 7 j

for each aed,. It is easy to check that T — M.oP
= M, that [|P|| = 1 and
that 7] = |32,]. e
We will show that M, is necessarily a compact operator. But since
the me’shoq of proof has other applications (see Theorem 12) than the

s F(8)y -
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special case in question, we formulate our approach abstractly in making
the following definition.

DrrFINITION. Let A be a Banach space of sequences. We say 1 has
the finite monotonicity property (f.m.p.) if:

1. For each coordinate ¢ there is an ael, a = (@), Gyy ...y @y ...)
with a; 0. .

2. Whenever oel, o = (@, Gyy ooy py...) DA 9 = (65 -eey Cyy «on
ws G ...) is & sequence for which ¢ =0 for j >N, then there is a se-
quence f = (b, by, ..., by, ...)eA satisfying b; = a;¢; for j =1,2,..., N
and JBll < flefl sup {lgy}: § = 1,2, ...}

3. Whenever « = (ay, Gy, ..., 8, ...) i a sequence which defines
a continmous linear functional on i by the equation a'(a) = 12' u} a;, then
lj:nua’—a;\l =0, where aj = (4, vy @y 0y .ne;y 0y .00).

Note that 2 need not contain all finite sequences but rather, we require
that A has a “norm preserving extension” of any finite sequence.

LevwmA 10. A, has the finite monotonicity property.

Proof. 1 is obvious, 2 follows from the Tietze extension theorem,
and 3 follows from the Riesz Representation Theorem.

Hereafter we only consider sequence spaces with f.om.p.

DerINITION. Let 4 be a Banach space of sequences. Let M = (c;)
be a matrix. We say that M is a matriz map if the equation

M(a) = (Zcu-aj,Z‘czja,-, ceey Zoﬁaj, )
i 7 3

defines a bounded linear operator from 1 into I,.

LevwMA 11. Let M = (¢y): A—1, be a matriz map. Then

1.y = (i, oy +ovy Cigy --.) defimes, for each 4, a continuous linear
functional on A, where y11(a) = iz,’cﬁ a;.

2. D legl? < oo for each j.

3. Let J be a finite set of indices. Let M II; denote the matriz consisting
of ¢ if jed and of zeros if j¢J. Let M (1—1II;) denote the matriz consisting
of zeros if jeJ and of ¢y if j¢J. Then MII; and M(1—II;) are mairis
maps satisfying

1M < 1M, 1M A=< (1))

4. If B, is the matriz consisting of c; when 4, j = n and of zeros otherwise,
then R, is a matriz map from L to 2, satisfying |RB,| < [ M. (We call R,
the n-th remainder matriz of M.)

5. M is a compact matriz map if and only if Lm|R,| = 0.

n
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Prootf. 1. Clearly ! is the linear functional given by e;oM, where

e, I, R is the continuous linear functional given by evaluation:
(w) =, for all @ = (@, %y, -.., &, --.) in I,. This proves 1.

2. The proof consists in a tedious but dileet verification using part
(2) in the definition of f.m.p.

3. For any a = (ty, @y, ... &j,...)cA and any >0 we will show
that there exists a <A with [|8]| < [lo| and satistying | M (B)ll, = | M1, (a)|,-
Indeed, B will be chosen so that []M(ﬂ)]]p = |l My (a)ll,—e/2, for all N;
we deduce from this that Ms;(a)el,. Let 5, = max{j: jeJ}. For each N,
let n be sufficiently large so that » >j0 and Hy[’]——ym[\ < &[4 (N —1)|lal],

i=1,2,..., N—1. Here, ¥ denotes (¢y,..-y 0, ?,0,...). Choose
B = bl,bg, oy by )ed so that B < lally by = a if jeJ mnd b =0
if j ¢J but j < n. Then, using an argument similar to that needed in the

proof of 2 above,

1LY = | (1 B) -y (BYs o V0 (B), (B), -
= WBB), oy VB, 0,0, . )p— /2

” (2011“:" s D Cy18, 0,0, ) ‘117—5/2
= jeJ

z || M, (a)ll),— s

||p—a/2

Y

Thus [ M| > | MIL|.
Similarly, suppose ae? is a unit vector so that || M (L—I11;)(a)l, > M|,
where the left-hand side is possibly infinite. Then there is a sufficiently

large n so that
D) 3;,0,0,...)
itJ

” (Zcxia’i) ceey
a7

‘We can choose a finite subset J; of indices disjoint from J so that

(S 3
jeJy jeJy

Repeating the argument above we can find fek, [|B]| < |jaf| =1 with
LB > (X ey oo Y 61, 0,0, ..
Jedy jeay

for sufficiently small e. This, of course, is impossible.

4. Observe that R, = (1—1I1;)(M (L—II,)), where J = {1,2,...,n}
and (1—1II;) on the left is the projection of 7, which maps e; into 0 if
1 <i<n and maps ¢ to ¢; if ¢ > n. Thus

|, > ay.

Onity5 0,0, ... Hp > |M].

