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On permanently singular elements in commutative
m-convex locally convex algebras

by
W. ZELAZEKO (Warszawa)*

1. Introduction. All algebras in this paper are assumed to be com-
mutative. By a superalgebra of a topological algebra 4 we mean any
topological algebra having a subalgebra topologically isomorphic to A
and having the same unit element provided A possessed one. If k is a class
of topological algebras, then an element wed ek is said to be permanently
singular in the class & (or shortly, k-singular) if for any superalgebra Ay
of A, belonging to the class %, @ is singular in A,. In this paper we deal
with the clagses of topological algebras, locally comvex algebras and .
multiplicatively convex algebras denoted respectively by 7, £%, 4.

In paper [1] Arens give a characterization of permanently singular
elements in the class of Banach algebras. He proved that an element
zed B (B-class of Banach algebras) is #-singular if and only if it is
a topological divisor of zero (and, consequently, if and only if it is -
-singular). In this paper we:study a concept of A -singularity and we
show that none of these statements is true for multiplicatively convex
locally convex algebras (shortly m-convex algebras). In section. 3, we
give a characterization of .#-singularity and. show by an example that
there are .¢-singular elements, which are even J-singular but are not
topological divisors of zero. In section 4 we give our main result stating
that there are /-singular elements which are non-#%-singular. This
example shows also thab all non-zero elements of the radical of a certain
m-convex algebra can be invertible in some its locally convex extension.
Moreover, both algebras are Bg-algebras (= complete metric' LE-al-
gebras).

We cannot give characterization of F%-singularity but we pose
a conjecture about it (cf. Problem 1).

2. Prerequisites. By a fopological algebra we mean 2 topological
linear space over complex or real sealars in which. is defined a jointly

* This work was done during the author’s stay in Aarhus.
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continuous multiplication which is compatible with scalar multiplica-
tion. So if A is a topological algebra, then for every neighbourhood ¥
.of the origin there is a neighbourhood U>0 such thab

(21) e V.

An element zeA is said to be a topological divisor of zero, if there
is such a neighbourhood U of zero in A that

0cw(4ANT)
(where ANU is the eorhplement of U in A and bar denotes the closure
in A).
A topological algebra A4 is called a locally convez: algebra if it is locally
convex topological linear space. Thus, by relation (2.1), for any conti-

nuous pseudonorm ||, in 4, there exists a continuous pseudonorm |z,
such that

(2.2) leyle < lolplyls
for all 4, yeA. It can be assumed also that

[#le < l2l,
for each zed

A locally convex algebra is said to be m-conves if its topology can
be given by means of a family of submultiplicative psendonorms [jz|,, i e.

(2.3) leylla < llowlla 19lla s
it can be assumed also

(2.4) llefle =1

in the case where the algebra in question possesses the unit e. The set.

of all continuous submultiplicative pseudonorms of an m-convex algebra
4, which satisfy (2.4) if A possesses a unit ¢, will be denoted by m(4).
B1.1t we shall write rather ||-||,, aem(4), instead of |-|lem(4) and we
will treat m(4) as set of indexes. For a, fem(4) we write o > f i

llwlls < lioll,

for every @ed. Thus m(A) is a partially ordered set and for all a, fem(4),
thlere Is a yem(4) such that y > « and y > . Any subset m’(4) < m(4)
will hg called fundamental if it ig cofinal with m(4), i. e. for a,hy aem(.A)
there is @ fem’(4) such that g a. If m'(4) is a fundamental system,
then the set (|loll,), cem’(4), gives on A its topology.

icm°
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For any aem(A) the set
N, ={ed: o], = 0}

is a closed ideal in A. We denote by A, 2 Banach algebra, which is ob-

tained by completion of 4/N, in the norm [|-|,. Any m-convex algebra

is a subalgebra of the cartesian product [] 4,, where m'(4) is a fun-
aem’(4

damental family for A. The embedding is( )given by & > (%a(®))acmiay

where =, (z) denotes the natural projection of A4 into A4,. It is also |z,

= |7 (®)](a), Where |||l is the Banach algebra norm in A,.

