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INTRODUCTION

The development of the decomposition theory of group representa
tions has caused the evolution of theorems on the duality in the theory
of induced representations.

It was shown by Mackey [12]-[14] in 1952-60 that the notions of
the intertwining operator and the direet integral can be used succesfully
to obtain far generalizations of the classical Frobenius reciprocity theorem,
referring to unitary representations of non-compact groups. The investi-
gations of Gelfand and Piateckii-Sapiro [4], [2] led in 1939 to the for-
mulation of the famous dualify theorem in the theory of automorphie
functions. The form and the proof of the theorem exhibited a great utility
of the notion of Gelfand ftriplet, which at the same time enabled
K. Maurin to obtain the nuclear spectral theorem and related decom-
position theorems. The labour of K. Maurin and L [18]-[20] accomplished
the results of Gelfand and Piateckii-Sapiro. They proved the duality
theorem for arbitrary locally compact group G and I', without any
assumption on G/I' [20].

But it is suggested by the results of Bruhat [1] that the decom-
position theory is more like the source of nseful notions than a tool in
the duality theory. )

Bruhat created the theory of differentiable induced representations,
which are beyond the scope of the decomposition theory, and he found
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o duality theorem wusing the notion of invariant bilinear form instead
of that of the intertwining operator. )

It was our aim to obtain a result similar to the theorem of Gelfand
and Piateckii-Sapiro but going for a large class of (as well as non-unitary)
representations, namely J-representations.

The main result formulated in Theorem 3.6 concerns a Yamabe
group G with a large subgroup and an arbitrary subgroup I

Given a completely irreducible J-representation (U,J) of G we
construet a Gelfand triplet @ « J « ‘$’. We consider the space of nuclear
operators intertwining for the differentiable induced representation U*and
U (» is an arbitrary homomorphism of I" in (). We state the existence
of a linear bijection of this space onto the space of common eigenvectors

with eigenvalue x of the contragradient representation 'U|I" in P,

Since the non-unitary characters are admitted, even in the case
of unitary representation U the theorem essentially generalizes the result
of Gelfand and Piateckii-Sapiro.

‘We begin with section 1 which comprises a summary of definitions
and fundamental facts on the theory of representations in vector spaces.
The second part contains more detailed description of compact group
representations in ‘spaces with indefinite metric.

Part 3 is devoted to prove the main theorem. The next sections are
intended for showing its utility in various questions of the theory of
representations. In section 4 our theorem in conjunction with K. Maurin’s
nuclear spectral theorem suceeeds in immediate obtaining the funda-
mental Mackey’s theorems on irreducible representations of a semidirect
product of a compact and Abelian group. By terms in part 6 we prove
a theorem on the form of an frreducible representation of a semisimple
group in Ponfryagin space. In section 5 we apply the main theorem
to the theory of conical distributions and representations, introduced by
Helgason [10] as dual objects to spherical functions and representations
of a semisimple group with finite center. The theorem gives a possibility
of such an extension of the definition of the conical representation, with
that several Helgason’s results, concerning prineipal series of representa-
tions may be generalized to the general case.

1. NOTATION AND FUNDAMENTAL CONCEPTS

Let @ be a locally compact unimodular group with the Haar measure
dg, and X a locally convex quasicomplete vector space. )
Definition 1.1. By a representation of G in X we shall mean a homo-

morphism of & into the group of all invertible continuous operators on
X with requirements that
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(CI) the map G>g — V,ze X is continuous for each zeX,
(CII) for every compact set K < @ the family of operators {V,| ke K}
is equicontinuous.
Condition (CI) implies (CII) in the case where X is a barreled space.
If Y is a homogeneous G-space, u a Borel measure on & and » a Borel
measure on Y, then the convolution pxv is defined by the formula

[ apes@) = [[flg-n)du(g)dv()
r h
for feCy(G).

Let us assume that there exists a @G-invariant measure dm on Y.
Integrable functions f and ¢ on G and ¥, respectively, will be identified
with measure fdg and gdm. Then the convolution of functions is given by
the formula

fro@) = [flo)elg™ )dg.
G .

Let M(G) denote the convolution algebra of finite measures on G
with compact supports. The topology in M (@) is that of the induetive
limit of the subspaces

My = {ped(@)] suppp = K, ull = [ alul}-

REach representation (X, V) of @ can be extended to a representation
of the algebra M (G) by the formula

M(@>p—> [ Vydp(g) =: V,eL(X).
G

Condition (CIT) guarantees the correctness of the definition. The
mapy — ¥, is continuous if we regard L(X) provided with the topology
of the mniform convergence on bounded sets.

Tf x is absolutely continuous with respect to dg with Radon-Nikodym .
derivative f, we shall write ¥, instead of V.

Given a representation (V,X) of @ we define the contragredient
representation (1V, X') as

@, V' =Vt a'>

for any zeX and 2'<X’.

The contragredient representation satisfies condition (CII) although
in general it does not satisfy (CI).

Example. Put X = L}(R!) and X' = L®°(R'). The additive group E! acts
in X and X’ by translations. Hence the map R kb — LpfeL®(R?) is continuous if
and only if f is uniformly continuous on R
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‘We shall be concerned with three kinds of irreducibility of representa-
tions.

Definition 1.2. The representation (V, X) of @ is called algebraically
irreducible if

(1) X contains no non-trivial subspace invariant under V,, ge@;

topologically irreducible if .

(I2) X contains no non-trivial- invariant closed subspace;

completely irreducible if

(I3) every continnous operator on X is a strong limit of operators
V,, ne M(8).

-It is obvious that in the gemeral case (I1) implies (I2). By the
Burnside theorem all conditions are equivalent for finite-dimensional
representations. Topological irreducibility is equivalent to complete
irreducibility in the case where V is a unitary representation in a Hilbert
space. This is also true for representations in a Hilbert space, whenever
the set {V,} is invariant under the map ¥V — V* (von Neumann [22]).

Definition 1.3. A compact group K < & is said to be large in @
if every irreducible representation of K is contained at most finite many
times in a completely irreducible representation of @.

Compact and Abelian groups are the trivial examples of groups
with a large subgroup (namely K = {¢}). The most important ones were
considered by Harish-Chandra and Godement.

LEyva 1.4 (Harish-Chandra [6] and Godement [5]). Any mazimal
compact subgroup of a connected semisimple group with finite center is large.

Lmyma 1.5 (Godement [5]). Let @ be a locally compact group of the
Jorm @ = K- A, where K is o compact and A is an Abelian subgroup of G.
Then K is large in Q.

Let y denote a character of the compact subgroup K < G. To each ¥
we associate a measure u, given by the formula

o (f): = [ ()f (k) dk
X

and a projector

‘Px: = ’"‘x—l V(/‘x) el (X)7

‘where 7, is the dimension of the irreducible representation of K corre-
sponding to x.