Yo == 11

IBall < QA — I 1M (L—IT5))| < | M.
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5. If M is compact, then Proposition 1 proves: im|[M — IT, M| = 0.
n

Since R, = (M — I, M)(1—11;y,), where J(n) = {1,2, ..., n}, this
together with part (3) above shows: Im|R,[| = 0. Conversely, assume

e>0 is given. Since R, = M—MII,—I,M(1—IL), by setting
F =y ML+, M(1—1II,) we can verify that (M —F|< |MIIT,—
— Iy MIL |+ ||IB,)| < ¢, for a suitable choice of n» and N,. )

For notational convenience in the subsequent proofs, we introduce
the following terminology: Let D = (dy) and M = (¢y;) be matrices.
We say that D is a submatriz of M if and only if d;; # 0 implies d;; = ¢y
For a given sequence of pairs of integers L < m(1) <n(l) < ... <m(k)
<n(k) <..., by the (m(k), n(k)) diagonal block, denoted By, of M we
mean the submatrix whose entries are ¢; if m(%) <4,j <n(%) and are -
0 otherwise. By the k-th truncated diagonal block, denoted Dy, of a matrix
M we mean the submatrix of 3 consisting of By, ..., B, and of zeros
elsewhere.

- THEOREM 12. Let M = (¢y): A—1, be a non-compact matric map.
Then there exist indices 1 = m(1) < n(l) <...<m(k) < n(k) < ... so that
for some ¢ >0, |Byll>¢ and |Dy| < 2| M| for all 5 =1,2,...

;Proof. By Part 5 of Lemma 11 there is an £>>0 so that B >«
for all eI, where I is a subsequence of the positive integers. We may
also assume ||M]| > s. We choose the sequence of pairs of integers m (%),
n(k) inductively as follows. Choose m (1) = 1. It is not difficult to show,
using Parts 2 and 3 of Lemma 11, that if n(1) is sufficiently large, then
e < || Iy MIL,y | < | M)l Set By, =D, = Il,y MII,,. . Choose m(2)
>n(l) so that

(8) WLyqMIIghi < 311,

(b) Wy Myl < 3131,

(@) Bl > e
where J(1) = {i: m(1) <{<n(l)} and I(1) = {i: ¢>m(2)}. This is
possible by part 2 of Lemma 11. Assume now that for I =1,2,...,k—1
we have chosen m(1l)< n(l)<...<m(k—-1)<< nk—1) < m(k) so that

(@) Mgyl < LA /2,

(i) ”HI(I)M—UJ(I)H = HM”/Q’IH:

(it)) [Rngenll > o,
where J(I) ={i:m()<i<a@)} and I{) = {i:iz=m(l+1)}. Since
IRzl > & and since 1, ha% a Schauder basis, we can find a sufficiently
large N so that if Jy = {1,2,..., ¥}, then [[I1; R, > & for any J with
Jy = J. Repeating an argument similar to that used in the proof of
Part 3 of Lemma 11 we can find a sufficiently large # so that if J,
{1,2,...,n}, then II;R,;[I;||>e¢ for any J,J’ Wrbh IJyed, J, <:J’

Studia Mathematica XXXVIL3 3
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Choose n(k) satisfying m (k) < n(k) and so that In < Jugys In © Iy
Then if By = HJWC)RM(R)IIJW), we have . || Byl > e. '.IJo see that
D]l < 21MY| apply (1) and (i) of the induction hypothesis above.

TEroreEM 13. Let M = (cy): As—1, be a matriz map. Then M is
compact. N

Proof. If M is not compact, then by Proposition 12 there is an
s>0 and indices 1 =m(l)<n(l)<...< m (k) < n(k) < so that
Bl > & and | Dyl < 2| for all k. Let o, o ..., a® be unit vectors
in A satistying ||By(d™)|, = IB,]. This choice is possible beecause each
B, is a finite matrix. Tet & = (1,1,...,1,...). Clearly & is a unit vector
of 7. By fm.p. we may choose fMlc2, where BY = (M, .., B, L)
satisfies: ‘
ad i m(k) < i< k), where & =1,2,...,1,
0 if n(k)<i<m(k+1), where k =1,2,...,1—1,
and |89 < |I£] = 1. .

Thus, (D6l = ( X IBall]"” = ¢ e.

=1

A contradiction now results because 2 ||M| = | D] = |D, (8™}, =t"7e,
where t is arbitrary. .

Remark. It is not hard to check that the I, spaces satisfy fm.p. if
1< g< oo and that ¢, also satisfies £am.p. Arguing as in Theorem 13
we may apply Theorem 12 to show that there are no non-compact opera-
tors Tt I~ 1, or T: 6y 1, if 1'< p < ¢ < oo, This is the Littlewood-Pitt
Theorem [6]. :

W =
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Factorable and strictly singular operators, I
by

HORACIO PORTA (Urbana)

Let X and ¥ be Banach spaees; a linear bounded operator T: X — ¥
is strictly singular [5] if the subspaces Z < X for which the restriction
Tiz: Z - T(Z) has a bounded inverse T(Z) -»Z are necessarily finite
dimensional. Assume X is the cartesian product X — E,x E, of the
Banach spaces ¥, and E,. An operator T: X — X is factorable through
E; (for ¢ = 1,2) if it is of the form T = SQ for suitable Q: X — E; and
8: E; - X. Denote by a; the (uniform) closure of the set of operators
factorable through F;. We prove below that under special conditions,
an operator T is strictly singular it and only if Tea, N a,. This is applied
notably to the case E, = ¢” and E, = (% for p # ¢ (and more parti-
cularly, when p >¢ = 2) to obtain various relations between these types
of operators. As a consequence, it can be seen ((3.1. e) below) that in this
case, it T, and T, are strictly singular, then 7,7, is compact.-

Finally, the lattice of all closed two-sided ideals of the algebra of
all bounded linear operators on X = ¢(Px (2, for p > 2, is studied in
(3-4): it consists of six elements 0, G, %, 0y, @y, B ordered as follows:-

where solid lines mean that there are no ideals strictly between the ideals
joined by them. :
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