Let. A be a complete m-convex algebra.

An element xecA is invertible in A if and only if z,(«) is invertible
in A4, for every aem(4) ( = if and only if =,(x) is invertible in A4, for
every aem’(A), where m’(4) is a fundamental system for A).

An element zede.# (A-complete) is in the radical rad A4 of 4 if
and only if s, (@) is in the radical rad 4, for every aem(A4). Here, as before,
we can take instead of m(4) any fundamental system m'(4).

For the details on m-convex and locally convex algebras the reader
is referred to [3] and [5]. ’

We assume in the sequel all algebras to be complete. We can do
it without loss of generality since completion of a topological algebra
is its superalgebra and a k-singular element in A is k-singular in any
%-superalgebra of A (and we are considering classes of algebras which are
closed under taking the completion).

3. A characterization of .#-singularity.

TerOREM 1. Let A be a commulative m-convex algebra and let sed..
Then x is M -singular if and only if there exists an azem(4) such that m, ()
is @ permanently singular element (= is topological divisor of zero) of 4,
for each o> a, aem(Ad).

Proof. Suppose that all z,(z) are permanently singular for a> o,

. a, agem(A). If  is non-.#-singular then there exists an m-convex super-

algebra A of A in which # is an invertible element. Since pseudonorms
in m(A) restricted to A form a fundamental system for A there is p em(A4)
such that |4 > . The element mz(x) is invertible in A4, on the other
hand ms(z)edpq = Zfﬂ and it is assumed to be permanently singular.
The contradiction proves that & is an .#-singular element.

On the other hand, suppose that for every aem(A) there isa f=a
such that m4(#) is not permanently singular. Thus the system

m'(A) = {aem(A): m,(s) is non F-singular in 4.}

Studia Mathematica XXXVII, z. 2
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is a fundamental system for 4. For every aem’(4) there is a superalgebra
A, of A, in which =,(z) is an invertible element. We have now

A c 4, = A, =4

ae‘!’;li) Délb—'(]A)
and the natural imbeddings are homeomorphic isomorphisms. Moreovei‘,
# is an invertible element in A and so it is not .#-singular.

Remark 1. An element zede.# is -singular if and only if it
is a topological divisor of zero in sense of Michael (cf. [3]).

‘The topological divisors of zero in sense of this paper are called in
[3] strong topological divisors of zero.

In order to show that .#-singular elements need not be topological
divisors of zero we recall an example given by Kuczma in [2]. Let &
denote the linear space of all complex sequences @ = (#;);” provided
with the pseudonorms

(3.1) ol = lod 4+ oot o, B =0,1,...

A is an m-convex algebra with convolution multiplication and
with pseudonorms’ (3.1) which form a fundamental system in m(x).

An element ze# can be regarded as formal power series # = Y .

0
In [2] there is shown that in 2 there are no topological divisors
of zero. On the other hand, it is an algebra with one maximal ideal

M = {zeA: x, =0}

which is its radical (any element e o with 2, % 0 is there invertible).
So for every ze M, n,(x) belongs to the radical of 2, and, consequently,
is permanently singular. By Theorem 1 all elements in M are ./-singular.
‘We have even a stronger result:

PROPOSITION 1. All elements in M are T -singular.

Proof. Put ¢ = (4;,);°, where 6; =1 for ¢ =3 and 0 otherwise.

We have M = iX and so it is sufficient to show that ¢ iy a I -gingular

element in . If nol, then there is a topological algebra 4, which is
 superalgebra for & in which ¢ has the inverse +~. Since topology of A
restricted to £ gives its topology, there is in A a meighbourhood V of
the origin such that

(3.2) Ve = {we ot oy < 1}

On_ the other hand, there is in 4 a neighbourhood of zero U such
that U? = V. We can find an ¢ > 0 and an integer m in such a way that

(3.3) e |, < &} = U.
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Thus for any scalar A we have 2"*'eU, since |||, = 0. Since U
is a neighbourhood of zero in 4, there is a scalar x> 0 such that
utmte U,

‘We have then :
‘ e = ‘ut‘m‘ —ltmTIEUZ [} V

But it is in contradiction with (3.2), since flel, =1, so t is 2 Z-sin”
gular element in .

