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On an equation with reflection of order n»
by

BARBARA MAZBIC-KULMA (Warszawa)

If a differential equation contains together with the unknown function
#(t) the funetion x(—1), then it is called & differential equation with 9‘efl¢c-
tion. ) :

D. Przeworska—Rolewicz gives in [1] the general solution of an
equation with reflection of order 1, i.e. of the equation

aom(0)+bow(— 1)+ ay &' (1) + b, 2" (—1) = y (1),

where a,, a;, b, and b, are scalars.
In the present paper we consider the differential equation with
reflection of order =,

1) () + bt (— O+ ..+ @™ )+ b 2™ (—1) = y(1),

where the coefficients ay, ..., @y, by, ..., b, axe constants. We give a general
form of the solution of (1) under the following assumptions:

1° al—bL # 0;
2° aj_par—b; by #0 (E=0,1,...,n and j = k+1,..., k+n);

3° the polynomial ZLL,-t" has single roots only for £ =0,1, ..., n,
izo

‘where
i
ch,-k for 0 <j< m,
. =0
(i) =1 5
> oy for m<j< 2n,
k=j—n
(i) e = (— 1Y " (a;_so— by_zcbe) (an— b3y .

1. Let S be a reflection: Sz(f) = #(—¢). Sinee § = I, where I
is the identity operator, S is an involution. We write

(2) Dx(t). = o' (£).
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Tt can be proved that the operator § satisfies the following condi-
tions:
1° § is commuting with the operator D™:

(3) SDM-—-DZW'S —_ 07
2° § is anticommuting with the operator D**':
(4) ’S/DZ7L+1+ D21L+1S = 0.

. 2. Let X De a linear space over the field of complex scalars. We
consider a linear equation of the form

(@I +Do8) - (0 I+, 8)D+...+ (a6, I+5,8) D" =y,

where § i an involution on X and D is a linear operator transforming X

into itself and anticommuting with 8; g, ..., @ by, --., by are scalars.
Let us write
" ,
(8) A= 7320(“"” b 8) D",

We prove for the operator A the following
THEOREM 1. Let

s

(6) B = (—1)"anI—b,81D"

m=0

and Ry = (a2, —b2)"'B. Then

n
AR, = RyA = Y 1y D¥,
7=0

where A; and ¢ are defined by (i) and (ii) respectively,
Proof. We have ‘

e

I
[\

BA [(—1)™ 4 I — by 81D™ (@, I + bz 8) D

=
s I
2 o
3
i
S

I
DM

[(—1)" @I — by 81[ax D" +(—1)" b SD") D*

=4
+ L
1
L

f
DM

[(—1)" @ I— b, S1[ar I+ (—1)" b 81 D™+

=
i
°
2
i
-

il
NZ
M

[("" 1)m (a'm“k”‘ bmbk) + (“mbk— a bm) S]-Dm+k-

By
i
S
H]
i
=

Let us remark that

(am by — A byy) SD™ T = — (@b — G by)) D™,
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hence
n n
3 3 (Gnlip— arpby) SD™F = 0.
k=0 m=0
This implies
T n
(7) BA = 3 3 (—1)"(amax— bnbi) D"
. k=0 m=0

Similarly, we can show that BA = AB. Putting m =j—Fk in (7),
we have

=
i
o
-,
i
&/

Now we write

1 (@ _ror— bj_sxbe) (a2 —b3) ™" for 0 <j< n,

k=
— 1" (ay_jax— bj_rbx) (an—b7) ™

J
> (=
k=0
2 for n <j<<2n
k=j-n T
and
R, = (a—b) "' B.
It is easy to check that
an
(8) . AR, =R4A = Y 4D
F=0
and that AB contains only even powers of D. Finally, we obtain
(9) ARy = N iy;DY.
. 7=0

Let now Dy denote the domain of the operator T and Zr the kernel

of T:
ZT = {JEEDTI Tx = 0}.
THEOREM 2. 1° Z4 < Zr and 2° Zn, c Zg, where T = 3y D”.
=0

Indeed, if zeZyp, then Az = 0 and
[212,-D2"]m = R,(4%) =0,
=0

hence @eZy. This implies that Z4 = Zy. The proof of 2° is analogous.
In the following we make use of assumption 3° (p. 69) in view of

n
which the polynomial ZL;,-DZ’ , considered as & polynomial with respect
i=0 )


GUEST


72 B. Mazbic-Kulma

to the variable D% has only single roots. In [1] for n = 1 the roots are
single because the corresponding polynomial is of the form D*—). For
n > 2 this polynomial may have multiple roots. Since we assume that

the polynomial ZZZjD” has single roots only, we can write thatb
=0
T = 3D = [[(D*~u),
F=0 g=1

where u, denotes the g-th root.
THEOREM 3. We have

= {e:2

n
where T = [] (D*—u,I).
g=1
Proof. Let us suppose that z is of the form (10). Then

n
Zp = Z;(zq-l— Sz for zq,z;eZD_Vu—qI},
q=

(10)

n

T (D" —u, D) Z (2 + S%)

g=1

[T] (D*—ugI)]2
q=1 .

