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Fourier transforms of vector-valued functions and measures
by

IGOR KLUVANEK (Bedford Park, South Australia)

An answer to the question whether, for a given sequence a,,n =0,
+1, +2,..., of complex numbers, there exists a measure on [0, 2x]
(or on the unit circle) such that a, are the Fourier—Stieltjes coefficients
of this measure can be given in terms of Fejér’s means

1 N-1 m
ox(t) = 172 Z dia, N =1,2,...
Mm=0 n=-—m
Namely, such a measure does exist if and only if
[ lox(lat <k,
0
where % is independent of N. This condition means that the maps &y
from the space ([0, 2x]) of continuous functions on the unit cirele into
complex numbers field defined by

2m
Dy(y) = [ pWoy()dt
o

map the unit ball of this space into a bounded set not depending upon N.

If @, are now elements of a quasi-complete loeally convex topological
vector space X, the Fejér’s means can be formed again and the maps
@y as well. These maps will take values in X. There exists an X-valued
measure on the unit circle such that a, are its Fourier coefficients if and
only if the maps @ - carry the unit ball of €' ([0, 2=]) into a weakly compact
set common for all N =1,2, ...

Such result and a similar one concerning characterization of Fourier
transforms of X-valued integrable functions is stated for any locally

compact Abelian group. .

0. Introduction. Let G be a locally compact Abelian group and let
I" be its dual group. Cy(@) and (@) denote the space of all complex
continuous functions on @ vanishing at infinity and with compact supports,
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Tespectively. They are equipped with sup-norm. # (@) will stand for the
o-ring of all Borel sets in G (i.e. the o-ring generated by compact sets;
terminology as in [5]). [...dg and J...dy denote integrations with
respect to (a choice of) Haar measures on G and I', respectively.

Let I be an index-set directed by a relation < and, for every :el,
let u, and o, be functions on & and I', respectively, with the properties:

(i) =0, [ u(gdg =1.
(i) o, is continuous and vanishes outside of a compact set, and
w,(I") = [0,1].
(ili) For every neighbourhood V of 0 in @ and & > 0, there is el
such that, for every : with 4 <<, J u,(g)dg > 1—e and ¢g¢V implies

u,(g) < e.

(iv) lim,w(y) = 1 uniformly with respect to y on compact subsets
of I

(V) o.(p) =éf u(9)(—g,v)dg, yel'; u(g) =Pf w,(y)(g; v)dy, g<G.

The existence of such a kernel was proved in [6] and [8] generalizing
the Riesz’ summation of Fourier transforms on real-line and Fejér’s
means on the unit circle, respectively. If G is metrizable then the net of
natural numbers with its usual order can be chosen for I, i.e. {u} and
{»,} become ordinary sequences.

For yeIXI) we write 9(g) =Ff (=g, 7)p(y)dy, ge&.

Let X be a quagi-complete locally convex topological vector space
and X' its dual. The weak topology of X means the (X, X’) topology
on X. ’

Let Y be a locally convex topological vector space and let, for every
tel, ®: Y — X be a linear map. The (set of) maps @,,:el, will be called
(weakly) equi-compact if there iy a neighbourhood W of zero in ¥ and
a (weakly) compact set C < X such that @ (W) < C, for every iel.

Let f: I' > X be a bounded weakly continuous function. We put

(1) Fg) = [(g, Ny, ge6,

for every iel.
THEOREM 1. There exisis a (regular) measure u: #(G) — X such that
f =g, ie.
2) o) = [(—g,»uldg), yel,
é

if and only if, for every vel, the function F, is integrable (with respect to
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Haar measure) and the maps @,: Co(G) - X, 1el, defined by
O.(y) = [w(0)F.(9)dg, <Co(@), iel,
[

are weakly equi-compact.

THEOREM 2. Let F: G — X be an integrable function. Let &,,tcl,
be defined as in Theorem 1, and let

B(y) = [v(@F(9)dg, veCo(@.
G
Then f = I;’, i.e.
(3) i) = [(—g,»F(g)dg,

(]

yely

if and only if
lim, @, (y) = D(y)

uniformly with respect to yeCo(G), |ly| < 1.

In the case X is the complex numbers field, these theorems were
stated in [10] (under some restrictions) and in [8]. In this case the weak
equi-compactness condition of @,, cel, reduces to the requirement that
f |F.(g)|dg < k for a constant % independent of : and the uniform con-
vergence condition of Theorem 2 means that ¥, - F in L'-norm on G.
Since I' (@) is a complete space if X is a complex number field, Theorem 2
can be stated in a stronger form. There exists FeL' (@) such that f = F
if and only if {F} is Cauchy in L'(G). Situation is similar in the case
in which X is a Banach space and u is of finite total variation or F' is
Bochner integrable as it has been shown in [3] (under some restriction
on @).