4. Another example. We shall construct now an m-convex algebra 4,
and an element zed, such that 2 is .#Z-singular but not #%-singular.
It would be algebra of sequences defined by means of certain matrices
vnd we start with the construction of these matrices.

LeMMA 1. There exists a non-decreasing sequence (¢,)7 of non-negative
integers, g, = 0, such that

(4.1) ¢p+¢q < Ppag fOT 2,42 0;
. Wp )

4.2 Iim—- = oo

(£.2) " H

(4.3) ' sup(agyy;—@;) = M < oo

for 0<a<l and k =0,1,...; )

(4.4) MO > J‘ﬂ) for a>=B;

(4.3) MY + MP > M,

Proof. We shall find ¢, in the form ¢, = n-s,, where s, is a non-
deereasing sequence of non-negative integers, which tends to an infinity.
‘We have then ¢, =0 and

Fpt@q = DSy 8, < DSpigtESpra = Porao

which proves (4.1). We have also (4.2) since lim s, = oo.
We choose now s, to be constant on “blocks” of increasing length
and we pub
s, =n for 2L k< 2™

so that for i > k it is
(4.6) Spyi K &+ 1L N

Let 0 < a< 1, and let & be a fixed integer. For sufficiently large
i, so that ¢ >k, and >k, where (14-¢)a <1 we have in view of (1.6)

(4.7) aPpri— @5 = (4 1)8pp;— 18 < a(b+8)(8;+1)— s
< ak+ifats;(a(l+e)—1)]
and the right-hand side of (4.7 ) tends to —oo if ¢ —oo which proves (4.3).
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Inequality (4.4) is an immediate consequence of formula (4.3) since g,

is a non-decreasing sequence.
Tn order to have (4.5) we write for 0 < a<<1

M > aMP > a’p g0~ Wpois

M,(,a) Z aPpi—Ps
and so
M(u) 4+ M(a)
Taking the supremum with respect to ¢ we obtain (4.5), q.e.d.
Leb pyy 0< ¥y < yne1 <1, be a sequence tending to 1. We define

2 0®Pppqri— Pie

(4.8) aft? = {g‘i 7/71)% ut i?;_ 77662(())’
forn=1,2,..., 0<a<1, and k¥ =0, £1, £2, ...

LEMMA 2. For any (m, ), there is (n, ), n = m, f = a, such that
(4.9) ag&;) < a]()m/i) . a(qn,ﬂ)

for all p,q =0, £1, £+2,...
Moreover, for all p, gz 0 it is
(4_10) 005,7? ) < Cb(m a), a(m u)

Proof. We shall consider four cases with respect to signs of p,q
and p-+g¢.

First we establish (4.10), which is a special case of (4.9) for p, q> 0.
It is an immediate consequence of (4.1) since

(m,a) _ o, PptPy — m,
Gy ymﬂi‘agymp 7 = a'(pm:u)a‘fl )},

Suppose now that P, <0 and fix (m, o).
We can rewrite formula (4.5) as

1 1 1 1

2 oarel?y (el

aM"(" -+ aM_a'l ,>/—(;M(_‘_‘;,,q,
and so

praGay 1l ()
T L) T 5 (1) TR

(m,a)

(411) (1—y,) ol

We can find now an #’ > m in such a way that
(4.19) (7)™ > (A=)

Setting f =f' = o' and » = »', we obtain (4.9) from (4.11)
and (4.12).

