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Proof. This follows from Stampfl’s work and our Corollary 1.
Theorems 4 and 5 suggest the possibility that every eigenspace ‘of an
isometry has an invariant complement. This holds for isometries of Hilbert
space, sinee every isometry of a Hilbert space is the direet sum of a unitary
operator and a unilateral shift (see [3]), but is apparently unknown for
isometries of arbitrary Banach spaces. )
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A characterization of multiplication
by the independent variable on %7

by

PETER ROSENTHAL (Toronto)

1. Introduction. One way of viewing the spectral theorem for Hermitian
operators on complex Hilbert spaces is: every Hermitian operator is
unitarily equivalent to a multiplication operator. This formulation of
the spectral theorem has been popularized by Halmos [2]. The essence
of the spectral theorem is then the statement that an operator A is
a Hermitian operator with a eyclic vector if and only if there is a compact
subset & of R and a finite measure u on & such that 4 is unitarily equiv-
alent to multiplication by the independent variable on £°(%, p). The
proof of this assertion in the case where A is an operator on a real Hilbert
space can proceed exactly as the proof of the complex case in [2] once
it is known that [g(4)] = supig(f)| for all (real) polynomials g.

tea(.d)

In this note we consider the problem of characterizing the operator
M, defined on #*(¥, u) (where & is a compact subset of B and 1< p
< oo) by

(M, f)(®) = zf (x) for fe L7,

That is, we find a necessary and sufficient condition that an operator
A on a Banach space be isometrically equivalent to I, on LS, 1)
Our proof will be very similar to the proof of the ecase p = 2 presented
in [2].

We give a similar characterization of multiplication by 2z on £?(¥, u)
where & is a compact subset of the complex plane.

2. Properties of M. Let s be a finite Borel measure on R with
compact support & and fix p, 1< p < co. We consider some properties
of the operator M, on &P (¥, u). We consider the real and complex
cases simultaneously unless otherwise specified.

Clearly o(M,) =&, and [g(M,)] = su;;]q(m)] for all polynomials g.

e

This means that the map ¢ —¢(M,) is an isometry from the polynomialé
(with sup norm) into the algebra of bounded operators on £ (with
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uniform norm). This map has a unique extension o an isometry from
the space €(&) (of continuous functions on &) into the operators on 7,
sinee the polynomials are dense in # (). Thus there is a unique definition
of p(M,) for every pe¥(¥). In fact, it is trivial to verify that ¢ (M) is
multiplication by ¢ for g% (¥). The existence of a “functional caleulus”
such as the above will be one of the elements of our characterization.
(We should perhaps note that M, has a richer functional calculus than
this: ¢(M,) can be defined for pe £%).

Let f denote the function identically 1 on &. Then f is obviously
a eyclic vector for M, (i.e., the smallest closed subspace of %7 (%, u)
which contains {M%if}e, is LP(¥, u)). Also

lg(fIl = (flg? )™ = [lal AL

_ for every ¢e%(¥).

We shall need one additional property of M,. This property wil
be expressed in terms of a semi-inner-product. We recall that Lumer [3]
has defined a semi-inner-product (s.i.p.) on a real or complex vector space
X as a map from X XX into the scalars that has all the properties of an
inner product (including satisfying the Schwarz inequality) except for
Iinearity in the second variable and a relation between [f, g] and [g, f1.
‘We shall say that the s.i.p. [, -]is compatible with the norm ||-|| on X if
[fyF1 = [IfIF for all feX. Lumer shows that given a normed vector space
there is at least one s.i.p. compatible with the norm.

We now seek an s.i.p. compatible with the norm on £7 (&, u). Giles [1]
has exhibited a s.i.p. in the case of real .#*,1 < p < oo, It is eagily
verified that

1
[, 9 = s [ Flol~ sengdy
gl
and
1 - _
[f, gl =—mfflyl” sgn gdu
llgtis
define an sip. on the real and complex spaces 7(%, u) respectively,
for 1< p < co.
Let ¢ be a non-negative continuous function on & and f the function

dentically 1 on . Then
le (M = [o(Mo)f, o(M,)f]

1
=W f PlplP sgnpdu

1
~ T Kz
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}\Tow
1
(M. — -
[ (Lf, 1 = [
Therefore
I (ILfIP = Hi ”:; [P, 1.
Equivalently,
ll7 -2
M, p—_L
oL = s [ (L1, T,

or

le(MFIP = 1P~ [9° (M), £1-

3. The characterization of 3. The properties discussed above are
sufficient to characterize M,. The first two assumptions in the following
theorem give, as indicated in the remarks above, a unique definition of
¢(4) for ¢ continuous on o(4). .