1. Lemmas on vector integration. If P is a set and & a o-ring of its
subsets, by a measure u: & — X is meant a function on % with values
in X which is o-additive (no matter in which topology compatible with
the dual-pair (X, X') since, by Orlicz—Pettis lemma, conditions of
o-additivity in all these topologies are equivalent).

LeMMA 1. The range R(u) = {p(M): M eZ} of any measure u: & — X
is relatively weakly compact set in X.

Proof. See [9].

If v is a2 complex-valued measure on &, then there is a set M, e
such that »(M) = »(M n M,), for all M (see e.g. [5], 17 (3)). If p is
a funetion on P (not necessary #-measurable) such that y is »-integrable
on every such M, (in the usual sense e.g. as in [3]), we say that ¢ is inte-
grable and put [ydv = [ pdv = [pdv. Tt is easy to show (and well-

P M,

known) that this definition is ulvmmbiguous,
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Given a complex-valued function y on P and a weasure u: & — X,
we say that u is u-integrable, if it is integrable with respect to every
measure M — (u(M), 'y, '« X’, in the sense of the previous remark
and if, for every Me ., there is an element 2,;¢X such that

2 eX'.

4 - (@agy @' = [ p(p) p(@p); @',

M
If yp is integrable, the net {#} sz, Where & is considered to be directed
by inclusion, is weakly Cauchy, since, for every #'eX’', there is M, e
such that (my, o> = (B, 2, for every Me% such that M, < M.
The correspondence M — i), M, is & measure (it is obviously weakly
o-additive), hence, by Lemma 1 the set {x;;: Mes} is relatively weakly
compach. It follows that the net {2}srs is Weakly convergent. Ity weak
imit x¢X has the property that

<@, 1y = [ p(p)<uldp), 27,

r'eX',
We write
o= [yap = [ p(p)u(@p).

Any bounded funetion on P such that its restriction to every set
Mes is &-measurable provides an example of a u-integrable function.
In fact, on every M <%, p is a uniform limit of &-measurable finite-valued
functions. Using the quasi-completeness of X we easily deduce the exist-
ence of @, ¢ such that (4) holds for every M.

If follows in particular that, for every bounded continuous function
p on @ and a measire u: #(G) — X, the integral [ydu has a meaning
and is an element in X. Hence the Fourier-Stieltjes transform of any
measure u: #(@F) — X can be defined by the equation (2).

Denote by %,(@) the o-ring of all Baire sets in @, i.e. the o-ring
generated by all compact G, sets in G.

A measure u: #(G) - X is said to be regular if, for every o’'<X’,
the complex meagure M — {u(M), 2"y, MeB (@), is regular (ie. its
variation is regular in the sense of [5]).

Since any complex measure on %, (@) is regular ([5]; 52 G), the concept
of regularity of an X-valued measure on %,(@) does not give anything
new or, alternatively, every measure on #,(@) is regular.

LEMMA 2. Given any measure py: By (G) — X, there exwists a unique
regular measure u: B(G) — X which is an extension of ug.

Proof. It is proved in [4], Theorem 5, that there exists a unique
regular extension u of u, onto #(G) with values in the completion of X.
From the quasi-completeness of X and from Lemma 1 it follows easily
that the values of u lie in X, in fact. .
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The following proposition is virtually known. Because of the lack
of & reference in a convenient form we include the proof. For the case G
is compact and X is a Banach space it was first proved in [1].

PrOPOSITION 1. Let @: Coo(@) — X be a linear map. Then there exisis
a regular measure p: #(F) — X such that

(3) O(y) = [ ydu,
if and only if @ is weakly compact, i.e. the sel

By (@) = {P(y): peloo(@), Iyl <1}

is relatively weakly compact in X.

Proof. If there is a measure u: #(G) — X such that (5) holds, then
@ (p)ccoR(u), for every pely,(G), llv) < 1, where coR(u) stands for the
symmetric closed convex hull of the range of u. Hence, by Lemma 1 and
by the Krein theorem (e.g. [9]), the set R,(®P) is relatively weakly
compact in X.

Suppose now that R (D) is relatively weakly compact. Its closure
R, (@) is symmetric convex weakly compact.