Suppose now that p-+¢ < 0 and ¢ <0 while p > 0 and fix an (m, o

icm
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First we prove

1 ' 1
{4.13) _Mgca)—(ps = _Ml(clﬂs
a a
for k= s (= 0). By (4.1) we can write @y, ;— @5 > Pp_spi; a0d 8O
1 1
Py P s Z Qpspi PaZE

Taking supremum with respect to ¢ first on the left-hand side and
then on the right-hand side we obtain (4.13). Setting s =9, b = —¢,
we have k—s = —p—gq and so, by (4.13),

1 a 1 a
Thus

1 1('1)

(414) () ® UL )™ > (1= )

We find now =’
Vot = (1_—')’7)1,) and (1_7"71”)

T,

in such a way that y,, > max[(1—yu), Yul SO
< (L—1y,,) so that

(a) 1. (a)

_%ﬂ["q Py T —a ?,
(1_'7/':7.”) Vet = (1"'Vm) (1'__7}'111) ?

which together with (4.14) gives (4.9) with g =p" =a and n =n'"".
We have to consider the remaining case when p+¢=>0,p>0,
¢< 0. From (4.3) we have ap,— M) < ¢,,,, Which implies
(ﬂ)
Viteym 4 > vipte = afiy).
We find now an integer 2"’ > » in such a way that y,.. =
11—y < yo,, Which implies

(4.15)

v, and

" -M (“)
7)11.?” = 7/;;”27 (l—yn"’) Z Ym

and together with (4.15) gives (4.9) with § = """ = « and n = n""
Let us remark now that, by (4.3), we have

1
a

1w (“)q
and

1
@ >_ yPH  for a>f

B
and 5o, since also y, is increasing with respect to n we see that
a™?) > ol

r/r)

a. This follows that if we set n = max(m, 2, ",
we have obtained (4.9) in general, g¢.e. d.

for n=m and f >
and g = max(a, f, B 16")
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We define now a locally convex algebra A. It consists of all com-
plex sequences # = (#;)5_o such thab

oo
el = D, o™

P=~—00
The multiplication in A is defined as convolution, or interpreting «
as a formal Laurent series,
z = Z @yt

the product @y is the Caumchy product of two power series. It follows
from (4.9) that the multiplication is well defined in .4, and 4 iy an #%-
-algebra. We have namely

1ol = D, 6™ X lmy, <) D) alPlay| afPly,|

i pta=1i 4 Pprg=t

= D aPlwy] 3 Oyl = 1ol plln, s -
o q

T4y ={mwed: o, = 0 for i< 0}, then it is a subalgebra of 4, which,
by (4.10), is a multiplicatively convex algebra (pseudonorms @I, oy
are submultiplieative and do not depend upon a).

Leywa 3. Let 2 = (0,000 Where 06y =1 for i =34
otherwise. Then z is an M-singular element of A,.

Proof. Put |lal, = ol for xcd,. For a fixed » we have

" = (afm)E =yt — 0

v

@, < co.

(4.16)

and O

by formula (4.2). Thus if |-}, is an arbitrary continuous submultiplica-
tive pseudonorm on 4,, then for some » and ¢ > 0 we have |z|, < O,
for all zed,. This follows

(4.17)

k
S T

and =, (2) is in radical of 4, so it is permanently singular in 4,. By The-
orem 1 the element 2 is .#-singular.

Since z is clearly invertible in A we have our main result. ‘

THEOREM 2. There exists an m-conver algebra. A, and an element
zedy which is M-singular, but not LE-singular.

Remark 2. The algebra A of theorem 2 ig a Bg-algebra, i. e. it is
a eompletf‘, metric £%-algebra. It follows from the fact that its topology
can be given by means of a denumerable sequence of pgeodonorms

) H'll(n,l_un): n = 1L,2..

By relation (4.17) the element # is in the radical rad 4, of the algebra

A4,. So it we put M = 24, we have M — rad 4,. On the other hand,

icm
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Hael,» 50, then » = 2*(Ae+2u), where 1 =0, ued,, and % is a na-
tural number. But 2z is invertible in 4 and 2e-+zu is invertible in A4,.
Consequently, every non-zero element of M is invertible in A. So we
have

COROLLARY 1. There emists an m-conves By-algebra M which is a ra-
‘dical algebra and which possesses a By-extension A such that every non-zero
element in M s invertible in A.