THEEOREM 1. The bounded linear operator A on the complex (real) normed
vector space X is isometrically equivalent to M, on a complex (real) L% (&, u),
1< p < oo, if and only 4f A satisfies the following:

(&) o(d) is real;

(b) g = sup)[q(w)[ for all complex (real) polynomials g;

weo( A4
(c) A has a cydlic vector f such that
() llg(A)fl =|[lgl(A)f]| for all -complex (real) polynomials g,

(ii) there is am s.4.p. compatible with the norm such that |p(A)P
= [IfIP2[¢" (A)f, F1 for all continuous non-negative functions ¢ on o(A).

Proof. We have seen that M, has the properties stated.

To prove the converse first define a linear functional on the complex
(real) continuous functions on o(4) by L(p) = [p(4)f,f]

Then

IZ@)] < [l (FI-Ifll < I (A 1P =x‘§g§)lw(w}lﬂf|l2-

Algo it @ is non-negative on ¢(4), then

Un( A)fIP
() = [p(A)f, F1 = 7P (A)f, 1 = ﬂ"’—”f(rﬂ >0

Thus by the Riesz representation theorem there is a unique Borel
measure pon & = o(4) such that ||fIF*L(p) = f gdyu for all eontinupus
functions ¢ on ¢ (4) (the reason for multiplying by [|f|"~* will be apparent
from the following).
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Consider the linear transformation U mapping the polynollnials
into X by Uq = ¢(4)f. We claim that U is an isometry on the polynomials
as a subset of #P(F, u). For

lg(AFI = [l1gl(4) | = IFIP~>LIg"(A)f, £
=P EgP) = [ gl dp = L.

Therefore llg(4)f] = llgl, - _ '

Since the polynomials are dense in #? and f is a cyclic vector for
A, U has a unique extension to an isometry V taking #?(%, u) onto X.
Then, if ¢ is any polynomial,

VrAVg = V7 (Ag(4)f) = Mo

Thus VAV = M,.: .

4. The characterization of M,. The fact that the polynomials in 2z
are not usually dense in £7(&, u) for & a compact subset of the plane
means that we cannot directly apply the above to characterize M.
However, if we assume at the outset that an operator has a functional
calculus with certain properties, then a similar result can be obtained.
The following generalizes Theorem 1:

THEOREM 2. The bownded linear operator A on the complex normed
vector space X is isometrically equivalent to M, on some %7 (&L, p), 1<y
< oo, if and only if:

(a) there is an isomeiric algebra isomorphism between #(o(4)) and
a subalgebra of the operators on X such that 2 corresponds to A ;

(b) there is a wvector f such that

(i) the closure of {p(4)f: pe®(o(A))} is X (where p(A) is the operator
corresponding to ¢ under the given isomorphism).

(i) lp (4)F1] = il (ADf]| for all pe%(o(4).

(ili) there is an s.i.p. compatible with the norm such that - llp (AP
= IfI" L¢P (A)f, f1 for all non-negative pe% (o(4)).

Proof. The proof given for Theorem 1 applies here with trivial
modifications. Instead of defining U on just the polynomials define
Ug = ¢(4)f for pe%(o(4)). Then U is isometric and its unique isometric
extension V satisties V'AV = M.

5. Remarks. It might be interesting to attempt to characterize
M, and M, when g is not finite; in this case M, is unbounded and the
above techniques do not seem to apply.

The above could be used to give a characterization of multiplications
by £ functions. One could assume that there is a decomposition of X

icm
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into a “direct sum” of invariant subspaces for A on each of which A
is isometrically equivalent to M,. Then the measure spaces can be pieced
‘together as suggested in [2].

It seems likely that other interesting operators could be characterized
in terms of semi-inner-products.

References

[11 J. R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129
(1967), p. 436-446.

[2] P. R. Halmos, What does the spectral theorem say?, Amer. Math. Monthly 70
(1963), p. 241-247.

[3] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961),
D. 29-43. .

UNIVERSITY OF TORONTO
TORONTO, CANADA

Regu par la Rédaction le 29. 9. 1969


GUEST




