©

icm

STUDIA MATHEMATICA, T. XXXV. (1970)

Approximating unbounded functions with linear operators
generated by moment sequences
by

S. EISENBERG and B. WOOD (Tucson, Ariz.)*

1. Introduction. Recently (see, e.g. [3], [4] and [7]) atbention has
been given to the problem of uniform approximation on the intervals
(— o0, co) and [0, co) of functions f(x) having certain growth rate as
@ ~ = oo by means of linear operators which are positive on some finite
interval. The technique employed to solve this problem is known as
multiplier enlargement. In this paper we apply multiplier enlargement
to the approximation of continuous functions by means of generalized
Bernstein polynomials and Bernstein power series which are generated
by moment sequences. In particular, we obtain as a corollary an extension
of a result for the Bernstein polynomials due to Chlodovsky ([5], p. 36).

2. Definitions and preliminaries. The operators we shall consider
are defined below.

Let {u,(x)} be a sequence of real-valued functions defined on [0, 1].
Denote by (. (#)) and (p,(w)) respectively the matrices generated by
{ttn,(z)} as follows:

n —I
A * 0<EkELn

@.1) By (@) = (k) ‘”k( )s )

0, k> n,
and

0, k<mn,
2.2 (2) = :
( ) pﬂl( ) l(ﬁ) Ak,—n,un{'l(m): k= 7,

where, for any non-negative integers n and p,

23) 2 (@) = Y (=1 [2) s @)-
7=0
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{u, ()} is called a generalized moment sequence if there exists a function
B(x, 1) of bounded variation in ¢ for each [0, 1] such that for all ze[0, 1]

1
(2.4) w(@) = [dpa, 1), n=0,1,2,..
0
The sequence {g, ()} is called totally monotone if A" u,(x) = 0 for all
xe[0,1] and all integers n, p = 0.
Let {u,(#)} be a generalized moment sequence. For all functions
f defined on the interval [0,1] associate the linear operator

. o
(25) 1,053 = D5 (%) bt
k=0
with the matrix (2.1) and associate the linear operator
o (k—n
(2.6) Py(f;2) = Zf( - )pnk(w)

with the matrix (2.2).

I p,(z) =4" (n=0,1,2,.,), then H, becomes the n-th Bernstein
polynomial. When u,(z) = (1—=)* for all =, P, becomes a modified
Bernstein power series [1].

We shall have need of the following extension of Theorem 1 of [4]
(see also [7], Theorem 1):

TueoreM 2.1. Let f(x) be defined and continuous on [0, co) and let
L,L(f (t); 2) (n =1,2,...) be a sequence of linear operators which are positive
on [0,1]. Let the “bounding function” Q(|x|) satisfy

Qe =1, Q) te  (lo}teo),

and suppose f(x) = 0(2(lz])) (o = oo). Let «, be increasing to —+ oo with
n and let {L,(1; a;*2)} be almost convergent to 1 wniformly on- every finile
interval of [0, o), and {L,((a,i—2)* Q((a,1)); 0y @)} be almost comvergent
to 0 uniformly on every finite interval of [0, co).

Then {L,(f(a,1); o x)} is almost convergent to f(w) uniformly on every
finite interval of [0, o).

3. The generalized Bernstein polynomial H,. In the sequel let
efw) =2 (B =0,1,2,...). )

TusorEM 3.1. Let {u,(x)} be a totally monotone generalized moment
sequence. Let a, be increasing to -+ co with n and let «, = o(n). Let f(x) be
defined and continuous on [0, o) and suppose f(x) = 0(¢) (x> 0) for
some a> 0. Assume that, uniformly in j (j =0,1,2,...), {d,u(w/o,)}
is convergent (almost convergent) lo o, uniformly om any finite snterval

of [0, o).
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_ Then {2 (f (ent); oy a)} is convergent (almost convergent) fo f(x)
uniformly on any finite interval of [0, co). !