By the Riesz—Kakutani theorem, for every «' <X’ there exists a unique
regular complex measure v, on #(@) such that

(6) B(y), x> = [ pivy,

Consider the system & of all sets 3 «Z(G) for which there exists an
element u(M)eR;(®)” with (u(M), ') = v, (M), 2z X'

(a) If M is a set which can be expressed as a finite disjoint union
of sets of the form (;—C, where ¢, and C, are compact G;, then its
characteristic funetion z,; is a pointwise limit of a bounded sequence
{w,} of functions in C4(G). Since, by the Lebesgue Dominated Con-
vergence Theorem,

I'J"(J[) = f Xar d'ﬂx' = h.n-jn f #‘nd"’x' = ].inl," <¢ (1/"11)7 ml>7

and @ (yp,)eR (P)~, the weak limit of {®(y,)} exists. Hence, M <& with
w(M) R, (D).

(b) Using the weak compactness of B, (®)” it is easy to show that
& contains the limit of every monotonic sequence of sets in . Hence
#y(G) = & (see [B]; 6B).

(¢) Lemma 2 together with the uniqueness of regular imeasures
v, &' €X', such that (6) holds, gives that #(G) < &.

The result readily follows.

Let now again P be a set and & a o-ring of ifs subsefs. Let 2 be
non-negative extended real-valued measure on & and let F: P—->X

peCnp(d)

peCyp(@).

o eX,
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be a function. We say that F is A-integrable if, for every M ¢, there exists
an element x;,¢X such that

@y @'y = [<E(p),@>h(dp), o' <X
M

Tf F is integrable, then the assignment M — xy is a c-additive function,
hence Lemma 1 applies. Using the fact that {zs}aes 5 & weakly Cauchy
net (if & is ordered by inclusion) and that its values belong to a weakly
compact set we deduce that the weak lim @y =2 exists and belongs
to X. We write

o= [Fdh = [ Fp)Adp).

If y is a complex-valued function and F: P — X a A-integrable
function then about the existence of f w(p)F(p)A(dp) can be decided
using the properties of integrals with respect to vector-valued measures.
‘We put

y(I) = [F@)A(dp).
M

If p is »-integrable, then it can be easily shown that [ w(p)F(p)A(dp)
exists and equals to [ y(p)v(dp). Using this remark ome eagily shows
that the Fourier transform of any integrable function F: G - X is by
(3) well-defined.

LemmA 3. Let F: G — X be a function such that, for every weCy(G)
there ewists am element ©,eX with

@y @'y = [p(g)<F(g),w>dg, o'eX'.

Suppose that {@,: peCo(@), vl <1} is a relatively weakly compact subset
of X. Then F is integrable and

o, = [9(@)F(g)dg, veCo(®.

Proof. For yeCy(@) define @(y) = x,. Application of the Propo-
sition 1 gives the existence of a measure x: #(G) - X such that (5)
holds. For every M<Z#(G),

(M), o’y = [<F(g),a>dy,

M

o' eX',

hence F is integrable.

So far we made no use of the group structure of ¢. We used merely
the fact that @ is a locally compact space and all relevant result hold for
any locally compact space. In the following lemma the group structure
is important, however.
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LEMMA 4. If F: G — X is integrable (with respect to Haar measure),
then

lim [{F(g—h)—F(g))dg =0
h=0 7y

uniformly with respect to M B (G).
Proof. Denote

»(M) = [Flg)dg, A(M)= [dg
M M

for Me%(G).

Let U be a neighbourhood of 0 in X. Let U, be another neighbourhood
such that U,—U,+U,+U,—U, < U. Let C = @ be a compact set such
that v(M)e Uy, for MeZ(@), M NnC =@. Let 6 > 0 be such that »(M)U,
if A(M)< 6 (see [7], Theorem 2.5, for the case X is a Banach space;
general case is similar). Let ¥ be a neighbourhood of 0 in G such that

[ 2elg—h)—10(9)1dg < ¢
for all heV.
Then, for all M <% (@) and heV,
A(M A O—h) n (M nO)) <3,
MM o) n(MnCO=h))<d, AHNC—=h)n0)<S,
(M 0=k nC)ely, »(U NC)eT;.
[ (Blg—h)—F(g)dg = »(M—h)—»(M)

M
=»((M " C—h) N (M N CY)—»((M nO) n(M N C—h))

+3((M N C'—h) A O)+2((M N C'—h) 0 C)—»(M n () eT.
COoROLLARY. If F: G — X is integrable, then

lim [ p(g) (F(g—h)—F(g))dg = 0

h—0
uniformly with respect to peCy(G), llyll < 1.
In the next section we will have to prove some equalities of the form
[([7@, 07@0) udp) = [([f(p, Quldp) »(dq)
P Q Q P

where either one of the measures p or » or f is X-valued. Provided both
integrals exist this equality is equivalent to

<J(uffdv) du, x'> =<J(l!fdy) dv, m’>, o' eX'.
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In virtue of the definitions of integrals these equalities reduce to the
equalities Detween scalar-valued integrals.

