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On locally uniformly convex and differentiable norms
in certain non-separable Banach spaces

by
S. L. TROYANSKI (Sofia)

In the present paper we prove that a Banach space which has a weakly
compact fundamental set (in particular, every reflexive Banach space)
admits an equivalent locally uniformly convex norm.

" We begin with some notation and definitions.

m(A) will denote the space of all bounded real-valued functions

defined on A with the nmorm

lefl = sup |a(a)}.
aed

0o(A4) will denote the linear closed subspace of m(A4) eonsisting of
all @ in m(4) such that for every e> 0 the set {a: |¢(a)| > ¢} is finite.
An equivalent norm in ¢,(4) is defined by the formula (Day [9])

k 1/2-
@) J(@) =sup| 327 ()]

. i=1
where the supremum is taken over all finite subsets {¢}s = 4.

In the sequel we shall assume that the set 4 is well-ordered by the
relation < ; the smallest element of the set {f: fed,a<<f} Wil be
denoted by a-+1.

O(K) will denote the space of all real-valued continuous functions
defined on a compact space K with the norm

ol = max [&(z)].
K

Let & be a o-algebra of subsets of a set § and let x be a measure
defined on &. The symbol L, (8, &, u) will denote the space of equiva-
lence classes of p-measurable p-summable functions defined on § with
the norm

Il =[ f Im(t)lpdﬂ]lm -
S

A Ba,ﬁach lattice is called an AL-space if Ay = 0 implies [z+ yl|
= |e—yll, and @, y > 0 implies [lw+yl = [zl ]
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Tf 7Z is a subset of a Banach space X, then sp Z will denote the closed
linear span of Z. . .

The weight of X, i. e. the smallest’ cardinal number of a dense subset
of X, will be denoted by dens X.

If ||| is the norm in X, then [|-||* will denote the norm in the conju-
gate space X*. i

By the gradient of the norm we mean the operator which assigns
to an element zeX with |f =1 a functional #*eX* such that a*(z)
= fl&*f* = 1.

' AﬁBana;ch space is called strictly convex if the conditions |jo|| = |ly|| = 1

and fo+yl =2 imply o =y. ‘

A Banach space is called locally. uniformly comves if the conditions
lwell = llf] =1 and }cli?o oyt 2l =2 imply Ei lloo— || = 0.

A Banach space is called weakly 2-rotund if for each sequence (z,)

with |z, =1 (n =1, 2,...) the condition im |jn,+®,| = 2 implies
7, M—>00

that (z,) is & weak Cauchy sequence.
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The norm of a Banach space X is called. differentiable in the sense .

of Fréchet if for each zeX with [z]| = 1 we have
' .1
i = (Jo+- 1y]|+ la—ey—2) = 0,

and the convergence is uniform with respect to yeX, |ly| < 1.

Clarkson [5] has shown that every separable Banach space is iso-
morphic to a strictly convex Banach space. Kadec [11] and [12] genera-
lized the result of Clarkson and proved that every separable Banach
space is isomorphic to a loecally uniformly convex Banach space. Day [9]
has shown that these results cannot be extended to the mon-separable
case: if A is uncountable, then m(A) is not isomorphic to any strictly
convex Banach space. However, Day [9] has proved that if a Banach
space X satisfies the condition
(*)  there exists a one-to-one bounded linear operator T transforming

X into ¢y(I') for some T
then X' is isomorphic to a strictly convex Banach space; he used the
norm (1). Day [10] has shown that every AL-space X satisfies (*). Amir
and Lindenstrauss [1] have proved that every Banach space X containing
a weakly compact fundamental subset satisfies (*). It has been proved
in [17] that if X has an unconditional basis (uncountable, in general),
then X is isomorphic to a locally uniformly convex Banach space (for
the definitions of bases and unconditional bases in non-separable

Banach spaces, see, e. g., [4] and [17 ], respectively). In the present note
the result of [17] is generalized.
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The following lemma will be needed in the sequel; the proof of it
is a simple modification of some argument given in [17].