]

n

i —'“a ”Z 2+ 8 Z%]
[ﬁ ¥ — 1w, 1) ] Z:: q'l‘S[qI;.’l(Dz._uaI)]qélzé =

:[q

Therefore zeZp.
Conversely, let us suppose that zeZp. We can decompose the space

Zyp into a direct sum,

Zy = q@ Zp_vig1®Zp.yig1l,
because D is an algebraic operator on the space Zp with single characteristic
roots (ef. [2], p. 81-82). Hence

&= 2 (zfl_l‘ztlz,)a

=1

where #,¢Zp_ Vgl and #; GZD+qu1 for ¢ =1,2,...,n.

We have to- prove that 2, = Sz;, where 2, eZD Vgl forg=1,2,...,m
But 2} eZp.,yi;1, hence Doy = —Vu,2y and Vu,Sey = 8(Vuey) ——SDz;'
= D8z, Therefore

(D—Vu,I Sz;’ =0

~

and . 7 = Sty <Zp_y1

for g =1,2,...,n. But ¢ = &%, = 8(8) =

) 8%, which gives the re-
quired form of 2 .
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THEOREM 4. We have

(o — G2 Vi) US1 L — [(Bai— baiy 1V 20g) g1 S} 25},
where zgeZ —vagr & being a scalar, ¢ =1,2,.
Proof. Theorem 2
every zeZyp is of the form Z’ (2, 87y), Where 2, 2zeZ,,_ VT
Similarly as in the proof of Theorem 2.4 in [1] we haveforg = 1, 2, .

2 = [ 3 (@I +5:8) DY 2g = (6T +be8)2g+...+(anI+ b, 8) D"2,.
1=0

But

DSz = —Vu,8z

for ¢ =1,2,...

Dzy = Vuge, and

and SZUEZD+ yigT , n. Hence

D' Sz = (— 1) ud? 8z

because zquD_v,%l
i 1/2
D'ey = w2,
2n and ¢ = 1,2, ..., Then
=1 H
_D2iZq

D* 8z = ugSzy,

for 1 =1,2,...,
i 2041, v/0r agt '

= Ug2y, D02, = Vigtgy,

D82, = —Vuguy S

for ¢ =1,2,..., 2% Thus

2 Z {[(@s:+ amﬂl/uq) THY SN (N Vug)uilS}e,.

g=1 i=0

Similarly, we can show that

noon — —_— B
A8y = 3 3 {[(tni— Gags V) 0E1 T+ [(Bar— stV ) g1 8} 82
- g=1 1=0
Hence

Z (aa:+ anHI/MQ uq]zq—{— 2 y[(bm‘{“bnTﬂ/uq)uq]qu‘!’
g=1 i=0

n A P
Z [(@i— azi+11/;;) ug] Seg+ 2 Zﬂ [(bsi— bzi+1vluq)’uq] gy
i=0 Q=1 i=i

[]Mg

o

3

==

=

but the space Zr is a direct sum,

JT - @[ ’/_ql® D+|/"TqI]

3

mlphes Z 4 < Zp. From Theorem 3 we infer that

7
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(see nthe proof of Theorem 3), and #eZp_yu;, 82yZp.yigr and T
= [] (D’—u,I), where q =1, 2,..., n. Thus the equality 4z = 0 holds if
q=1
and only if
n
2
g=1 i

2 E[(“ﬁi— “2i+11/:¢zq_) uZ,Sz,;—l-— (bai - b2i.v1<1‘/%) u;Sz,'lJ =0.

Q=1 1=0

M=

[(@9s+ am.ﬂ/u_q)uﬁzﬁ— (b2 — bzi»r-ll/;‘;)“é%] =0,

i
=3

(11)

Acting with § on both sides of the second equation of (11) and

applying the property §* = I, we obtain the following system of equa-’

tions:
n o . .
4—271 ._20 (@ + %i+1‘/”q) tg] 2y [(Dai— b2'i+11/’”41) tglzg = 0,
(12) o

[(Gai— oz 1V g ) )2+ [(bait boiy1Vthg ) ) 20 == 0.

