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whence after some transformulations analogous to the transmutations
made in [5], we obtain

(A’(uo) th) = (/1 () - w)

for all ue @, q.e.d.

Theorem. 2 is a generalization of Pontriagin’s maximum principle.
Tt does not give the fact that #*(0) is the solution of the conjugate equa-
tion to (1), which holds £01 the classical Pontriagin’s maximum pnnelple
[4] and which holds for the problem presented in [5].
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Banach limits in vector lattices
by

A, L PERESSINI (Urbana, Ill.)

S. Banach ([2], p. 34) defined generalized limits (now commonly
referred to as Banach limits) as positive, linear, shift-invariant function-
als on I° which agsign the value 1 to the constant sequence with terms
equal to 1. Lorentz [4] investigated the linear subspace of I consisting
of those sequences in 7™ to which all Banach limits assigned the same
valne; such sequences were termed almost convergent. In this paper,
we consider the extension of the concepts of Banach limit and almost
convergence to vector-valued sequences. In addition to seeking generaliza-
tions of the known results for the case of real-valued sequences, we also
consider a number of new questions which do not arise in the classical
case. Our primary objective will be to study the geometric structure of
the space of almost convergent sequences and the set of Banach limits
in this more general context. Notation and terminology concermng
ordered vector spaces will follow Peressini [5].

1. If E is a vector lattice, then the collection w(H) of all sequences’
% = (x,,) such that z,eF for all » is a vector latitice for the usual “coordi-
natewise” definitions of the linear operations and order. I (¥) will denote
the linear subspace of w(E) consisting of all order bounded sequences,
that is, all sequences Z = (1,) for which there exist y, z in B such that
y <o, <z for all #n. A linear mapping L: I*(E) - F is a Banach limit
on B if

(1) L is positive.

(2) L is shift-invariant (i.e. L(w)
on I°(B) defined by o((®,)) = (@a41)-

(3) If ¢eF and ¢ is the constant sequence with n™
L{) =

It follows from (2) that L(m) L(o"‘?ﬁ) for each natural number %,
where o denotes the E™-iterate of o.

If F is an order complete vector lattice and if Z = (w,) el (H), then

int sup {x,}
E nx=k

L(o%), where o is the “left-shift”

term ¢, then

lima, = sup inf{z,} and Lma, =
— k azk
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N . . .
are defined and & = () is order convergent to x el (written o-lima, = )
"

it = fn:xn = limz, .
ProrositioN 1. If L is any Banach limit on an order complete vector
lattice B, then for each 7 = (x,)l°(B)

lima, < L(#) < lima,,.
Proof. Properties (1) and (3) for L imply that

(*) infs, < L (@) < supa,.
n n

Consequently, since L(ZJ) = L(a’%) for each natural number % and
gince infmw, = inf(ak(mﬂ)), sups, = sup(o®(w,)), () implies that
nx=k . n nzk » n

infw, < L(o*(x,)) = L(%) < supa,
nzk nxk

for each matural number %. This clearly implies the desired result.

In keeping with the terminology used by Lorentz [4] for real-valued
sequences, we call a sequence (w,)el(F) almost convergent to wekE if
L{(2,)) = @ for every Banach limit L on F; in this case, we write # = a-lima,,.
The collection ac(F) of all almost convergent gequences in F is obviously
a linear subspace of 1°(E). Proposition 1 shows that if F is an order

‘complete vector lattice, then ac(F) contains the linear subspace oc(H)
of all order convergent sequences in ¥ and a-lims, = o-lim s, for (z,) coc (B).
Xt 0 % ceB and o, = (—1)"¢ for all n, then @ = (x,)cl®(E) and 2L (@)
= L(@)+ L(o%) = 0 yet L([#|) = ¢ for any Banach limit L. Thus,
1}(155[) # [L(EE )| for any Banach limit L, that is, no Banach limit is a lat-
tice homomorphism; however, the restriction of any Banach limit to
oc(H) is a lattice homomorphism.

2. In this section, we shall agsume that % is an order complete vector
lattice. Then I (H) is also an order complete vector lattice and the linear
subspace ac(E) of almost convergent sequences contains the vector sub-
lattice oc(®) of all order convergent sequences. In this setting, the
existence of Banach limits as well as Lorentz’s criterion for almost
convergence can be egtablished by making use of suitable modifications
of results and constructions used for the case of real sequences. For this
reason, we shall not duplicate the entire argument in the proof of the
following proposition, but only those parts where modifications of the
technique for real sequences are required.
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ProposirIoN 2. If B is an order complete vecior lattice, then Banach

limits ewist on H. A necessary and sufficient condition for # — (@) 1 (H)
to be almost convergent to xeE is that

1 -1
r = o-Him. (——— Z wi_H),
L r

n

where the convergence is uniform in j.