LevwA. Suppose that all terms of the sequence (transfinite, in general)
{Dataca are either positive-homogeneous sublinear functionals or linear fun-
ctionals defined on a linear space X. Let the operator Q, defined by Qw
= {P,(®)}oea, tramsforms X imto the space c,(A). Then J(Qx) is a positive-
homogeneous sublinear functional. ILf . )

J(Qu) = J (@) = I]im 1J[Q (@ + )],

then
]]cim 1@, — Qlleyea) = 0.

ProPOSITION 1. Suppose that a Banach space X satisfies (*) and that
there ewists a sequence (tramsfinite, in general) of bounded linear operators
T, X — X (aed) satisfying the following conditions: ’

(i) for each weX and ¢ > 0 the set

A@, &) = {ar |Toay10— Toll> e (1Torall 4 ITal}
is finite;

(i) for each zeX

ze¥, = sp[(|Tyal|T, X) v %)(TQH——TQ)X],

where A(x) = U A(z, &);
>0

(iil) dens sp[(Toy—To) X] < dens T, X = K-

Then X is isomorphic to a locally uniformly convex Banach space.

Proof. Suppose that {¢,}¥ and {67}, are dense in T, X and (Tpp;—To) X,
respectively. Let [, denotes the family of all subsets of A econtaining at
most n elements. We define the functionals:

n n-
a— 3 Y dPd— X ae
i=1

aed i=1

B (2) = inf
az,al®

(Ae U Uy,; @, are real numbers),
n=1

ta(®) = (ITaprll+ 1Ta) T 1T o 2— Tattls

Fu(@) =) tu(®)

aed

G, (@) = Sup LB (@)+nF 4 (@], Gol@) = llol.

(de() 2X,),

Let A={0,—1,—2,...}udvuv f, where I'is the set appearing in (*)
(we assume that the sets {0, —1, —2,...}, 4, and I' are disjoint). Let Q
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be the operator which assigns to each element weX an element Qu eco(4)
defined in the following way:

2%G_,(x) for 6 =0, —1, —2,...,
Qu(8) =1 1(@) for Sed,
Tx(8) for 8el.
We introduce an equivalent norm by the formula
2) [le]l| = J(Qa).
IE |llwelll = llllll = 17,1im ||z +2li| =2, then, by Lemma,
{3) :im Gz =G, (@) (»=0,1,2,..)
) - I}lm (@) =.(2) (aed),
{5) Hm ([Tw,— Te|leyry= 0.
ko0

It follows from (5) that in order to prove Proposition 1 it is enough
to show that {2}y is compact. Given ¢ >0, we find

BelJ ¥, BcA@®),
n=1
and an m such that BV (z) < ¢/3. Let Ag(x) denotes the set {a: t,()
< nﬁn‘i;ltﬁ(m)}. Let § be the number of the elements of the set A(z)\Az(x),
and let
b= min
aed p(x),f<B

[t (@) — 1. (2)].
Let

n>max{m,jfi3—”ﬂ}.

3b
We find A<, such that

(6) G, (2)— B (@) + 0P 4 (1)) < =

3

Observe that B < A. Indeed, otherwise we could take a seb
DN\, _, such that 1,(#).< 1 (») for all aeA\D and .feD, and hence

G, (0)— [BY (2) + nF 4 (@)] = BE (0)+ 0T p (0) — [BY (0) + F 4 ()]

> bl > <
would contradict (6). '
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It follows from (3), (4) and (6) that there exists a positive integer M
such that %> M implies BYW(x,) < &. Hence some (compact) ball in
the finite-dimensional space

sp [{m it U {e}t v (QLQJ1 {11
is an e-net for {m}r.

COROLLARY 1. Every Banach space with a basis (uncountable, in ge-
neral) is isomorphic to a locally uniformly convez Banach space.

PROPOSITION 2. Suppose that a Bamach space X contains a weakly
compact fundamental subsel. Them there exists a sequence (iransfimite, in
general) of lUnear projeciions P X X (y<2) such that [P =1,
PP, = PP, =P; for £<vy, Pwesp{Peyy lecy, The sel {y: 1Py, 2—
—P,ul > s} is finite for all @eX,e>0, densP, X = §,, densP, X
< dens X for y <1, P, X = X.

