STUDIA MATHEMATICA, T. XXXVI. (1970)

Proof. This follows from Stampfli's work and our Corollary 1. Theorems 4 and 5 suggest the possibility that every eigenspace of an isometry has an invariant complement. This holds for isometries of Hilbert space, since every isometry of a Hilbert space is the direct sum of a unitary operator and a unilateral shift (see [5]), but is apparently unknown for isometries of arbitrary Banach spaces.

References

- [1] S. Banach, Théorie des opérations linéaires, Warsaw 1932.
- [2] U. Fixman, Problems in spectral operators, Pac. J. Math. 9 (1959), p. 1029-1051.
- [3] J. R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1967), p. 436-446.
- [4] I. M. Glazman and Ju. I. Ljubic, Finite-dimensional linear analysis, Moscow
- [5] P. R. Halmos, A Hilbert space problem book, Princeton 1967.
- [6] R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947), p. 265-292.
- [7] D. O. Koehler, A note on some operator theory in certain semi-inner-product spaces (to appear).
- [8] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), p. 26-43.
- [9] B. Sz. Nagy, On uniformly bounded linear transformations in Hilbert space, Acta. Sci. Math. Szeged 11 (1947), p. 152-157.
- [10] J. G. Stampfli, Adjoint-abelian operators in Banach space, Can. J. Math. 21 (1969), p. 505-512.

UNIVERSITY OF MIAMI OXFORD, OHIO, U.S.A. UNIVERSITY OF TORONTO, TORONTO, CANADA

Reçu par la Rédaction le 29. 9. 1969

A characterization of multiplication by the independent variable on \mathcal{L}^p

b;

PETER ROSENTHAL (Toronto)

1. Introduction. One way of viewing the spectral theorem for Hermitian operators on complex Hilbert spaces is: every Hermitian operator is unitarily equivalent to a multiplication operator. This formulation of the spectral theorem has been popularized by Halmos [2]. The essence of the spectral theorem is then the statement that an operator A is a Hermitian operator with a cyclic vector if and only if there is a compact subset $\mathcal S$ of R and a finite measure μ on $\mathcal S$ such that A is unitarily equivalent to multiplication by the independent variable on $\mathcal S^2(\mathcal S,\mu)$. The proof of this assertion in the case where A is an operator on a real Hilbert space can proceed exactly as the proof of the complex case in [2] once it is known that $\|q(A)\| = \sup |q(t)|$ for all (real) polynomials q.

In this note we consider the problem of characterizing the operator M_x defined on $\mathcal{L}^p(\mathcal{S},\mu)$ (where \mathcal{S} is a compact subset of R and $1 \leq p < \infty$) by

$$(M_x f)(x) = x f(x)$$
 for $f \in \mathcal{L}^p$.

That is, we find a necessary and sufficient condition that an operator A on a Banach space be isometrically equivalent to M_x on $\mathcal{L}^p(\mathcal{S}, \mu)$. Our proof will be very similar to the proof of the case p=2 presented in [2].

We give a similar characterization of multiplication by z on $\mathscr{L}^p(\mathscr{S}, \mu)$ where \mathscr{S} is a compact subset of the complex plane.

2. Properties of M_x . Let μ be a finite Borel measure on R with compact support $\mathcal S$ and fix $p,1 \leq p < \infty$. We consider some properties of the operator M_x on $\mathcal S^p$ $(\mathcal S,\mu)$. We consider the real and complex cases simultaneously unless otherwise specified.

Clearly $\sigma(M_x) = \mathcal{S}$, and $\|q(M_x)\| = \sup_{x \in \mathcal{S}} |q(x)|$ for all polynomials q. This means that the map $q \to q(M_x)$ is an isometry from the polynomials (with sup norm) into the algebra of bounded operators on \mathcal{L}^p (with

uniform norm). This map has a unique extension to an isometry from the space $\mathscr{C}(\mathscr{S})$ (of continuous functions on \mathscr{S}) into the operators on \mathscr{L}^p , since the polynomials are dense in $\mathscr{C}(\mathscr{S})$. Thus there is a unique definition of $\varphi(M_x)$ for every $\varphi \in \mathscr{C}(\mathscr{S})$. In fact, it is trivial to verify that $\varphi(M_x)$ is multiplication by φ for $\varphi \in \mathscr{C}(\mathscr{S})$. The existence of a "functional calculus" such as the above will be one of the elements of our characterization. (We should perhaps note that M_x has a richer functional calculus than this: $\varphi(M_x)$ can be defined for $\varphi \in \mathscr{L}^{\infty}$).