Proof. Suppose that 7= (@) el (E). In analogy to the construction
in Sucheston [7], we define

1 n—1
G, = Sup ('——-2 @&; )
; n & T+7

for each natural number #, and note as in the case of real sequences that
]l;c:ﬂ or—)-]c‘m < cm

for each pair of natural numbers 7, m. For fixed m, define a sequence
M el®(H) for r =1, ..., m by
o0 Copmym  TOr rH(E—Lym<p<rkm (h=1,2,..),
e, for p <r.
Then

(%) sup{og} = sllp{o’“l(cq)} = sup {sup {" 7 (¢)}}

1<r<m
for each natural number ». But

lim(e0)) = lime,,pm <6, for r=1,...,m;
q k

hence, (%) implies that Ti_n_:mn < ¢, for each natural number m. Therefore
lime, < lime,, that is, {c,} is an order convergent sequence.
Define a mapping p: I*°(E) - E by
18 o>
0y piz) = O-Iim(s?p[;%— > ww]), % = (w,) l™ (B);
n

i=0

then p is a sublinear mapping and the linear mapping ! defined on the
linear subspace oc(E) of I°(E) by

1@) = olima,, @& = (a,)<00(E)

Studia Mathematica XXXV, 2 8
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satisfies Z(EE) <p(35 } for all 7 coe(H). Consequently, since the classical
proof of the Hahn-Banach Theorem to be found, for example, ig 2]
(p. 27-29) only makes use of the fact that the real number system iy an
order complete vector lattice, I can be extended to a linear mapping
L: I°(E) - E such that L(E) <p(25) for all 'oZel""(E). L ig positive since
p(E) < 0 whenever # < 0. Since

-

—p(—2) < L@E) < pl@) for all @el®(M)

and since

2sup ||
pli—o@) < o-li;n(w«**;;w =0,
it follows that L is shift invariant. Therefore, L is a Banach limit on Z.

To derive the necessary and sufficient condition for almost con-
vergence stated in the proposition, we first note that the proofs of Lemma 1
and Theorem 1 in Sucheston [6] carry over immediately to the present
setting. Hence, the sublinear mapping p bas the fo]lpwing alternate
description:

@) p(@) = intfim | - 2‘%}} 5 = (@) el (D);

the infimum is taken over all possible choices of mnatural numbers n,
1y ..vy T3 in addition, the mapping p is shift invariant. For all natural
numbers j, k, » and all 7 = (w,)<l®(B) we have
n—1
inf @y <— > @505 < SUD Tg;
o=i+k (L a>j+k
consequently,
. - -
infe, < —p(— of(m)) < p(o* (@) < supa,.
=k @k

Therefore, by the shift-invariance of p,
3) lima, < —p(—2) < p(0) <Ima,, @ = (s,) <l (H).

Tn particular, p(%) = olima, for each ® = (%,)coc(X). Using the
representation (2) of p» and the inequality

lim a, 4 limb,, < lim (a, +b,) < lima, ++1lim.b,,,
one can now readily prove that

4) p@+Y) =olima,+2(y), @ = (a,)e0e(B),y = (3,)l*(B).

icm°®
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For each Banach limit L on B, the shift-invariance of L implies
that ’ )

—p(—2)<L@)<p(@), @I°(H).

On the other hand, if —p(—5)<p(5§) for some Esl""(E), then
# ¢oc(E) and the limit mapping I: oc(E) —F can be extended to the
linear subspace spanned by oc(H) and z by defining the value at §+ a®
(5] coc(X)) to be o-limy, -+ ac, where ¢ is any element of the order interval

: [—p(——i), p(%)]. (This is & consequence of the proof of the Hahn-Banach

Theorem and (4).) Therefore, there exist Banach limits with distinet
values at @, that is, @ ¢ac(E). Since

o . . 1 n—1
—p(—x) = o-lim (m.f [Z 2 a:iﬂ-])

7 =0

for all ¥ = (z,) I (E), we conclude that z = (x,) is almost convergent

to z if and only if
. l n—1
2z = o-lim (— 2 x; +,-)
" is
uniformly in j.
PROPOSITION 3. Suppose that M is a convex set in an order complete
vector lattice E; then the set of a-limits of sequences with terms in M coincides
with the set of limits of order convergent sequences with terms in M.