P, is the continuous projection of X onto the closed subspace in-
variant under V, keX. If X is the Hilbert space, P, X is the orthogonal
sum of irreducible mutually equivalent representations associated to y.
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Differentiable induced representations. Throughout what follows
G will denote a second countable Yamabe group, i.e. a projective limit
of Lie groups,
¢ =lim;G/N; = lim,;G;,

where N; denotes a normal eompact subgroup of G such that @, = G/N;
iz a Lie group.

Yamabe [24] found that every comnected locally compact group
is a Yamabe group.

The class of regular functions with eompact supports on @ is defined
a3 an inductive limit of Schwartz spaces 2(&),

2(6): = lim,2(@),

where the injections j;: 2(@;) - 2(G;.,) are given by

) Jaf (9N 1) = Fgy).

‘We shall offen identify the space of functions on the group &; with
the space of functions on G invariant under translations from N;.

(G, X) will denote the class of regular functions with values in the
topological vector space X and compact supports.

Let I' denote a closed subgroup of & with left Haar measure dy and
modular function 4.

Lemya 1.6 (Mackey [13]). There exist a continuous positive function
o on G for which

olgy) = Aol

and a measure dm on G/I' such that

[1@)eldg = [am [ flgn)ay Jor any feCo(@).
G GIr r

Let (¥, X) be a representation of the subgroup I

Denote by 2% the class of functions on @ with values in X and
satisfying the following conditions:

1o for any fe2” and @e@(Q) the product ¢f belongs to 2 (@, X);

20 the support of f is compact modulo I' (i.e. the set supp f-I" is
compact in G/I);

30 flgy) = 4() V., f(g)-

Let us define the mapping f: 2(G, X) - 97 as follows:

Bi(g): = [ 40V fgn)dy.
I

LemyiA 1.7 (Bruhat [1]). The map 8 is onto 97 and commutes with
left regular representation of @Q.
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In view of the lemma it is possible to introduce in 2" the topology
of the quotient space 2(@, X)/Kerp.

Definition 1.8. The left regular representation of G in 9% will
be called the differential representation induced by (I'y V, X) and denoted

Ur.
" Let (V, X) and (U, Y) be the representations of G. The operator
veL(X, ¥) satisfying

70V, = Uyot

is called the ntertwining operator for V and U.

2. GROUP REPRESENTATIONS IN SPACES WITH INDEFINITE METRIC

Definition 2.1. By J-space we mean a triplet {J,(-]-), I} where
{7, (-]} is a Hilbert space, and I is an invertible linear operator on J.
An operator HeL(J,,d,) is called a homomorphism of J, in J, if

(2.1) H'I,H = 1I,.

The operator I is mniquely determined by the formula

[elyl: = (Iz]y)
which in general is indefinite,
Condition (2.1) is then equivalent to

22) [Hz|Hy] = [z}y].

A representation (V, J) of @ is called J-representation if the operators
V, are isomorphisms of J-structure.

Definition 2.2. The representations (V,J,) and (U, J,) are called
equivalent if there exists an isomorphism H: J ,—J, intertwining for
V and U.

If we change the inner product (-|-) on J to equivalent one, we clearly
obtain the equivalent J-representation with the isomorphism H: = Id;.

Let us recall that J-spaces in contrast with Hilbert ones may contain
closed subspaces without orthogonal complements (orthogonality is
understood here and in the following with respect to the indefinite scalar
product [-]-]). .

Owing to this, the problem of analyzing a general J-representation
in terms of irreducible ones presents nnsurmountable obstacles. Theorem 2.3

shows that in the theory of compact group representations this difficulties
do mnot appear.
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THEOREM 2.3. Let (V,J) be a J-representation of a cmnpact‘group K.
Then there exists an orthogonal sum decomposition of J,

J=Jd.0J_,

where J . are closed, invariant under V., k<K, subspaces, such that the form
[+1+] resiricied to J (J_) is positive (negative) definite and induces in J,
(J_) the norm eguivalent to (-]|-)*7. .

COROLLARY 2.4. Theorem 2.3 yields the decomposition of the represen-
tation (V,J) info irreducible componenis.

Let us notiee that (V,J.,[-|-]) and (V,J_,[-]']) are in essence
unitary representations in Hilbert spaces, hence splits into orthogonal
sums of irreducible finite-dimensional unitary representations:

J—:— =@ J iﬁs

- i=1

(2.3)

o0

I =(@JNB@IF), V=(DV)S(DVE).
i=1 k i—1 1

k=1
Proof of theorem 2.3. Let us change the inner product on J to
equivalent one, being invariant by V(K):

{2y} = [ (Viz| Viy) dk.
K

Now, we define I<L(J) by the formula
{Iz|y}: = [=]y].
The spectral theorem yields
1= [1dB(2),
R

the operator I being hermitian. But we also have
{Velzlyy = {Iz| Vity) = (2| Tyl = [Vywlyl = {IV,aly}

for all o, yed.

Hence V, commutes with I as well as with all projectors E(4). The
spectrum of I is separated from zero, I being non-singular. Therefore the
operator

I:= [2dB()
<0
is non-singular in the space J_: = E(0)J, as well as the operator
I:= [1dB(3)
i>0

in the space J,: = (Id;— B (0))J.
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J . are clearly invariant under V7 (X) and the proof follows.

Occasionally, we obtain

Lemma 2.5. The class of érreducible representations of K in J-spaces
8 identical with the class of unitary irreducible represeniations im Hilbert
spaces. ) ' .

Remark. The spaces F,: =P, J are mutually orthogonal in J
and invariant by V(K). In partieular, this means that any triplet
{F,,I,V} is a factor representation in the J-space {F,, (-|),I}.

3. THE DUALITY THEOREM

Let (U, J) be a topologically irreducible representation. of @ in the
J-space J. Suppose that every irreducible representation of a compact
subgroup K < @ is contained in U |K with finite multiplicity.

We begin with the construction of a. Gelfand triplet @ < J < &
Let us select any x,¢F, for certain y. Consider a mapping a: D(GF) - J
defined by

8.1 a(f): = U(f)m,

fe2(@).
The operator o intertwins the left regular representation of G in
9(@) and the representation (U, J):

3.2) Ugalf) = U(L,f),

(3.3) Poa(f) = a(P,f).
The last equality implies that «(2(@)) is invariant under all pro-
jectors P,. We denote by & the range of « provided with the quotient
topology of 2(@)/Kera.

Although this construction, involves a choice of y and x,, the space
@ does not depend upon it. Indeed, we have P,D =T, for any y, since
P,® is dense in the finite-dimensional space F,. Hence by (3.3) all F,
are contained in @, and the eonstruction with z, «F, leads to @, which
contains @y F,. This yields &, > @ as well ag @, = @. In virtue of the
above remarks the representation of the convolution algebra 2(Q) given
by f = T(f) is algebraically irreducible in @.

Now we use the bilinear invariant form []-] to define a continuous
imbedding of the space J into @ — the space of all antilinear continuous
functionals on @ with the topology of weak convergence:

n: J20 e = |a].

icm
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The map % is the intertwining operator for the represemtation T
restricted to @ acd *U. We verify that

@y Ugmsd =T g, ey = [U7 glw] = [ Uzl = <p, nU,o)
for zeJ and ped.