The proof of Proposition 2 is essentially that given in [1].

TEEoREM 1. If o Banach space X contains a weakly compact funda-
mental subset U (in particular, if is a reflewive space), then X is isomorphic
o @ locally uniformly convew Banach space.

Proof. It suffices to construct operators T, X — X (aed) sabis-
fying conditions (i)-(iii) of Proposition 1. We shall proceed by transfinite
induction with respect to dens X.

Tf dens X =N,, then the identity operator satisfies the desired
conditions. Tet dens X = 8 and suppose that the theorem is true for
each eardinal number less than 8. There exist projections P, (y < 4) with
the properties mentioned in Proposition 2. Obviously dens [(P,—
—P)X]< R, and (P,41—P,) U is a weakly compact subset of (P, ,—
—P,)X. By the inductive hypothesis there exists a sequence {S%}ﬁsdyof
operators mapping (P,,,—P,) X into itself and satistying the condi-
tions of Proposition 1. Let A denotes the set of all pairs (y, ), where
Bed, U {0}. Tf aed, then o' and o” will denote the first and the second
index of a, respectively. We assume that o, > a, if either o), > ay oOr
@, = of and o} > ay. We define the operators T, (ae4)in the following

way:
T, = 8%,(Pyii—Pu)+Pu (8 =0).

T4 is obvious that .dens sp[(Tep— To) X1 <R, Since Tz = 8,z
for all & in (P,,—P.)X, we have || T[> [18%,:||. The sets

{y: [IPys 2—P, ] > &},
(B: Bedy, 1(Ssa— BN (P 10— Po)l| > e(IS5ll+ 1S3}
are finite, hence, by the inequality
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— 81— B Pys — Ly
1T a0 Tl <n‘1ax{llPa,+1w——Pa,wH, USA2S = X +1a5,9 Lo 2l },
Lol + Tl 8Gr s all -+l Sarel

the set A(w, f) is also finite.

Now we shall show by induction that P,zeX, for all y. Suppose
that Pywe ¥, for all £ < y. If there is an 5 such #+1 =y, then P,z¢¥,
because P,x¢Y, and (P,—P,)xeY,. Let y have no preceding index.
Then P, . 2¢Y, for all &< y. It follows from Proposition 2 that
P,uesp{Ps,;0}ec,. Hence P oY, for all y. On the other hand, P,z = o
and, consequently, z¢¥,. This completes the proof.

CoroLLARY 2. If K is an Eberlein compact space (¢. ¢, I 48 homeomor-
phic to a weakly compact subset of o Banach space), then C(K) is isomorphic
to a locally uniformly convexr Bamach space.

Proof. Amir and Lindenstrauss [1] have shown that C(K) contains.
a weakly compact fundamental subset.

COROLLARY 3. Banach space is reflexive iff it is isomorphic to & weakly
2-rotund.

Proof. Cudia [7] has observed that in any reflexive space the local
uniform convexity implies the weak uniform convexity which itself implies
reflexivity.

COROLLARY 4. In every reflexive Banach space there ewists an equiva-
lent norm which is differentiable in the sense of Fréchet.

Proof. Lovalia [15] has shown that if X* is locally uniformly convex,
then the norm of X is differentiable in the sense of Fréchet.

COROLLARY 5. Bvery reflewive Banach space is a strong differentiobility
space (see [3] for the definition).

The proof follows from Corollary 4 and from the results of Asplund [3].

COROLLARY 6. In every reflewive Banach space X there ewists an equiva-
lent- norm ||| such that the gradient of this norm is a homeomorphism.
of {meX: |||z]|| =1} onto {a"eX*: |||o*||* =1).

Proof. Tt follows from the results of Asplund [2] and from Corollary

3 that l;herfs exists an equivalent norm |||- ||| in XX such that the spaces X
and X7, with the norms [||-[|] and |]|-]]]*, respectively, arve locally uni-
j(?o;‘m%y])convex. The gradient of the morm |||:]|| is a homeomorphism
cL. {7]).