Hence we will interchange the order of iterated integrals freely if
it is simple to decide about their existence and if the resulting scalar
integrals are interchangeable (in virtue of Fubini’s theorem, say).

2. Proofs of theorems. If /':
(u,x F)(g)

@ — X iy integrable, define
= [ w(h)F(g—h)dh,
- X iy a regular measure, define

= [ ulg—h)u(dh),

LEMMA 5. {u}. s an approximate identity for the space of X-valued
integrable funmctions, i.e.

lim, f w(g)

uniformly with respect to peCy(G), |yl

{]EG, vel .
It u: #(6)

(u,* ) (9) ge@, tel.

(u,*F)(g)—F(g))dg = 0

< 1, for every integrable I': G — X.

Proof. Let U be a closed convex symmetric neighbourhood of 0 in X.
Let » have the same meaning as in the proof of Lemma | and let ¢ be
a weakly compact (hence bounded) set in X such that »(M)eC, for all
M %(@). Let e > 0 be such that 2¢(C—C) = U. Let V be a neighbourhood
of 0 in @ such that, for every yeCy (@), lv|| < 1,

[ v(@) (Flg—h)—F(g)dge} U,

for every heV. V exists in virtue of the Corollary to the Lemma 4. Let
wel be such that [u(g)dg > 1—e for vel, i, <t Let tel, i, < and
¥

peCy(@), ||yl <1 be arbitrary. Since

[9(9)(Fg—h)—F(9))dgeco(O— 0):——-0

for every he@, we have
Jv@) 1))~ F(9) dg —fw(g)(fu n(F
= [ u,(h) (f wly
= [ ([ vl
+ [ uw ([ v)(F

GV

~h)~—F(g))dh)dy

(g—h)—F'(g))dg) dh
) (F(g— 1) — T (g)) dg) dn +-
—W)—F (g))dg) dh

e} U+3Uc U.
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LeMMA 6. If f=p, for a measure u: B(G) > X, then P, = u,*p,
el If f = lﬁ, for an integrable F: @ — X, then F, = u*F, el
Proof. By (1) and (2), given ge@ and e,

Eig) = [ (g, 7)o [ (=B, »)u(an) dy

- ‘U(g“h:)’)w( (ly) (dh)
F

«

fu (g—h)u(dh).

The second part is similar or a consequence of the first one.

LEMMA 7. If f = §, for a measure u: B(@) - X, then the functions
F,, eI, are integrable and the operators @, vel, are weakly equi-compact.

Proof. Lemma 6 gives that F, is continuous since w, is uniformly
continuous, for every tel. Let peCy (@) and tel be arbitrary. For every
@eCy(G), there exists z,¢X such that

(&, ') —fqu 9)<T(g), 2> dy,

(see [2], I11.3.2 Proposition); moreover if |jp|| < 1, then , belongs to the
closed convex hull of the range of wF, which is a compact set. Lemma 3
implies that ¥, is integrable.

@ X',

Since
[v@E(9)dg = [ v(@) ([ wlg—mu@n)ag = [ ([ vlo)nig—r dg)u(@n)
and
| [ w0 ulg—mdg| < vl [u(g—m)dg = livl,
we have

[(9)F. () dgelylcoR(u).

Lemma 1 together with the Krein theorem implies the weak equi-
compactness of restrictions of @, cel, to Cp(F). Lemma 3 implies the
integrability of F,. Since C,(@) is the uniform closure of Cy(@), the weak
equi-compactness of @, eI, on Oy(&) follows easily.

LmmMA 8. Let D, tel, be equi-bounded. Then, for every a'eX', there
ewists o unique regular complex measure vy on B(G) such that

(1) lim, <@, (), &> = [ w(g)v.(dg),
for every weCy(@). Moreover,
(8) ), =(_j'(—g,;’)vx-(da), o eX'.
Proof ([8]). For every geL'(I"), put
f¢ Yy, 2 5dy, #'eX’.
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By the inversion theorem for Fourier transforms,

[ (=9, V) <T.g), &>dg = 0.(1)<flp), @,

(&

for all tel, s’ eX'. By Fubini’s theorem

= o)

Sinse o,(y) {f(y), ®'> = {(f(¥), #'> uniformly on compact sets (and ¢(y)dy
is a complex regular measure),

@.(¢), 2> = [ ¢(9)<T.lg), @ >dg V) @'dy.
G

h'm, <¢z (‘Is)) 'y = J:z' ((;)))

for every @I (D), 2’ e X',
Equi-boundedness implies the existence of a constant %k, such that

KP. (v}, @3] < Ty llpll

Moreover functions ¢, for all peI*(I"), lie densely in C,(4). Hence
lim, (D, (), #'> exists, for all yeC,(F). Denote this limit by J, (y) without
ambiguity. We have

for all we0y(6G).