Let f denote the function identically 1 on \mathscr{S} . Then f is obviously a cyclic vector for M_x (i.e., the smallest closed subspace of $\mathscr{L}^p(\mathscr{S}, \mu)$ which contains $\{M_x^n f\}_{n=0}^{\infty}$ is $\mathscr{L}^p(\mathscr{S}, \mu)$). Also

$$||q(M_x)f|| = \left(\int |q|^p d\mu\right)^{1/p} = |||q|(M_x)f||$$

for every $q \in \mathcal{C}(\mathcal{S})$.

We shall need one additional property of M_x . This property will be expressed in terms of a semi-inner-product. We recall that Lumer [3] has defined a semi-inner-product (s.i.p.) on a real or complex vector space X as a map from $X \times X$ into the scalars that has all the properties of an inner product (including satisfying the Schwarz inequality) except for linearity in the second variable and a relation between [f,g] and [g,f]. We shall say that the s.i.p. $[\cdot,\cdot]$ is compatible with the norm $\|\cdot\|$ on X if $[f,f] = \|f\|^2$ for all $f \in X$. Lumer shows that given a normed vector space there is at least one s.i.p. compatible with the norm.

We now seek an s.i.p. compatible with the norm on $\mathscr{L}^p(\mathscr{S}, \mu)$. Giles [1] has exhibited a s.i.p. in the case of real \mathscr{L}^p , 1 . It is easily verified that

$$[f,g] = rac{1}{\|g\|_n^{p-2}} \int \! f |g|^{p-1} {
m sgn} \, g d\mu$$

and

$$[f,g] = rac{1}{\|g\|_p^{p-2}} \int f|g|^{p-1} \mathrm{sgn}\, ar{g} d\mu$$

define an s.i.p. on the real and complex spaces $\mathscr{L}^p(\mathscr{S},\,\mu)$ respectively, for $1\leqslant p<\infty.$

Let φ be a non-negative continuous function on $\mathscr S$ and f the function dentically 1 on $\mathscr S.$ Then

$$\begin{split} \|\varphi(\boldsymbol{M}_x)f\|^2 &= [\varphi(\boldsymbol{M}_x)f,\,\varphi(\boldsymbol{M}_x)f] \\ &= \frac{1}{\|\varphi\|_p^{p-2}} \int \varphi \,|\varphi|^{p-1} \mathrm{sgn}\varphi \,d\mu \\ &= \frac{1}{\|\varphi\|_p^{p-2}} \int \varphi^p d\mu. \end{split}$$

$$[\varphi^p(M_x)f,f] = \frac{1}{\|f\|^{p-2}} \int \varphi^p d\mu.$$

Therefore

Now

$$\|\varphi(M_x)f\|^2 = \frac{\|f\|^{p-2}}{\|\varphi\|_p^{p-2}} [\varphi^p(M_x)f, f].$$

Equivalently,

$$\|arphi(\pmb{M}_x)f\|^2 = rac{\|f\|^{p-2}}{\|arphi(\pmb{M}_x)f\|^{p-2}} [arphi^p(\pmb{M}_x)f,f],$$

 \mathbf{or}

$$||\varphi(M_x)f||^p = ||f||^{p-2} [\varphi^p(M_x)f, f].$$

3. The characterization of M_x . The properties discussed above are sufficient to characterize M_x . The first two assumptions in the following theorem give, as indicated in the remarks above, a unique definition of $\varphi(A)$ for φ continuous on $\sigma(A)$.

THEOREM 1. The bounded linear operator A on the complex (real) normed vector space X is isometrically equivalent to M_x on a complex (real) $\mathcal{L}^p(\mathcal{S}, \mu)$, $1 \leq p < \infty$, if and only if A satisfies the following:

- (a) $\sigma(A)$ is real;
- (b) $\|q(A)\| = \sup_{x \in \sigma(A)} |q(x)|$ for all complex (real) polynomials q;
- (c) A has a cyclic vector f such that
- (i) ||q(A)f|| = |||q|(A)f|| for all complex (real) polynomials q,
- (ii) there is an s.i.p. compatible with the norm such that $\|\varphi(A)\|^p = \|f\|^{p-2} [\varphi^p(A)f, f]$ for all continuous non-negative functions φ on $\sigma(A)$.

Proof. We have seen that M_x has the properties stated.