GO].R.OLLARY 7. Bwery weakly compact conves set is the closed convew
hull of its strongly emposed points (see [14] for the definition).

The proof follows from Theorem 1 and from the results of Linden-
strauss [14].
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COROLLARY 8. Every weakly compact set is dentable (see [16] for the
definition).

The proof follows from Theorem 1 and from the results of Rieffel
[161. .
COROLLARY 9. In a reflexive space a set K 4s weakly compact iff it
48 am intersection of a family of finite union of closed balls.

The proof follows from Theorem 1 and from the results of Corson
and Lindenstrauss [6].

Remark. The Corollaries 7, 8, and 9 were reported to me by Prof.
J. Lindenstrauss to whom I express my thanks.

THEOREM 2. Bvery AL-space is isomorphic to a locally umniformly
conver Bamnach space. )

Proof. First we shall show that if x is a finite measure, then the
set y of all y-measurable characteristic funetions defined on § is weakly
sequentially compact in L, (8, &, u). It is easy to see that y is weakly
sequentially compact in L.(S, &, u). Since L,(8, ¥, u) is weakly se-
quentially complete and Lj (S, &, u) < L5 (S, &, p) (see, e.g., {8], ch.
IV.6), the set y is also weakly sequentially compact in Ly (S, &, u).

By the theorem of Eberlein-Smulian, the weak closure of y is wealkly
compact. Note that y is fundamental in L, (S, &, u) (see, e.g., [8],
III. 3. 8).

It follows from [13] that in every Al-space X there exist projec-
tions P, (y <2) such that ||P,J| =1, P,P; = P:P, =P; for £ <y, the
set {y: |P,412—P,@| > &} is finite for all ze¢ X, e > 0, P,zeSp {Pey1Becys
P, X = X; moreover, there exist u, &, 8, u,, &,, S such that the spaces
P, X, (P,.,—P,)X are isometrically isomorphic to ILy(S, ¥, u) and
Ly (8,, &,, u,) respectively (4 and u, are finite). Now it is easy to con-
struct operators T, satisfying the conditions of Proposition 1.
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On permanently singular elements in commutative
m-convex locally convex algebras

by
W. ZELAZEKO (Warszawa)*

1. Introduction. All algebras in this paper are assumed to be com-
mutative. By a superalgebra of a topological algebra 4 we mean any
topological algebra having a subalgebra topologically isomorphic to A
and having the same unit element provided A possessed one. If k is a class
of topological algebras, then an element wed ek is said to be permanently
singular in the class & (or shortly, k-singular) if for any superalgebra Ay
of A, belonging to the class %, @ is singular in A,. In this paper we deal
with the clagses of topological algebras, locally comvex algebras and .
multiplicatively convex algebras denoted respectively by 7, £%, 4.

In paper [1] Arens give a characterization of permanently singular
elements in the class of Banach algebras. He proved that an element
zed B (B-class of Banach algebras) is #-singular if and only if it is
a topological divisor of zero (and, consequently, if and only if it is -
-singular). In this paper we:study a concept of A -singularity and we
show that none of these statements is true for multiplicatively convex
locally convex algebras (shortly m-convex algebras). In section. 3, we
give a characterization of .#-singularity and. show by an example that
there are .¢-singular elements, which are even J-singular but are not
topological divisors of zero. In section 4 we give our main result stating
that there are /-singular elements which are non-#%-singular. This
example shows also thab all non-zero elements of the radical of a certain
m-convex algebra can be invertible in some its locally convex extension.
Moreover, both algebras are Bg-algebras (= complete metric' LE-al-
gebras).

We cannot give characterization of F%-singularity but we pose
a conjecture about it (cf. Problem 1).

2. Prerequisites. By a fopological algebra we mean 2 topological
linear space over complex or real sealars in which. is defined a jointly

* This work was done during the author’s stay in Aarhus.


GUEST