Proof. If z = a-lima,, where #z,eM for all n, then'

BN ERRS
x = o-hm[%Zmi]

=1

by Proposition 2. Since the bracketed expression is an element of M for all

ny w;eM (¢ =1, ..., n), it follows that & is the limit of an order convergent
gequence in M. On the other hand, if # = o-lima, for #,¢M (» = 1,2, ...),
then # = a-lima, by Proposition 1, so the proof is complete.

Recall that an ordered vector space F is regularly ordered if the set
of positive linear funectionals on F separates points of F (ef. [5], Chapter 2,
(1.29)). If F'is a regularly ordered vector lattice, the order topology 7,
on F (that is, the locally convex topology generated by the family of
all seminorms p on F with the property that 0 < # <y implies that
p(x) < p(y); see Section 1 of Chapter 3 in [5]) is a Hausdorff topology
and the cone in F is normal for 7.

PROPOSITION 4. Suppose that B is a reqularly ordered, order complete
veclor lattice and that 1°(E) is equipped with its order fopology; then ac(H)
is a closed Uinear subspace of 1°(E).
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Proof. Since E is regularly ordered, it follows that the cone in
is normal for the Hausdorff loeally convex topology o(H, E*) and that
®(E) is regularly ordered. Since the sublinear mapping p: I°(H) -

efmed in the proof of Proposition 2 is positive and satisfies p(w ) 0
for @ < 0, it follows from Theorem 3 in [L] that p is confinuouns. Since

ac {w = ’ﬂﬂ Elw(-u (m)‘l"p '"al = 0}
by Proposition 2, it follows that ac(E) is closed.

3. Tn this section we shall make the added assumption that the
order complete vector lattice ¥ has an order unit e. If ||| is the corre-
sponding “order unit norm” on E defined by

le| =int{A >0: —ie< @< de},

then ¥ is an abstract M-space for this norm so that % is norm and order
isomorphic to the space. C(X) -of continuous, real-valued functions on
a guitable extremally disconnected, compact Hausdortf space X. Moreover,
the space I°(H) coincides With the vector qpaee of norm bounded se-

quences in B, the element % of I°(B) with »™ term equal to ¢ is an
order unit in I*°(B) and the order unit norm corresponding to % coincides
with the norm

@l = suplsll, & = (@) l®(H).

n
Finally, I°(F) is also an abstract M-space for the norm |||

PROPOSITION 5. Bwery weakly convergent sequence in B is order conver-
gent (and hénce almost convergent) to its weak Timit.

Proof. Since F is an order complete abstract M-space, B can be

. identified with the space C(X) of continuous real-valued functions on

an extremally disconnected, compact Hausdorff space. If {f,} = C(X)

and (f,) converges weakly to 0, then it is well known that {||f,[} is norm

bounded and f,(s) converges to 0 for each x<X. Since (' (X) is an order

complete vector lattice, g,, = sup f;, exists in 0 (X) for each natural number n.
kzn

Algo, if §,(x) = supf,c(w for each such n and each »eX, then g, () > 7, (%)

for all ¢ X and {meX 0n(®) > Fn(2)} is 2 sep of first category in X. Since
mfgﬂ(m) = 0 for all weX, it follows that {» X (mf g,) (@) > 0} is empty

since it is of first category and infg, ¢0(X). We conclude that llmfn =0,
and similar reasoning implies that limf, = 0, that is, 0 = o-limf,.
— "

Order convergence in ¥ need not imply weak convergence. In fact,
if {u,} is a decreasing sequence in F with infimum 0 and if {u,} is weakly
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convergent to 0, then (3.4) of Chapter 2 in [5] implies that {u,} is norm
convergent to 0. However, if we take B = I®, then the sequence {u(™}
< (), defined by
1 if k>,
0 k<,
is decreasing and has infimum 0 but does not converge in norm to 0.
Since the norms of I°(%) and ¥ are both order unit norms, the space
of norm continuous linear mappings of I°(F) into E coincides with the
order complete vector lattice L*(I*(E), B} of all order bounded linear
mappings of [®(E) into B. Our next objective will be to describe the
“location” of Banach limits on J within the space I° (l°° (B), E). We begin
by discussing the space L° (l""(E), E) of the order continuous mappings
in I*(i*(B), E). (We say that an order bounded linear mapping T is order
continuous if o-im7(x,) = T(x) whenever o-limz, = z. L°(I°(E), B) is
a band in I’ (I°(E), E) by Theorem VIII. 3.3 in [8])
Define I*¢E) to be the vector space of all order suinmable sequences
in I°(®), that is ‘