Since @ is isomorphic to 2 (G)/Kere, the space @ can be identified
with a closed subspace of 2'(G). Namely:

@ =~ {T|T<% (@), T|Kera = 0}.

Both spaces are nuclear, whence quasireflexive. Since the form
[-1-] is non-degenerate on @, the subset @ of & is total, whence dense
in @ by quasireflexivity of @.

The construction of the Gelfand triplet @ = J < & is ﬁnish(?ii.

Let us now fix w,e® and consider a mapping o: 2(G) > @'
defined by

pyafy: =<U(fMe, o>, where f*(g): =J(g™).

Let us define:
(X2): = {fe2(@) | P,f =f for some x}
X2 = linear envelope of (X2);.

Lemwma 3.1. There exists a v: X2 — & which makes the following
diagram commutative:

o n =/
2@ > bcd - D
T

T' jection 1\0'
X2 S 9(@)
Proof. Let P, f =T, 'lefl =, ¢ =a(f);
gy ofy = U™ U(f) @y, wp> = QUCRIALY g -

But f'xfy = (Pf)"*(P,f) = f"*(P],, fi). Since z #yz implies
%*x 3 = 0, the functional of vanishes on the subspace ¥ = @F, of &.

1
X1FL

Let us now notice that dim{we®'|(P, @, w0) =0 for x * x}
= dim{@/closure of F} = dimP,.

But the linear subspace #(F,) < @’ consists just of the functionals
vanishing on F. Since dimy(F,) equals dimF,, » being monomorphism,
the range of P,2(G) under ¢ is identical with #(F,).

Hence the map t: =5 ‘oo is well defined on X% and the proof
follows. ' '
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Let us remark that if f<XZ, then oL,f belongs to 7@ and 7L,f is
well defined. Indeed:

@y oLyf> = U Ty 00> = (T, U ()*g, wod
= U U, 00> = U 9, of> = [, Uyrfl.

Hence ©(L,f) = Ugrf.

This equality defines 7 on the linear span of the subset

{fe.@(G): f =7rexfe, [.e2(6), fze-X@(G)}-

Tet us define a hermitian form on (X2) X (X2) as follows:

B(f, f) = [x(D 2] = <=, af> = KT () z(f); @od>-

‘With the last expression B(-,') is evidently partially continuous
with respect to the topology in X2 induced by 2(G). But B is also in-
variant:

B(L,f, Lf1) = [U,v()| Uyr(f)] = B(f, fi)-
Therefore any extension of B to 2 (G)XX.@ satisfies

38.4) B(f,f) = B(f, B,fi) = BP,S, fi)

where f, = P,f, and fe&(@). Since the right-hand side of (3.4) is well
defined for an arbitrary fe2(G), the above equality uniquelly defermines
this extension. )

TUnfortunately it is not in general continuous with respect to the
second variable. We are forced to introduce a linear dense submanifold
continuously imbedded into 2(@), which is more convenient domain
of B. To this end we need the following

LeMMA 3.2. The lUnear submanifold X2 is dense in 2(@).

Proof. Let us recall that 2(@) = lim; Z(6;). Suppose that TeD (G}

vanishes on X2. Consider the restriction of T to any 2(@;). Select a compact
set K, such that K-K,-N; = K,.

The topology in the subspace Z(K,) n 2(6;) <« 2(G) of functions
from Z(G;) with supports in K, is given by the family of seminorms |-||,:

lplz: = > [ D9 D*pdg,
la<r G
where D° are left invariant differential operators on G.
There exists an r such that |T ()| < clpll, for p<2(K;). Hence T
is a continuous functional on the prehilbert space Z(K,) equipped with
the inner product

@ly): =D [DopD pdy.

laj<r &
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The group K operates in 2(K,) by left translations and the repre-
sentation is unitary with respect to (-]-).

The space Z(K;) N X% is the direct sum of a]l factor subrepresen-
tations contained in 2(XK,) and so is demse in (9Y{XK), (-|-)). Hence T
vanishes on 2(K,;) for any K,, consequently on 2(G)) =]imK1.@(Kl) ,
and on the whole 2(@). - '

Applying the Hahn-Banach theorem we are completing the proof,

DEFINITION 3.3. Let é(G) be the linear space spanned by the set
{fe2(@): f =firfey  F1e2(@), freX2(D).

We equip ‘Q?(G) with the finer topology absorbing all (bounded
in 2(G)) sets of the form

Bra = ([<D(G): f = fr*fo, [1eB, ¢ZXD(@)]
where % ranges through bounded sets in ().

The immediate consequence of the definition is that the topology
in 9(6) is finer then that induced by Z(&).

In Appendix we prove the following

LeMmA Ad. 1° The form B on X2(Q)X XZ(G) is extendible to the
continuwous invariant form on é(G)x 2(G).

2° Any continuous hermitian symmetric form on 9?((}) X D(F) s
of the form (p, v) — T(g**yp) where Te(g;(G))'.

ProOPOSITION 3.4. The map t: é(G) —J 48 continuous.

Proof. Theorem 2.3 implies a direct sum decomposition, J = J,@J_,
such that the invariant form [-|-] is not only definite on J. but on each
of them it induces & norm equivalent to the previous ome. Let us pub

2, = {9 Z(@)| T(gry) = 0 for each pe2(@},
and denote by « the natural homomorphism onto the quotient space
é(G) |2, . The kernel of = is contained in Z,, whence themap 7: #(X2) — J
is well defined by 7(wg) = Tg.

Let us write

X9 = {pex(XD)| [vp|Js] = 0.

Clearly, n(é(G’)) = 2.+ 2_, where 2. denote the closure of X2,

in .JZ‘(G). The maps p. are the projectors in n(@(G)):
Pt 7 (2@ ¢ > pren(2(@),
where ¢, eD,, g_cZ_, and ¢ = ¢, +p_-

The map p: = p,—p. = [d—2p_ is an isomorphism of :z(é(G))
and by the general closed graph theorem it is continuous. This implies
that p, are both continuous. Now we see that the mapping ¢ > D@
—T ((pog)**(p.p)) is continuous. But the ranges of X2 under Top,
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are contained in J, , respectively, where the norms
T((J’i?’)**u’i?’))m = [Eoﬁi‘PﬁOPi‘P]M

are equivalent to the primary ones. Hence the maps #(XZ) ¢ —>;pi¢p
as well as v = 7op, om+7Top_on are all continuous.

The proof results now from Lemma 3.2.

THEOREM 3.5. Under the above assumptions on G and (U, J) let I' be
a closed subgroup of G. Let w,e® be an eigenvector of the contragradient
representations ‘U |I" in @' with the etgenvalue x:
(3.5) ‘0,00 = %(y) 0.

Then there exists a mon-zero operator %eL(é"; J) intertwining for
U* and U.

By 9* we denote the space ﬂ(.@(G)) with projective topology trans-
ported by gS.