(NP

)
]
=
.
1
o

From these equations it follows that 2, and 2, are linearly dependent
for g = 1y2;:.:, m Indeed, the space X is a direct sum, which implies
that (12) holdsiifiand only if

s

[ (B2t Goiga ‘/a;)u;] zg+[,£§, (bai~— b2i+11/u_a)“;1£]zr:t =0,

!

I
S

(13)

n : n .
[i=—; (Cﬂzi*azia-l‘/-@;g;)’llf;]«%'f—[.zo (b2i+b2i+1@)%(}]za — 0.

This shows the linear dependence of z, and 2.
We can show that the determinant of the gystem (13) is

M s

V =
3

n an
A w:,Z::() (— 1)m (a'maln'— bmbk) 'Mg'H-k)lz = 1270 Z,u{/z B

N n

A Sinee %, (¢ =1,2...,n) are roots of the polynomial 3 AyD*
- - . ('ﬂo

considered as a polynomial with respect to the variable D7 ive have

¥ . 28

V= 3xu =0.
j=o

It follows that (13) has non-zero solutions for ¢, and z;
I we write

Ld X n .
fg = {;‘0 (b2i+ bzi.,_ﬂ/’l;;) 'Lb',;, 5; = ;Z: (az'i_ azi.}.ll/’ua ) u;,
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we obtain from the second equation of (13) that &g+ £52, =0 for
qg=12,...,n Hence )

2= 2 Sl tyiy Vg ) uE] T — [(boi+ a1V 1) 4] 8} 24

1

which was to be proved.
TEEOREM 5. If # is a solution of the equation

(D*—ug D)o =,

=

(%), [

i)
kA

g

then © = R4® is & solution of the equation Az = y.
Proof. Let # satisfy equation (). Then

Ax = AR,% = [H(Dz—uql)lﬁ =y.

Similarly, ¢ = A& is a solution of the equation Ryt =1y.

Finally, we obtain the main theorem on the general form of the
solution of the equations Az =.y.and Bt =1y:

THEOREM 6. Let

A= 3 (t+b:8)D",

s

)
I

0

where 8 is an involution acting in a linear space X, let D be am operator
transforming X into diself and anticommuting with S and let, finally,
@y -y Gy Boy -, by be scalars. We assume that assumptions 1°-3° (p. 69)
are satisfied.

If @ is a solution of equation (x), then every solution of the eguation
Az =y s of the form

o= Rt 3 _f ([(@ai— @aiy 1V ) 1T — [(Bai-t baiaV2g) 8T} g2,

g=1 i=0

where 2g¢Zp_yan, Ba = (&—b2)"' B and

B= 3 {(—1"0u—bnS1D", ARy=Rsd = ][ (D'—%]I).
T

M=0
Similarly, any solution of the equation Bat =1y is of the form

n n

b= Aot S S {[(tait GaisrVtig) 1T — [(Bost bV ) ST gty -

g=1 i=0
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On conditional bases in non-nuclear Fréchet spaces
by

W. WOJTYNSKI (Warszawa)

In the present paper we give some criteria for the nuclearity of
Fréchet spaces with bases. Our main result is the following:

A. Let X be a Fréchet space with a basis. Then X is nuclear if and
only if every basis of X 1s absolute (the basis {e,} is absolute if
2 [tanl] < oo for each z = Zt e, and each pseudonorm |-|| on X).
n=1 n=1

For countably Hilbert spaces this result is strengthened as follows:

B. A Hilbertian Fréchet space X with a basis is nuclear if and only

if every basis {e,} of X is unconditional (ie. Y |4"(fr:)] < oo for each
[ =1
@ = ) tneneX, and each linear functional z* e X™).
n=1

Observe that the part “only if” of our results is a consequence of
the Dynin-Mitiagin theorem {3] which asserts that in a nuclear space
each basis is unconditional. We do not know whether the converse is
true, however, we believe the following holds:

CONJECTURE (see [9]). A Fréchet space X with a basis is nuclear
provided each basis in X is unconditional.

The conjecture is already established for Banach spaces, because
the class of nuclear Banach spaces coincides with the class of finite-
dimensional spaces, and, by result of Pelezyiiski and Singer [9], in every
infinite-dimensional Banach space with a basis there exists a conditional
basis.

Statement B can be regarded as a generalization of a result due to
Babenko asserting that in a Hilbert space there exists a conditional basis;
[1], cf. also [4], [6] and [7].

Statement A is a generalization of an unpublished result of professor
J. Rutherford (presented on-the conference on functional analysis in
Sopot 1968) that a Fréchet space satisfying the assumption of A is
a Schwartz space.
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