By = 5 = (m,) el (B): sup kg |, < B}

Obviously, I'<E} is a lattice ideal in I*(H); however, I'(E} is not
a band in I®(F) since, for example the sections (%) % (< n) (n=1,2,..)
of ¢ are all in U'¢<EY, yet ¢ = sup {é (< #)} ¢1* (B>

Since X is an abstract M-space with unit element e, 7 may be re-

garded as an algebra with multiplicative unit e. We make use of this
induced multiplication in Z in the proof of the following result:

PROPOSITION 6. A mapping T I’ (I°(E), B} is order continuous and
T(z6™) = xT (™) for all n and we B if and only if there is a w = (w,) el <EY
such that

(%) Tio) = nfwm 5 = (0,) <I(B)

(where the series is order convergent in E). If L‘(l‘”(E), E) is the sei of
such order continuous linear mappings in L (1°(B), E), then the mapping

p: I (lm(E), E) =T (B defined by (T) = w through (%) is an order iso-
morphism of L' (I°(H), E) onto I (E).

Proof. If TeL' (I°(E), B) and if ¢ denotes the “a™ unit vector”
(that is, 6™ is the element of 1 (&) with n'* term ¢-and all other terms 0),
define u, = T+ (e™), v, = T~ (™), w, = T(¢™) for each natural num-

(*) The nit-section @ (< n) of a sequence z = (=) is the sequence whose KB term
is @z for k< n and 0 for k> n.
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- ! . -,
ber #. Since the sequence {¢(< n): w,a—l 2,...} of sections of ¢ is
monotone increasing and hag supremum- 7 in l”(L), it follows that

S, = T(E(< )

k=1

increases with » and

n o
sup Yy, = T (6)ell

n k=1

Therefore, W= (4,) V' <B> and, similarly, B = (v, )ell (#). Conge-
quently, since Wy, = U= Ty for all =, it follows that w —“( w,) el (B,
For each w = (&,) eI (B), the sequence of sections {w (5 17,} order
converges to 7 ; consequently, |T(z (< n))} order converges to T(%). But

> n
(5 (<m) = 3o
=1
for each natural number %, so (x) holds. Note that w >0in KB IET=0
in I'(I°(B), B). ‘
On the other hand, suppose that 0< w = (w,)el* <B> and that
0 <@ = (m,) I (B), then

"
(Y mwy: m=1,2,...}

k=1

is a monotone increasing sequence in ¥ which is bounded above by
. n
(9]0 5D { 3 ;.
n =1
Hence, we can define a mapping 7., on the cone in I°(E) into B by
w

(%) I (a) ;2 oWy, 0L @ = (m,)el™(H).
1

It is a routine matter to verify that T,, iy additive and positively
homogeneous on the cone in I°(H); con&equently, ’l’ hag a unique linear
extension to I°(X) which will also be denoted by Tw* It is easy to verify
that equation () iy valid for all 7 = (,) €l (H); moreover, Tru; =0
in I (I*(8), B) since % >0 in I'¢H).

Hw = (w,) is an arbitrary element of I* (&> and if U= (w;h), B == (W),
then, for each ¢ = (1,)e!®°(E) and each natural number &, we have

k > >
|£1wnw,,—(Tz(m)—T;(m)| Lzmw ~T, (@) |+]2wnwn—.’l (@)
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Therefore, since () holds for 7. and 7', (*+) defines a linear map-
U v
ping of I°(H) into B and T.(e™) = w, for each n.
w
To prove that 7., is order continuous, it is sufficient to consider
w

the case in which % = (w,) > 0. In this case, define

T @) = Z’ Wy T,

for each natural number % and each 7 = (z,) I (). It is easy to see tha,t
Tf:)eLl (I°( 1), E) for each k. Moreover, (++) implies that

T, = sl;pTgf) in IMi™(B), B);

consequently, sinee L°(I®(E), B) is a band in I°(I™(E), B), it follows
that TG «L'(I®(B), E). This completes the proof of the proposition.