Proof. We have to complete the diagram

~ T
2@)—>J
(&) ;4
Ve
gl %

~ //

gﬂ
where v is the intertwining operator in Proposition 3.4 and g is the linear
homomorphism in Lemma 1.7. Owing to (3.5) we have for any feé(G)
and pe®:

[pl7(R,N] = g, oR,f> = (T (R, N, 0> = <U;* T(F"p, w,>

=<U(f")p, U, 00> = #(y)<p, of>.
Thus

(3.6) (R,f) = =(y)z(f).
The form B(f,,f,) = [+f.]7f,] then satisfies

B(R,f, Bsfs) = ;(7)”(5)B(f1;f2)-
Recall that B is represented by the functional 7':
B(f1, f2) = T(fi*f,).

The identity (R,f,)**EB,f; = L,R,f*+f, vields
T(L, Bof s fo) = #(¥) % (8) T (fI*f,).

* ©
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Since an arbitrary feé(G‘) is of the form f = fixf,, we conclude that
3.7 T(L,Ryf) = %(»)=(8)T(f).

Now we are going to show that f(f) = 0 implies z(f) =0 Using
Lemma 1.6 we obtain the following expression for fi#f,:

f*6w) = [H@higdg = [am(z) [f(@y) o™ @n)fuleyy)dy
G r

Gir

= [am(@) o™ (@) [ 47 ) (@) faloyu) dy.
Gir r

Hence for every fgeé(G):

T(ff*f) = [am(@) o™ (@) [A7(0)fy(ey) T(L; B f2) dy
G r

= [dm(@) e (@) [#y™) Ay™)fi(ey) T S,) dy

Gr I
= [am(@T(I;*f,) 07 (@), (@)
GIT

The assumption ff, =0 yields [zf;|zf,] =0 for every f,, whence
7(f1) = 0. Putting 7(Bf): = =f we obtain the desirable operator.

We sum our results up in the following

THEOREM 3.6. Let G be a Yamabe group with o large subgroup, and
(U, J) a completely irreducible J-representation of Q.

Then there exists a linear bijection of the set of common eigenveciors
wyeD’ of all operators ‘U, yeI', with the eigenvalue =(y) onto the set of all
operators intertwining for the induced representation (U”, ~9") and (U, J).

Proof. In virtue of Theorem 3.5 to each w,e®’ which satisfies
{0, 0, = #(y)w,, yeI', there is associated a continuoums operator 7 in-
tertwining for U* and U. The construction of T guarantees that the
mapping @, -7 is monomorphiec.

It remains only to prove that the mapping is also surjective. Let
us assume that Tel (.‘5", J) is the intertwining operator for U* and U,
and define a functional w,e®’ as follows

o(U@) ) = [5|7(be")], @<2(6),

which evidently satisfies the eigenvalue equation (3.5).

The construction in the proof of Theorem 3.5 shows that 7 is just
the intertwining operator associated to o, in virtue of this theorem.
The proof is complete.
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It would be useful to establish connections between the eigenvector
w‘,sa' and the bilinear form or distribution T' which appear in the proofs
of the above theorems. The following proposition is concerned with this
question.: . ) )
PROPOSITION 3.7. Let T be an intertwining operator from (@) into J.
Then there exisis @ unique linear continuwous functional T on D" such that

T(Bf) = T(f) = <Tf, -

If T eL(2% J) then Te(97).
T satisfies the following condition:

(3.8)

T(L,f) = T(Pa(y), yel,feD".

Proof. Let us define a bilinear form on 2*x 2* as follows:
B(Bf,, ) = [FBAITBR] = [ehileh] = T(fF 1)
Let {p"} denote approximative unity on @. Then the formula
b = B(Bon, B) = T(onrf) = T*gi(f)

defines a sequence of functionals on 2%, which is convergent, since the
right-hand side tends to T'(f). The limit T of this sequence satisfies the

equation T (8f) = T'(f) and is continuous, the topology in * being quotient
with respect to f.
On the other hand, for feX<Z we have

T(pn*f) = [1flwpa] = <ofy 09> = CUpn)v(f), 05>
= <T(,¢n*f)7 w0>' '

~ Hence Txg,(f) tends 6 < 2(f), w> = T(f). Since the right-hand
side is well defined for each fe2 (@), formula (3.8) is valid.

In case 7 eL(§Z", J) the proof is analogous.

Remark. Tf the functional T is given, the bilinear form B may be
reproduced by the formula

(3.9) BBfuf) = [ROTI f)dg  (f,eD(@), f,e9").
G

Throughout what follows (&%, i’) will denote the left regular repre-

sentation of @ in the space. 9*/Ker? with the invariant scalar product
defermined by formula (3.9).
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- Differential properties of the distribution 7. In this part we assume
additionally that @ is a connected group: Let M be a linear continuous
operator in Z(G) such that its restriction to any 2(G;) belongs to the
right invariant universal enveloping algebra of the Lie group &;. The
set of all such operators will be called the right invariant universal enve-
loping algebra of the group G and denoted by &(&). The center of £(G)
will be denoted by Z(&). The elements of the center commutes with right
as well as left translations on @. By M we denote the formal adjoint of M.
TEEOREM 3.8 (cf. Maurin [16]). The distribution T defined by (3.8)
is the common eigendistribution of all ceniral elements of &(@).
Proof. To any M Z (@) we associate a linear operator dU (M) defined
on the subset 7(2(G)) of J: )
(3.10) AU (M)z(p): = z(Mp).

We verify that the definition is proper, i.e. from v(g) =0 it results
7 (Mep) = 0.
Suppose that for any peZ(G) we have [z(y)|z(¢)] =0. Then

[(z(9) |7 (Me))] = T(w** Mg) = T((M¥y)"+g)

= [c(MFp)z(p)] =0,

whence t{Mgp) = 0.

~ Now our purpose is to show that the subspace D r(.@(G)) is invariant
under dU(M). Clearly, the operator dU(M) commutes with the repre-
sentation of & in ¥(2(@)):

U,aU(M)2(p) = (L, Mp) = v(ML,p) = AU (M) U,7(9).

Hence
(3.11) P,aU(M) = aU(M)P,
and
(3.12) AU (M) U(g) = Ulp)dU(M).

Recall that any pe® is of the form U(f)z,, where P my = % for
some y. This yields

av (M) U(f)z, = U(H)av(M)P,z, = U(HP,AU(M)z, = Uf)z,

where o, = P,dU(M)z e F,. Thus aU(M)P < .

It follows by (3.11) that the finite-dimensional subspace PP =0F,
is invariant vnder dU(M). Then there exists an eigenvector yeF, of
dU (M) such that dU(M)y = Ay.

Studia Mathematica XXXVI3 5
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Owing to (3.12) the set Q: = {y<®| dU(M)y = Ly} i's invariant
under U(f),fe2(@). Bub the representation of the convolution algebra
2(@)> f - U(f) in @ is algebraically irreducible, hence £ = @.