From corollary 1 it follows immediately.

COROLLARY 2. The algebra A contains the field of rational functions
(which is the field of all rational expressions of the element 2). ‘

Remark 3. Williamson constructed in [4] an example of B-algebra
which contains the field of rational functions. Similarly as our algebra 4,
it comsists of Laurent series with coefficients summable with weights
defined by a matrix. In the Williamson’s example the subalgebra con-
sisting of series with vanishing non-positively indexed coefficients is
also a radical algebra. It turns out, however, that this subalgebra is not
an m-convex algebra. Also the subalgebra consisting of series with vanis-
hing positively indexed coefficients is not an m-convex algebra. So this
example cannot serve for our purposes.

We cannob give a characterization of #%-singularity, we have only
a sufficient condition which can be formulated as follows:

ProPosITION 2. Let 2cd e £F. If 2 is mot Z%-singular, then for every
continuous pseudonorm |-|, on A there is a continuous pseudonorm I1s
such that

(4.18) inf |2"2]; >0
felg>1
forn =1,2,... :

Proof. Let 4 designate a locally convex extension of 4, in which #
is an invertible element, and denote its inverse by #. Let |z|, be a con-
tinuous pseudonorm on A and let |jz]l, denote a continuous psendonorm
in 4 such that for every xed it is jz||, > |#|,. Since 4 is locally convex
there is another continuous pseudonorm llzll; sueh that Juvll, < fullslvlls-
Setting v = 2"z, % = 1" we have

lelle = luolle < llullg [olls = lleellg lle™ 21l
It follows that if [ja|l, > 1, then |jull; > 0 and ||z"z(j; > 0 and
le" s = lullz* > 0.

But |z|, > 1 implies |lll, > 1 and so (4.18) holds if |-], denotes res-
triction of |-||; to the algebra 4.
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ProprEM 1. Is the negation of the condition given by (4.18) also
a necessary condition for # being an F%-singular element ?
‘We conjecture that the answer is in positive.
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Semi-continuous Linear lattices

by
BERNARD C. ANDERSON and HIDEGORO NAKANO (Wayne)

In[1] an element x of a linear lattice T is called normalable it T
= {z}* ®{w}. It can be shown (see” [1], Theorem 6.14, p. 28) that if
@ linear lattice I is sequentially continuous, then every element of I is
normalable. In this paper a linear lattice T is said to be semi-continuous
if each element of L is normalable.

If every uniform Cauchy sequence in a linear lattice I i3 order con-
vergent in I, then L is said to be complete for umiform convergence.
A sequence ,eL(v =1,2,3,...) is called a wuniform Cauchy sequence
it there is 0 < keI such that, for each s > 0, there exists »(s) for which
Hy v 2 v(e) implies |z, — 1, < ck. Aceording to Theorems 6.14, 3.3 of [1], .
every sequentially continuous linear Iattice is semi-continuous and com-
plete for uniform convergence. The converse of this statement is the main.
result (Theorem 4) of this paper. It is also shown that every Banach
lattice is complete for uniform convergence. One can then apply these
results to show that a Banach lattice ig sequentially continuous iff it
is semi-continuous.

Much of this paper makes use of spectral theory for linear lattices
a8 developed in [1], §§ 4-12. Therefore we use the terminology and theorems
of [1].

First we prove some theorems concerning projection operators on
semi-continuous linear lattices. It is well known ([1], Theorem 5.28,
P- 23) that if L is any linear lattice and P, P,(1ed) are projection operators,
then Pz = A P,z for all 2> 0 implies P — A P;; and Pz =1\/ P,z

Aed 2ed eA
for all 2> 0 implies P = \/ P,. By assuming semi—continuity of L we
Aed

can also obtain the converse implications.

TeworeM 1. If L is a semi-continuous linear lattice and P, P, (Aed)
are projection operators on L, then

(i) P = A P; implies Pz = A P,z for all 2> 0,
Aed Aed

(i) P =V P; implies Pz = \/ P,z for all 2> 0.
Aed Aed
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