Since L° (I (B), E) is a band in I’ (I°(B), B), the space L’ (I™(&), E)
is the order direct sum. of L°(I*(E), E) and the complementary band
L (I*(B), E)* consisting of all order bounded linear mappings S: I*°(B) — B
such that inf(]8], |T]) =0 for each order continuous linear mapping
T: I°(B) - E. The mappings in the complementary band L*(I* (%), E)*
will be called singular mappings.

PropOSITION 7. If L is a Banach limit on B, then L is a singular
mapping.

Proof. Suppose that T'eL’ (I°(E), B) and that 0 < T < L. Since the
sequence {3 (€n):n=1,2, ...} of sections of ¢ increases and has supremum
¢ inl°(E), it follows that T'(s) = supT( (< m)). However, 0 < T (e(< <))

(e (€n) =0 smce L is shift mvanam consequently, T'(¢) = 0, that
ig, T = 0 since % is an order unit in I°(¥) and 7 > 0.

We have already remarked in Section 1 that a Banach limit is not
a lattice homomorphism of I°(¥) into E. In particular, it follows from
(1.2) in [3] that a Banach limit is not an indecomposable mapping in
I’ (1°(B), B). (Recall that a non-zero positive element z of an order
complete vector lattice F is indecomposable if & == y-+zand inf{y,2} =0
imply ¥ = 0 or z = 0.) In fact, a Banach limit L on # is not an atomie
mapping, that is, L is not in the band in I (I°(E), E) generated by the
indecomposable mappings in I’ (I°(¥), E). For if I is indecomposable,
then the range of T must be the 1-dimensional subspace of F spanned
by some indecomposable element of E; consequently, every positive,
atomic mapping in I? (I°(B), B) must have its range in the band of atomic
elements of H. Since every Banach limit L satisfies L) = ¢, it is elear
that the range of L need not be contained in the band of atomic elements
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of E;in fact, if B = ¢(X); where X is an extremally disconnected compact
Hausdorff space in which the isolated points are not dense in X (cf. (5.2)
“in [3]), then ¢ is not atomie. ,

The following result makes use of Proposition 6 to characterize the
order continuous indecomposable mappings in L' (I°(H), B).

PROPOSITION 8. If 0 < T« IMNI™(E), E), then T is an order econtinuous,
indecomposable mapping if and only if there ewist indecomposable elements
a, b in B and a natural number g such that

T@) =8, 0 = (n,)el™(H),
where f,b = sup {inf (z,, mb)}.
M
Proof. If T'is an order continuous, indecomposable mapping, there
is a % = (u,) > 0 in I'<E> such that

T(E) = 2 D Uy, y a; = (mn)flm(E))

Ne=1

by Proposition 6. If # is the set of indecomposable elements of F, then
it is easy to verify that the set /= of indecomposable elernents of I*(E)
is given by #® ={¢™: ¢es,n =1,2,...}, where ¢ is the element of
I°(B) with »® term ¢ and all other terms 0. Therefore, by (1.3) in [3],
there exist indecomposable elements a,b in B and a positive integer ¢
such that

T = f.a, where p,b = sup{inf(a, mb)}.
&z @ m
If p is any positive integer such that p # g, then
B 59 — sup{int (6@, mb®)} = 0;
o () m
consequently,

Uy = T(e®) = By = 0.
Also, :

B @ = sup {int (2@, mb)}
from which it follows that
Bapyl = sup {inf (w, mb)},

yielding the desired representation of 7.
Conversely, %if T has such a representation (%), then the hand [b]
generated by b coincides with the 1-dimensional subspace spanned by

icm°
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b and the projection p, of F onto [b] that vanishes on the complementary

band [b]* is order continuous and B, = pu(2,). For each T = () 1° (B),
we have :

IT(2)| = |B,al = 1fJa and  T(2]) = y,a,

where y,b = p,(l2,]) = |py(2,)| = |B,|b. Therefore, T is a lattice homo-
morphism which is order continuous since p, is order continuous. Since
the range of T' is the linear hull of the indecomposable element a, .it
follows from (1.2) in [3] that 7 is indecomposable,

It should be observed that indecomposable elements in L°(1*(E), E)
need not be order continuous. In fact, even if # is the order complete vec-
tor lattice of real numbers, the point evaluation f, at a point of fN ~ N
(where BN denotes the Stone-Cech compactification of N )is an indecompos-
able linear functional on I (regarded as the space of real-valued contin-
uous functions on BN) which is not order continuous since it does not
originate from an element of I*.
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