According to Proposition. 3.7 and the above remarks we obtain

T(Mf) = (eMf, oy = AU(M)7(f), wpd> = 4 {z(f), 0> = AT(f)

at least for feX9, ie. on the dense subset of Z(@). Hence MT = AT,
e, for M <Z(@), which was to be proved. .
Lifting the operators M <Z(G) to the space 2" we obtain
OoroLLARY 3.1. The functional T in Proposition 3.7 is an eigen-
unctional of all central elements of &(G).

4. MACKEY’S THEOREMS ON IRREDUCIBLE REPRESENTATIONS
OF SEMI-DIRECT PRODUCT OF GROUPS

In this part we are concerned with a connected group @ being the
semidirect product of a compact group K and an Abelian locally compact
group 4. Recall that by Godement’s theorem K is the large subgroup
of @ = Ex,4. '

Let (U, H) be an arbitrary irreducible representation of ¢ in

a Hilbert space H. Lot @ ¢ H « @' be the Gelfand triplet defined in the
preceding section. Consider the restriction of (U,H) to the Abelian
group A. The nuclear spectral theorem proved by Maurin [15] states
that there exists a positive Borel measure u on A such that the scalar
product in H is represented by the integral .

(#1) @) = [<pse >, 6> duly),
Z

where u-almost all e, belong to @' and
Uapy ey = 7(a)p, 6,5, acd.
Let us fix an arbitrary e,¢®’ and define 6@ as follows:
@8> =<g, 6.

All assumptions of Theorem 3.6 are satisfied with w, = ¢, and we
state that a continuous intertwining operator maps % in H. Write

B ={k<K| y(t(k)a) = y(a)}.

The space * is invariant under right translations from K.
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Let 7 be a matrix element of an irreducible representation of K'.
The space of funetions spanned by all left translations of 7 is denoted
by H,. The left regular (irreducible) representation of K’ in H, will be
denoted by U,. Let us define:

2t ={fe%*| flg) = [ plgkyr(¥~ak for some peDr}.
)

Owing to Lemma 3.2 and well known connections between matrix
elements and characters it is obvious that the linear manifold TPt s
dense in $* (the index r runs over the seb of all matrix elements of all
irreducible representations of K'). Hence there exists an r such that
7(2#) is dense in H. This means, in particular, that the representation
(Lyy 2%, T) is extendible to a unitary irreducible representation, which
is equivalent to (U, H).

There is also a natural intertwining monomorphism which maps
2 into the space of induced representation UUr*%, Namely, to each fe®%
there is associated a function § with values in H, defined by the formula: .
G> g —f,, where fo(E') = f(gk'). But it is well known that the represen-
tation UYr*# is irreducible (Mackey [13]). Hence 92* is also extendible
to the irreducible representation UUr<%. This fact immediately leads to
the equivalence of the representations (U, H) and TYr=,

We have obtained .

THEEOREM 4.1 (Mackey [13]). Every wnstary irreducible represeniation
of the semidirect product K X ,A is wunitarily equivalent to a representation
induced by o unitary irreducible representation of the subgroup K' XA,
where K = K.

We shall also verify another Mackey’s theorem:

TEroREM 4.2 (Mackey [13]). The measure p in (4.1) is concentrated
on, the orbit of x in A under the action of K.

Proof. Let &<® correspond to the character y, and to the inter-
twining operator

7t @4 > H.

(It is seen from the proof above that 7, extends to the whole 2*1.) We
introduce a bilinear form on 2*X 2% as §(gp s 9) = [Tp|7p] and a distri-

bution on 2(@) by the formula §(¢*=v) = S(Bp, frp).
By arguments used in the proof of Proposition 3.7, we state that 8

can be lifted to the space 2* by the formula S’(ﬁf) = 8(f) = <{af, e.
Thus for ged we have

S(BL,f) = Zyf, > = 7(0) 8 (BF).
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On the other hand, ‘
8(L,f) = &, (Af #(67) B,f (g7 ) da)
= 8, (Af (@) Ry f(wa g w) da)
=8, (x(="g"a) JECRERC da)

= 8,z (@7 gm) Bf (@) = B, (1. (9) Bf (@)

We have the following conclusion:

8(al0)~ 7o) (@) =0 for any feB(E) and ged.

It shows that the distribution § is concentrated on the subset of K
consisting of keK such that y,(a): = z{t(k)a) = x,(a).

Since S is non-zero distribution, we have y, = y, for some kK.
Thus the set A\{y,| keK} consists of elements for which e,¢ D' and is
p-measure null, as Maurin’s theorem states.

5. A DUALITY FOR NON-COMPACT SYMMETRIC SPACES
AND RELATED GROUP REPRESENTATIONS

The first part of this section comprises a summary of definitions and
facts on the dual object of Riemannian globally symmetric space as well
as on generalized Radon transform. The method used, notation and most
of cited results originate from Helgason’s papers [8] and [9].

Let S be a Riemannian globally symmetric space of non-compact
type and let & denote the largest connected group of isometries of § in
its usual compact open topology. G is well known to be semisimple Lie
group without compact normal non-trivial subgroups.

For fixed 0eS denote by K the isotropy subgroup of G at o. Leb
I, and g, denote the corresponding Lie algebras of K and &; let p, denote
the orthogonal complement of f, in go with respect to the Killing form
B of g,. Then B is positive definite on Py and the Riemannian structure
on § can be chosen 5o that p, is isometric to the tangent space S,.

Every symmetric space contains flat totally geodesic submanifold
E of the dimension I > 0. Assume that o <E and denote by b, the subspace
of vectors Xep, for which Exp dn(X)eF, where = dengtes the map
@2 g >g-0e8. Let A be the analytic subgroup of @ corresponding to By,

An element H €by, is said to be regular if the kernel of Ad H in ;;o
equals I)vo. A linear functional o on I);,O ig' called a root if the subspace
G = {Xeg| AdH(X) = o(H) X} is non-trivial. Let I),bo denote the part

©
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of B, , where all roots are different from zero. The connecfed components
of regular elements in ', , are called the Weyl chambers. Select any Weyl
chamber C and order the set of roots putting « > § if a(H) > (H) for
H < (. Consider the subalgebra n, = Z‘ogu of g, and corresponding

a>
subgroup N of &, The Iwasava theorem asserts that the map K XA XN
> (k, @, n) - kane@ is an analytic diffeomorphism. Leb M and M’ denote
the centralizer and normalizer of A in K. The finite group W = M'|M
is called the Weyl group. The natural action of we W in A4 and §, will
be denoted by w(a) and w(H), respectively. )
The homogeneous space G/MN is called the dual space of S and is

" denoted by 8. The space is in one-to-one correspondence with the set of

orbits of subgroups gNg™* in the symmetric space. The orbits are called
horocycles. . ‘

The following results make clear the structure of § and §. F1‘rst of it
is the well known “polar coordinate decomposition” of the symmetris space.

Leyva 5.1 (Cartan (see [7])). The mapping

(E|M)x A>(kM, a) —kaK eS ]

is differentiable and surjective. The mapping restricted to (K[M) X Exp (By,)
48 a covering of order of the group W.