[T ()] = Fpellell,

The Riesz—Kakutani representation theorem gives the existence of a unique
regular complex measure », such that (7) holds.
By Fubini’s theorem now

f«pg)v(dg = [om ([

r G

pely(G).

S i), avay = — 4, %)% (d9)) &,

for every geL'(I'), hence (8) follows.

LEMMA 9. If @, 1el, are weakly equi-compact then there exists a UnLgUe
regular measure p: B(G) - X such that

lim, (@,(y), 0> = [ p(g)<uldp), o>, a'eX",
for every peCGyo(@) and
S, o> = [(—g,y)uldg), 'y, a'eX'.
[£]

Pr?of Let € be a symmetrlc convex compact set in X such that
D, (p)eC, for every tel and yeCy (G ) v < 1. By Lemma 8, lim, (®,(y), 2’
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exists for every peC (@) and 2’ X’. Since D,(y)
is @(p)eX such that lim, (D, (p),2') =
peCy(G).

@ is a linear map from Cy(G) to X and @(y)eC, for peCy(F), |y <1
By the Proposition 1, there exists a regular measure g: #(G) - X such
that

ellyllC, for all 1c1, there
(P(p),a'>, ' eX’, for every

f(g u{dg), z'>, a'eX'.

G

Uniqueness of the measure in the Riesz—Kakutani representation theorem
gives that {u(M), "> = v, (M), M <% (@), v’ X', where v, is the measure
satisfying (7) and, therefore, (8) as well. Hence the result.

Proof of Theorem 1 follows immediately from Lemma 7 and
Lemma 9.

Proof of Theorem 2
by Lemma 6 and Lemma 5, lim, @, (y) =
{v: Iwll <1, el (@)

If lim,®,(y) = @(y) uniformly on this set then lim, (D (y),s
= (D (y), 2’ uniformly on {y: ypeCy(&), lp] <1}, for every z'eX'.
It follows that

= F for an integrable #: G — X, then,
@ (y) uniformly on the set

lim, [ [KP,(g), 2> —<F(g), '> dg = 0.

Since ,(y)<{f(y), #'> is the Fourier transform of <Ft(g),m'>, by the
inversion theorem for Fourier transforms, we have w,(y)<{f(y), o>

- (ﬁ' (¥), &> umformly on I, for every 7' e X'. Since o, (y) - 1 for every
yel', the relation {f(y <F( ), &'y, 2’ «X’, follows. Hence F= =f.
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HASKELL P. ROSENTHAL* (Berkeley, Calif.)

INTRODUCTION

We give here details of the results announced in [21], and also extend
these results to situations involving sets of arbitrary cardinality. Thus
in [21] we proved that every injective Banach space of infinite dimension
contains an isomorph of I*; here we prove that if an injective Banach
space contains an isomorph of ¢o(I") for some set I', it contains an isomorph
of 1°(I') (Corollary 1.5 below). From this we deduce easily the result of
Amir [1] that I®/e, is nob injective, and assuming the continuum hypo-
thesis, that if K is & closed subset of fV such that ¢ (K) is injective, then
X is Stonian (Corollary 1.6). (8N denotes the Stone-Cech compactitication
of N, the discrete set of positive integers).

These results are consequences of the key Proposition 1.2 which
asserts that if T: I°(I") - B is an operator such that T'e, () is an iso-
morphism (i.e. T|e(I") is one-one with closed range), then there is
o I" < I' with cardl™ = cardl" sueh that T[I1°(I") is an isomorphism.
(Throughout, “operator” [resp. “projection”] refers to a “bounded linear
operator” [resp. “bounded linear projection”]. Throughout the intro-
duction, B and X denote Banach spaces and I' and A denote infinite
sets). Proposition 1.2 in turn yields the considerably stronger Theorem 1.3,
which implies immediately that if X is complemented in X and X
contains an isomorph of ¢y(I"), then X confains an isomorph of I°(I).
(We regard X as being canonically imbedded in X**.) Theorem 1.3 can
also be used to prove a result concerning extensions of isomorphisms of
subspaces of I°(I") into injective Banach spaces, thus generalizing a result
in [13]. (Cf. Corollary 1.7 and the Theorem following it.)- e :

* This rescarch was partially supported by NSF-GP-8964.
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