To prove the converse first define a linear functional on the complex (real) continuous functions on $\sigma(A)$ by $L(\varphi) = [\varphi(A)f, f]$.

Then

$$|L(\varphi)| \leqslant \|\varphi(A)f\| \cdot \|f\| \leqslant \|\varphi(A)\| \cdot \|f\|^2 = \sup_{x \in \sigma(A)} |\varphi(x)| \|f\|^2.$$

Also if φ is non-negative on $\sigma(A)$, then

$$L(arphi) = [arphi(A)f,f] = [(arphi^{1/p})^p(A)f,f] = rac{\|arphi^{1/p}(A)f\|^p}{\|f\|^{p-2}} \geqslant 0\,.$$

Thus by the Riesz representation theorem there is a unique Borel measure μ on $\mathscr{S} = \sigma(A)$ such that $||f||^{p-2}L(\varphi) = \int \varphi d\mu$ for all continuous functions φ on $\sigma(A)$ (the reason for multiplying by $||f||^{p-2}$ will be apparent from the following).

Consider the linear transformation U mapping the polynomials into X by Uq=q(A)f. We claim that U is an isometry on the polynomials as a subset of $\mathscr{L}^p(\mathscr{S},\mu)$. For

$$\begin{aligned} \|q(A)f\|^p &= \||q|(A)\|^p = \|f\|^{p-2} [|q|^p (A)f, f] \\ &= \|f\|^{p-2} L(|q|^p) = \int |q|^p d\mu = \|q\|_p^p. \end{aligned}$$

Therefore $||q(A)f|| = ||q||_n$.

Since the polynomials are dense in \mathscr{L}^p and f is a cyclic vector for A, U has a unique extension to an isometry V taking $\mathscr{L}^p(\mathscr{S}, \mu)$ onto X. Then, if q is any polynomial,

$$V^{-1}AVq = V^{-1}(Aq(A)f) = M_xq.$$

Thus $V^{-1}AV = M_x$.

4. The characterization of M_z . The fact that the polynomials in z are not usually dense in $\mathcal{L}^p(\mathcal{S}, \mu)$ for \mathcal{S} a compact subset of the plane means that we cannot directly apply the above to characterize M_z . However, if we assume at the outset that an operator has a functional calculus with certain properties, then a similar result can be obtained. The following generalizes Theorem 1:

THEOREM 2. The bounded linear operator A on the complex normed vector space X is isometrically equivalent to M_z on some $\mathscr{L}^p(\mathscr{S},\mu), 1 \leq p < \infty$, if and only if:

- (a) there is an isometric algebra isomorphism between $\mathscr{C}(\sigma(A))$ and a subalgebra of the operators on X such that z corresponds to A:
 - (b) there is a vector f such that
- (i) the closure of $\{\varphi(A)f: \varphi \in \mathcal{C}(\sigma(A))\}\$ is X (where $\varphi(A)$ is the operator corresponding to φ under the given isomorphism).
 - (ii) $\|\varphi(A)f\| = \||\varphi|(A)f\|$ for all $\varphi \in \mathscr{C}(\sigma(A))$.
- (iii) there is an s.i.p. compatible with the norm such that $\|\varphi(A)\|^p = \|f\|^{p-2} [\varphi^p(A)f, f]$ for all non-negative $\varphi \in \mathcal{C}(\sigma(A))$.

Proof. The proof given for Theorem 1 applies here with trivial modifications. Instead of defining U on just the polynomials define $U\varphi = \varphi(A)f$ for $\varphi \in \mathscr{C}(\sigma(A))$. Then U is isometric and its unique isometric extension V satisfies $V^{-1}AV = M_{\varphi}$.

5. Remarks. It might be interesting to attempt to characterize M_x and M_z when μ is not finite; in this case M_x is unbounded and the above techniques do not seem to apply.

The above could be used to give a characterization of multiplications by \mathscr{L}^{∞} functions. One could assume that there is a decomposition of X

into a "direct sum" of invariant subspaces for A on each of which A is isometrically equivalent to M_z . Then the measure spaces can be pieced together as suggested in [2].

It seems likely that other interesting operators could be characterized in terms of semi-inner-products.

References

- J. R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1967), p. 436-446.
- [2] P. R. Halmos, What does the spectral theorem say?, Amer. Math. Monthly 70 (1963), p. 241-247.
- [3] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), p. 29-43.

UNIVERSITY OF TORONTO TORONTO, CANADA

Reçu par la Rédaction le 29. 9. 1969