For § one has the corresponding result:

LevmMa 5.2. The mapping (KM, a) ~kaMN is a diffeomorphism of
(E/M)Xx A onto §. ' ' -

The following lemmas yield a description of the orbit spaces of K
in § and of M¥N in §. ‘

Lmvma 5.3. The following relations are natural identifications:

1° ENG/K = A|W;

2° MN\G/MN = AXW. :

Remark. One has a natural action of the Weyl group W in T:he
space of all roots: a — aow, where acw(H) = a(w(H)). Thelje exists
unique element w*e W which maps all positive roots into negative ones.

The orbit of the subgroup MNA in § of the element w*MN S is open
in S’, all the others orbits have lower dimension. R
The Radon transform maps the space-Z(8) into 2(8):

fgMN) = [flgnEyan. -
P

Let ug introduce a map ¢ — ¢ defined for p<Z(8):

P9E) = [ plghME)dk.
K
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The problem ariges to relate f and f~ on 8.
The simple measure theoretic computation yields

(6.1) [flo)p(@ds@) = [ F(&p(&)ds(8),
5 )

where ds and 3 denote the G-invariant measures on § and §, suitably
normalized.

LEMMA 5.4. 1° For certain integro-differential G-imvariant operator
A on 8, 4% its adjoint we have

(3.2) - f=aty,
(5.3) [if@pds@) = [ 14F (&)2ds(8).
8 8

2° If G is a complew group we have
f = D((f)v)y
where O] is a certain G-invariant differential operaior on .

Invariant differential operators on § and §. The natural action of the
group @ in a homogeneous space Y iz denoted by y —g-y, ge@; the
corresponding action in the space of functions on Y is denoted by
Ug): Ug)f: = fog™.

A differential operator on Y is called inwariant if it commutes with
i(g) for all ge@. The space of all invariant differential operators on ¥
is denoted by D(Y). Let w: G —@/K and #: @ — @/MN denote the natural
projections of G on § and @, respectively.

A convenient description of the space D(S) was given by Harish-
Chandra:

Levma 5.5 (Helgason [71). Let I(h,) denote the algebra of all poly-
nomials on By whick are invariant wnder the Weyl group.

I ?’heﬂ, there exists an isomorphism I" of the algebra D (S) onto the algebra
Po’ "
Similar results for § were obtained by Helgason: .
- Lemwa 5.6 (Helgason [9]). There ewists an isomorphism Iy of the algebra
D(8) onto theAalgebm 8 (By,) of all polynomials on By, - :
A AIf D — D denotes t{be mﬂnomorphism of D(8) into D(S’) given by
I'(D) = I'(D), then (D f) = Df, fe2(8).

Let us describe the explicit form of the isomorphism Iina way

convenient for us. Select a base {H,}7 in the space by, and write

n
a(ty, ..., 4): = Exp Z t,H,,

=1

1 ©
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where t;cR'. Every PeS(D,) determines an operator DsD(S‘) by the
formula

(5.4) DPf(ga) =P(d,..., 6n)f(ga’(t17 reey tn)~5),

where 8; stands for 8/0; ;0.

One proves that the map P — Dp is a monomorphism.

I'is just given by I'(Dp) =P. )

The following lemma results now from Lemma 3.6 by simple com-
putation: )

LEMMA 5.7. 1° For each DeD(A) there exisis a unique D4eD(8S) such
that for fe2(&)

(5.5) D4pf = BD(f),
where
Bf(z(9) = f ff(gmn)dmdn.
o N

20 The mapping D —D* is onto D(8).

Spherical and conical representations. An irreducible representa.tion
(U, dJ) of @is said to be spherical if there exists a non-zero v.ectc?r in J
fixed by U]K. The reason for introducing this term is that the distribution
T associated to (U, J) by Lemma 3.7 appears to be spherieatl ﬁmet?on
on 8, i.e. a K-invariant common eigenfunction of all D eD(8). '..[‘h.lS function
is well known to be uniquely determined by the representation.

There is no need to consider “spherical distributions” on §; since
the algebra D(S8) contains at least one elliptie elen_lent, namely Laplace-
Beltrami operator, those distributions will be functions.

In order to introduce on the space S the objects analogous to
spherical functions on § it is necessary to use the distribution space.

Definition 5.8. A distribution on § is called conical if it is M N-in-
variant eigendistribution of each DeD(8).

The mnotion of comieal representation was introduced by Helgaso.n'
in the following way: a representation (U, X) of G is called conict_zl if
in the space of the representation there exists a non-zero vector fixed

p N.
undef&slgrﬂgs we are concerned, this definition is not satisfact.ory. In the
case & = SL(2,R') one can easily assert that the only ’comca.‘l (in the
meaning given by Helgason) representations axe non-unitary, although
the set of spherical unitary representations is very 1.arge. o
One can try to remove this asymetry by changing the definition.
Definition 5.9. An irreducible representation (U,d) is called

conical if
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10 there exists in @ a non-zero functional fized under ‘U]‘ MN,
920 the functional ’f’ associated to the representation is conical,
Further discussion of the definition we leave to Appendix.

In the case of finite-dimensional representations Helgason has proved
Levma 5.10. 1° There ewists a bijection of the set -of conical regulay
distributions onto-the set of conical finite-dimensional representations.

20 Representation is spherical if and only if it is conical.

. This result is suggested by the following facts -concerning finite-
dimensional representations. By the well-known Lie theorem in the space
of the representation (U, X) there exists a non-zero eigenvector of all
U,,ge MNA. To the representation there is associated a character x of
the subgroup 4N by the formula .

Use =x(g)e, geAN,eeX.

Since N is the commutator subgroup of AN, the vector e is fixed
by U|N. The character x is called the highest weight of the representation
(U, X). On the other hand, by Harish-Chandra formula, every spherical
function is of the form '

,(9) = [ expy(log(H (gh)))dk,
- J et

where » is a linear functional on ), and the map H: G -+ A is defined
by H(kan) = a.

The correspondence between spherical and comical representations
stated in Lemma 5.10.2° results from the correspondence hetween highest
weights of representations and characters of the subgroup AN defined
by g — exp»(log(H (5))). Our aim will be to extend this relations to a large
class of infinite-dimensional representations. - '

We begin with the following

ProposITION 5.11. Let (U,J) be a conical representation. Them the
Junctional w,<®’ fized under *U| MN is an eigenvector of all 'U,, aed.