Proof. Since _{{“" (m‘)} is totally monotone, H, is positive on [0, 1].
Thus H,(f(a,); a;'w) is positive on [a,0] = [0, o) for n large. Let
0 <w<ooand gl) = (E=x)e®. To prove the theorem it suffices, by
Theorem 1 of [4] and Theorem 2.1, to show that {H,(9(,2); a;ta) is
convergent (almost convergent) to 0. We have e '

Hn(y(anC); !l;;lm)

- 13 o, -
= Hule™enlan); a3t a))— 20l (60, (0,0); a7 )+ 0B, (¢ o )

1

n

_ P ) gk _ a, k\2 ak .
Sl fomrsssaalf] -l
© 4 1 n VT2 n .
S a b\’ a, K\t o, k\F

= = e — 2 2= o
P (e B ey IR

}(’Z) A= g (a7, 1)

=27f{3n(6,~ po );i)—2mBn(e)"l‘1(ané');i)+w2Bn(ef(anZ);t)}dﬂ(a;lm,t)7

where B, is the n-th order Bernstein polyn omial. Tt follows from the proof
of Theorem 3 of [7] that

7 .

Byfer(m,0)31) = (g 2 02D (~)
n

”
rterms
for » = 1,2, 3, ... Therefore,
H,(9(a,0); 0y a)
o @ [ pa e (p—j—1) 2
= AN § I A S S A i E ] -1
,Z,,;j! l(an T sz apa e, )+ ...

o j+1 1
+ Oy, (;f‘) ftdﬂ(a;._le t)) -
0

s ('n,f

9 F et gp1am A ‘
—-2.’1}((1” PYATan (J.'lﬂldﬂ(anlw,t)—{—.“-[—(zn(%) oftdﬁ(a;lm)i))‘*'

i+1)

Cn., 1 j~1 1
+ o (azb Do ) fﬂdﬁ(a;‘m,t)Jr...Jr @, (%‘) ftdﬁ(a,;’m, t)}
0 0
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By hypothesis
1 .
{d, [Vdp(ag e, 1)} = {@p(®)ay)}
0

is convergent (almost convergent) to # uniformly in j (j =0,1,2,...).
The theorem follows immediately from the above.

CoROLLARY 3.2. Let f(x) be defined and continwous on [0, co). Let
a, be increasing lo oo with n and let a, = o(n). Let Bn(f(t); w) denote
the n-th Bernstein polynom’ial. If

(3.1) max{|f(#)]: 0 < < a, } = o(e")

for each a >0, then (B,(f(a,1); ay'x)} converges to f(x) uniformly on any
finite interval of [0, ) If

(3.2) fle) = 0(e™) (@>0)

for some a > 0, then |B,(f(a,t); ay'@)} comverges to f(z) uniformly on any
finite interval of [0, co).

Remarks. Result (3.1) is due to Choldovsky [5], p. 36. Result (3.2)
follows from Theorem 3.1 by choosmg w(r) = (j=0,1,2,...). The

example o, = n'* and f(z) = ¢/’ shows that (3.1) does not 1mp1y (8.2)
and the example a, =2 and f(x) = ¢ shows that (3.2) does not
imply (3.1).

It is interesting to note the following characterization of the Bernstein
polynomials, the pr oof of which was conveyed to the authors by Professor
Dany Leviatan:

TrEEOREM 3.3. Let {1;(x)} be a generalized moment sequence and {7,
the sequence of operators defined in (2.5). Then a necessary and sufficient
condition that )

UmH,(f; 2) = f(x) uniformly on [0,1], .
>0 -
for each feC[0, 1], is p;(x) =& for j = 0,1, ...
Proof. If y;(z) =o' (j =0,1,2,...), then H, is the n-th Bernstein
polynomial. Hence the sufficiency follows from [5], p. 5
On the other hand, if lim H,(f; z) = f(z) for all feC[0,1], then
N—>00 N
(3.3) lim H,(e,; ») = "
Also
: N o (m\ [ :
(e 0) = tm > (2)(2) [@—ormrase

=lliln 3 ﬁ)k'n’ YR =1k
of,.% ( (m) (L —t)* """ ap (1) th d/ﬁ@,t).

o
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Hence

(3.4) Um H, (ey; 1) = g (%)

and the necessity follows from (3.3) and (3.4).

4. The generalized Bernstein power series P, . The main results of this
section (Theorem 4.2 and Theorem 4.4) depend on the following lemma:

LeMMA 4.1. Let {a,} be a sequence of non-zero real mumbers and {Pa}
the sequence of linear operators defined in (2.6). Then

P15 o' @) = o (0 ),

Pylant; a;'2) = a, [py(ay @) — gy (0 )],
and

o po (@ ) — 2 (a7 ) 4 2 (e @)} < P (0,275 0"

2
< afll,uo(aglm)—Z,ul(a;lm)—i—,uz(a;lm)] +~£:';l [ﬂu(a;lw)—ﬂl(a,fla:)] .

Proof. The result follows from a slight modification of the proof
of [2], Theorem 3.1.

THEOREM 4.2. Let a, be positive and increasing to -+ oo with n, and
a, = o(n). Let f(x) be defined, bounded and continuous on [0 ). Assume
that {uy(ay @)} is com)ergem (almost convergent) to 1, {a,[ py(ay @) — py (o 2) T}
is convergent (almost convergent) to x, and {aﬁ(,uo(an 2)—2u, {0y 2) +
+ pa (0 lm))} 18 convergent (almost convergent) to «*, uniformly on any finite
interval of [0, co). Then |P,(f(e,t); ay'@)} is comvergent (almost con-
vergent) to f(x) uniformly on any finite interval of [0, oc).

P roof. The conclusion follows from Lemma 4.1 and [3], Theorem 1,
with m =1 for convergence, and from Lemma 4.1 and [7], Theorem 1,
for almost convergence.

COROLLARY 4.3. Let a, be increasing to -+ oo with n and a, = o(n).
If uu(@) = (1—a)" for n=10,1,2,..., then [P,(f(a,0);a; a)} con-
verges to f(z) uniformly on any fzmte interval of [0, o) for all funetions
f(z) which are defined, bounded, and continuous on [0, oco).

Thus we have a convergence theorem for the linear operator

(4.1) P,(f;a) = i'f( k_,c”)(ﬁ)w"-"(l—mw

which differs slightly from the Bernstein power series

(+2) M, (f50) = jf( k;”)(,’i:i)w"‘“a—w)".
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However, by comparing Theorem 4.4 below and [6], Theorem 1, it
is easy to see that (4.1) and (4.2) have the same approximation properties
and are essentially the same. Hence Theorem 4.4 may be considered
as a characterization of the Bernstein power series.

TaEOREM 4.4. Tet 0 < @ < 1. Then a necessary and sufficient condition
that {P,(f; z)} converge to f(w) uniformly on [0; al, for each feCTO, 1],

is p(@) = (@—z)f for j=10,1,2,... Ilpumep riajKoro HpOCTPAHCTBA,

Proof. By applying the Korovkm‘t.heor.em a,rEc'l‘ Lemma 4.1 with CONpAIKENHOE K KOTOPOMY He SIBJAETCS CTPOT'O HOPMHPOBAHHLIM
a, =1 for all m, we see that the condition i sufficient. The proof of ‘
necessity is similar to the proof given in Theorem 3.3. . C. 7. TPOAHCKH (Cofun)
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linear operators, ibidem 34 (2) (1969). (a) mpocTpancTBo X CTPOTO HOPMAPOBAHHO, ECIIN €r0 COTPSHEHHOE
X* roanko,
Regu par la Rédaction le 17. 7. 1969 ' (6) mpocrpancteo X riafko, ecimu X €TPOro HOPMUPOBAHHO.

UssecTust mpuMepsl (cM. Hamp. Isi [2], crp. 191) ¢Tporo HOPMEPO-
BAHHOTO MPOCTPAHCTBA, CONPSHEHHOE K KOTOPOMY He ABIIACTCA TILAJKMM.

Ilexs HACTOSIIEH 3aMETKI IIOCTPOUTE IPUMEp INajKOro NPOCTPAHCTER,
COTIPSIFREHHOE X KHOTOPHM HE ABIAETCHA CTPOTO HOPMUPOBAHHEIM.

Uepes | 0603uauum GaHAXO0BO POCTPAHCTBO, COCTOMIEe M3 MeHCTBH-
TENBULIX UHCIIOBBIX  TIociemosarensmoctell  {a;}je,, PAK M3 KOTOPHX
aGCOIIOTIHO CXOMHUTCA:

el = i‘ ] ({ad2aeD)-

OGmuit Bux nnmeiimoro (QyHKLEOHANA B 1 sammchBaeTCA B BHJE:
(o]
0
Zaifi ({agdiziel),
i=1

rae {£)2, ecTh OrpaEWYeHHAd IOCIEJOBATENBHOCTE JEHCTBATETHLHEX
umcern. CONpPSKGHHEM IPOCTPAHCTBOM K | ABJAETCA NPOCTPAHCIBO Mt
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