Proof. The notation being as in section, 3, let us define a function
"W on @by P(g) = (U,zy, w,). Clearly, ¥ is continuouns on ¢ and satisties
the equation

(5.6) [ Plgk)y (k) dk = n,¥(g),

K

Wherg % is the character of factor representation which contains #,. The
hmetlonfif is closely related to the distribution 7' and the conical distri-
bution T. Namely, if f,,eQ(G) is such that zf, = m,, then

E*o)s 0> = <U(Nayy 0 = [ f(9) Flg)dg
G
= T(B(F*f) = T(fxf,)

for all f<2(G).
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Hence ¥(g) = T(L,f)-
Since T is the eigendistribution of all central elements of the algebra

&(@), the function ¥ treated as a distribution on @ satisfies the eigenvalue
equations:

[ 4P (g)dg = T((4f)*F) = T(A(*fo))
G
— WAT(F*fy) = a(4) [fl9¥l9)dg
23

for any feP(G) and 4eZ(G). o
In particular, for the Casimir operator, which is of the form A4
= A,+ 4,, where 4; is a cenfral symmetric element of &(XK) and 4,

is elliptic on @&, we obtain )
[ 4,50)P(9)dg =n, [ Aiflg) [ Plgkyz(yakdy
@ 23 K ‘

—n, [ [ A2 (03P (9)dg
G K

=n, [ [flgh) Az(k) Ak ¥ (g)dg
G K

=4 [fl9)Pl9)dg,
G

where we have made use of (5.6) and the fact that characters are common
eigenfunctions of central elements of &(K).
Finally, we obtain B
[ A1) P9y = — [ 419 F(9)dg+ Gf A1 (9) ¥ (9)dg
G é

=i [f@F@dg+24) [Fl9)F(9dg
G [

and ¥ appears to be the eigendistribution of the elliptic operator 4,.

Being so, the funetion ¥ is harmonic on a. )
i\TOW, let DeD(4). Using the hermitian symmetry of T we find

D¥(e) = P(dy, vy 00) T Taytfo) =P (015 - 0T (Rags,.info)
= T(D*f;) = T((D* b)) = »(D)T(B(f7) = »(D) ¥ (e)

sinee T is the conical distribution.

Note, that the function on @ given by the formula
5.7 ak) = loga) ¥ (k)
(8.7) Y, (nak) = expy(] )
satisfies the equation DW,(¢) = D¥(e) for any DeD(@). Both being
harmonic, ¥, and ¥ are identical. Thus

(U0, Ugey =L, P (g) = expy(loga™) ¥(g)
‘ = exp(—r(loga)) (U, @0
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[
=3
=3

Since the set {U,z,] geG} is total in D, we find
‘0,0, = exp(—v(loga))w,

and the proof follows.

Remark. In virtue of Proposition 5.11 it is easily seen that the linear
space of functionals in &’ invariant under *U| MN is of finite dimension.
It suffices to observe that the space of functions satisfying both (5.6)
and (5.7) is finite-dimensional and the map w, — ¥ is monomorphic.
This space is 1-dimensional provided that this representation is both
conical and spherical.

THEEOREM 5.12. To every conical representation (U, J) there is associated
a character x of the subgroup MAN < G and a operator 7: &% - J
antertwining for U* and U. The conical disiribution corresponding to the
representation sotisfies the equation

T({man)f) = %(a) T(f).

The proof immediately follows from Theorem 3.6 and Proposition
5.11.

In the case of classical groups, the family of conical distributions
{and represenfations) is contained in Gelfand’s list of irreducible

representations (Gelfand and Naimark [3]). In the general cage decisive

results were obtained by Helgason [11].

Now, our aim is to characterize the role played by the Radon trans-
form in the theory of representations.

In the sequel we shall assume that the representation (U, J) is both
spherical and conical. Since the transform f-+f commmtes with the
action of @ in § and ;S', it is natural to expect that it is the intertwining
operator for spherical and conical representations associated to 2 fune-
‘tional vef);o.

First we must overcome some difficulties connected with the fact
that the Radon transform is not a surjective map.

The notation being as in section 3, let us consider two operators
intertwining for the regular representation in 2(8) and (U, J), namely
o and y:

of = U(f)w,, where z,e® and is fixed by U|EK;

vf =f, where 7 is the intertwining operator associated to the
MN-invariant funectional «,.

As it will appear, o is proportional to y. In order to prove this let

us verify the following lemma: .

Leyva 5.13. There ewists a K-invariant function ¢,e2(Q) such that
Ypo 7 0 as well as ap, # 0.
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Proof. Assume the opposite, i.e. ap 5= 0 implies [yp|yp] =0 .for
each K-invariant e (S). The last theorem states that there exists

4: D(R) > and a distribution 7, such that
Ty, v) = T,(8., Bv) = [Fp|Tv]

and
By(g) = [ yom(ga)exp[r+2¢(loga)lda
A

{where g is defined by the formula dg = exp2p(loga)dkdadn; see e.g.

Helgason [7]). )
ng y is invariant under translations from K we have

Bk a'n) = [ypom(a a)exp[r+2¢(loga)]da
A
— exp[—v—20(loga)] [ poi(a)expl»+2e(loga)lda.
A
Thus for an arbitrary K-invariant zpe@(ﬁ) the value B,y is pro-

v,(g) = exp[—r—2¢(log H(9))]

with the coefficient
[ wos(a)exp [»+2e(loga)lda = [ w(&)espr{H(£)ds,
P 8

where H(ka-0): = a, and dé is as before the G-invariant measure on §.
If v = ¢, we have in virtue of (5.1)
[ #(8) exprllog H()85(8) = [ (@) D) ds(a),
§
3

where
®,(g-0) = [ expr{logH (gk))dk.
K

Finally, ) .
lyplyp) = [70[70] = T, (B9, B:2)

= L\lyo, v0) = | [o@ 2L) Bta) B,

is j i i lated to (U, d).
Wher?[‘hqjy ;—ﬁﬁzitsi};zézals;zﬁ?gnb? z, 18 ux(liq:Je (Godemept [::,]327
Whenceemakes the factor representation J?’l, therefo-re, b;;l Theoi']elr;l ;m I;
[y |m] # 0y otherwise i’v(wo,wo) # 0. This contra(.imtsn;;niejis p
{y(:p\yq)] — 0 for each K-invariant ¢e2(S), @, being .
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bo
=3
o

Now, it becomes clear that conditions yp, =0 and ap, £ 0 can
be satistied by the same ¢,¢2 (), which was to be proved.

THEOREM b5.14. fT~he Radon transform intertwins the representations
(2(8), @,) and, (2(8), T) wnitarily with respect to the scalar products induced
by @, and T (provided that T' is suitably normalized).

~ Proof. Let gcZ(8) be such that pp, 0 and I(k)g, = ¢,. The
exls.tenee (;:i such @, we have just proved in Lemma 5.13. Since the K-in-
variant subspace in J is unique, it follows that o is proporti
Sloc). 7o tiad: : 2 : (%) is proportional to

a(p*g) = Up)alp) =AU (p)y(p) = Ay(p*aqy).

But we know that a(@(S)) = &, and the
. : X seb a{p*g,| peP(@) is
:;;’a]flalflt lunder Ulp), p<2(@) subspace of @, being so,oequals(@)}by
ebraical irreducibility of the representaiti i
. ‘ w D ion of the convolution algebra
The immediate consequence is that a(p) = 4 2
Now it follows that : @ vie) fo sy ¢« 3.

(58.) D,(p, p) = lap|ay] = AP Dyelyy] = PTG, v")

which was to be proved.
Formula (5.8.) may be rewritten in the form (according to (3.9))

Sfﬂw)aﬁ,xww)ds(x) = [ Txp)ase,
g

where 7' X(s . ,
e L) stands for Zllg)y); Le@'(H), pea(H) and a: G
By (5.1) we have

JoOTXp(& @ (@) = [F@)(Txi)" () ds(a).
& 8

Concluding, we h = (Txm” ; :
following g, ave D, Xy = (Txp) . This equality suggests the

THEOREM 5.15. The transform f - f maps the set of functions
{I'xy| ped(8)}
into the set of solutions of the equations
5.9 :
(5.9) Df =v(D)f, DeD(8),
where v is defined by the formula

D&, »(D)a,.

i ©
m Theory of group representalions 253

Proof. Every weJ can be approximated in J by elements of the
form @, = 7(p,)- Assuming that @ = f, f<@(8), we have for pecJ(S)

o7 @] = [ (T x) (833 (8)
§

tending to
[Fp1E(N] = [ 3@ xNE)FEBE).
8§

Thus T x ¢, treated as elements of 2'(8) tend to TXf. On the other
hand, we have

[ @, xpu@)p (@) ds(@) = [(Tx5,)" (@)p(x)ds()
s S
= [(T%,) (E)p()a(E)
&

and tends to

[ExHEPOBE = [(TxN) (@)p@)ds(@)-
& s

Pinally, @,xg, tends in 2'(S) to (Txf) .

Since each of the elements of the sequence @, X ¢, satisfies all equations
(5.9), the same is true for (i‘ xf)”, which completes the proof.

Theorems 5.14 and 5.15. were proved by Helgason for special class
of conical distributions, namely for those associated to representatiosn

of the prinecipal series.

6. IRREDUCIBLE REPRESENTATIONS OF CONNECTED SEMISIMPLE GROUP
IN PONTRYAGIN SPACES

Tn the course of our consideration we did not meet yet any simple
example of (U, J) representation, which is not a unitary representation
in Hilbert space. Now we are going to describe a class of such represen-
tation. Lebt us begin with G = SL(2, RY).

Tt is easily seen that any conical function on § is in this case given

by the formula
od a ﬂ - r et
([ ]-9) = ers e

For real r the function i‘, induces J-representations. For —1 <7< 0
we obtain unitary infinite-dimensional representations in Hilbert spaces,

so called representations of supplementary series. To T,, n-positive even
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integer, there correspond finite-dimensional irreducible representations.
At lash, to n < r < n+1 there correspond infinite-dimensional represen-
tations in spaces with indefinite metric. )

J-spaces which we here obtain are the so called Poniryagin spaces.
In the direct sum decomposition stated in Theorem 2.3 only the space
J_ is infinite-dimensional. The dimension of J, is finite and constant.
on the interval ]m,n—1[. J-spaces. with dimdJ, = x> 0 are called
II-spaces. Similar facts hold for & = SL(n,R') and G = SL(n, (Y.
In all cases the distribution 7' related to the representations in I7, are.
given by confinuous functions on @.

The question of complete description of the class of all irreducible
representations of a semisimple group in Ponfryagin spaces is much
simpler than the same question referring to representations in Hilbert.
spaces.

This fact results from the fundamental theorem on the structure:
of Pontryagin spaces.

Lemma 6.1 (Pontryagin [23], Nalmark [21]). For every representation.
of a connecled solvable group in the space IT,, there ewists a x-dimensional
subspace invariant with respect to all operators of the representation.

This theorem together with Lie theorem and Theorem 3.6 lead to-
the following:

THEOREM 6.2. Let (U, II,)) be an irreducible representation of a connected
semisimple group G with finite center and the Iwasava decomposition.
G = KAN. Then there evists a character y of the solvable subgroup AN
and a nuclear operator intertwining for U* and U.

Thus the Gelfand and Nafmark list of irreducible representations:
of classical groups given in [3] containg all representations of this type.

APPENDIX

1. Proof of Lemma A.1.1° With the notation from section 3, let.
9, denote the kernel of ¢. The projective space #(2(@) = 9|2,
is algebraically isomorphic to &, being so i3 the space of the algebraically
il'feducible Tepresentation of the algebra 2(@). Let us 1ift B to the space-
(2(@)[2,) x 2(@) and define for some »eXD[9, the continuous functi-
onal od 2(@)x 2(&) by the formula

(@)X Z(H)>(p, v) ~ Blp,, p*y).

We can chose convex symmetric neighbourhoods %,, %, in 2(@)
such that B

sup B (g, p*p)| < oo
Py, vy

icm°®
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hence i
sup  |B(U(g)@o, ¥)| < co.

ey, velly
It turns out that the convex set
U ={5<5(6)[2,: ¢ = U(@)go, pe¥:}

is the neighbourhood in x(é(G)).

It suffice to prove that #~* % absorbs all bounded sets defining the
topology in 9(G). Let B, 4/P, = {¢e2(#)[y: ¢ = Ulg)p, Where
pren(XD) and geZ}.

As remarked above ¢, = U(f)p, for some feZ(F). Hence

J'B(E.;l,g) = -ﬁ%,g"f/g}n .

Since bounded set #+f = Z(¢) is absorbed by %, it follows that % ab-
sorbs 1§¢0,5M. In turn =~ (%) absorbs all B, 5 being so is open in D(G).
We have sup |B(p, )] <oco what was to be proved.
Qe pelly N
2° The continuons hermitian symmetric form B on Z(G)X2(G)
induces a functional T, on the space Z(F) with B = %(&) (cf. Bruhat
[1], Proposition 1.1). The very definition of %(@) shows that the space
@ (E) is invariant under the continuous map 6 defined by the formula

bp(y) = Ly{p())-

The functional T,-§ is continuous and ¢ — invariant, being so %tr
is of the form T ®dyg where T <X’ (Brubat [1], Proposition 3.3) what is
clearly equivalent to the required result.

2. There are reasons to believe that condition 2° in definition 5.9 can .
be removed, ie. results from 1°. Unfortunately, we shall not be able
to admit the case of an arbitrary distribution 7.

Exactly one of the orbits of AN in § has the dimension equal to
dim& = dim AN. This orbit is locally diffeomorphic to A XXN; n the
sequel it is denoted by O*. Denote by »* the element of M’ such that
0* = AN]f(w*).

ProposITION A.2. Let (U,J) be a completfly irreducible represenia-
tion of @ and let w, @' be fimed under ‘U | MN. If T is a measure concentrated
on 0%, then the representation is conical.

Proposition A.2 states in particular that definition 5.{3 generalizes
the notion introduced by Helgason. Indeed, distribution T agsociated
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0 an eigenvector w,ecJ is given by a continuous function on § and, by
Proposition A.1, is conical. Thus a representation conical in the senge
given by Helgason remains conical in our meaning.

*

The author wants te thank Professor K. Maurin for his valuable

indications and encouragement in this work.
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