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One-dimensional point derivation spaces
in Banach algebras
by

RICHARD M. CROWNOVER (Columbia, Mo.)

1. Introduction. Let 4 be a commutative semisimple Banach algebra,
with identity, and let M (A) be the collection of all multiplicative linear
functionals on 4. A point derivation D at a point pe M(A) is defined
to be a linear functional, not necessarily continuous, such that for all
9, heA.,

- D(gh) = ¢(9)D(R)+o(h) D{g).

The study of point derivations has received increased attention
in recent years, in connection with the study of analytic function prop-
erties in Banach algebras (see, for instanee, [1] and [8]).

Our objective is to study the effect, as motivated by some of the
important examples, of having the point derivation space at a point
pe M(A) to be one-dimensional. These examples include the disk algebra
consisting of all continuous functions on the plane disk {z: |2| < 1} which
are analytic at interior points. The point derivation space at each interior
point is one-dimensional. Some of the Dirichlet algebras [10] and log-
modular algebras [3] are also examples. We shall comment more about
these in Section 3. Also included as examples are the algebras in which
a principal ideal is a maximal ideal (ef. [2]). A question left open in [2]
is answered in Section 2. i

A principal result obtained is that if there is a one-dimensional point
derivation space at ¢ and if ¢ is not isolated in the norm topology of M (4),
then a point derivation at ¢ is bounded, and that “higher order” point
derivations exist and are bounded. This leads to identification of a quotient
algebra of 4 with a Banach algebra of power series, in which convergence
of elements in the algebra implies convergence of coefficients of the power
series.

Prior to the power series development, two sufficient conditions
are given for an analytic disk in M (A) to pass through the point ¢, at
which the point derivation space is one-dimensional. One condition is
given in terms of a local maximum modulus principle relative to the
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norm topology of M(A), and the other in terms of a removable singu-
larity property.

Tt is further shown that in the event that a two-manifold . is
embedded in M (A) with the norm topology, and the derivation space
at each ge # is one-dimensional, then .# becomes a Riemann surface
on which the Gelfand transform of any element ge A is analytic.

2. Analytic disk in M (A4). Given pe M (4), let A, be the maximal
ideal ¢~*(0). Each ge M(4) is a continuous linear functional, and. thus
M(A) € A*. As indicated in the introduction, we shall primarily employ
the relative' norm topology of A* for M(A), i.e. the metric topology
defined by the A*-norm. For ¢,, ¢, M (A4), we have the formula

llpr—@all = mlg lec(g)—a(g)l-

It follows from a result of Singer and Wermer [9], p. 263, that the
space of point derivations at ¢ is one-dimensional if and only if the space
A, defined to be the ideal generated by products of elements in 4, has
codimension one in A,.

Throughout the discussion that follows, let ¢ denote the field of
complex numbers.

THEOREM 2.1. Suppose the point derivation space at ¢ is one-dimensional,
Then there is a norm neighborhood N of ¢ such that

(a) if fed,—AL and |flI<< 1, then there emist positive constants K,
and K, such that for all ¢, ,eNN,

1) Ky llpi—@al < 92 () — 92()] < Eslpr— ol
and
(b} if D, is a continuous point derivation at a point y N, then D, (f) # 0
and A, = C-(f—yp(f))+42. ‘
Proof. We extend an argument that Browder [1] used to prove
that if there are no point derivations at @, them ¢ is norm isolated.
Bach ged, can be expressed as a sum af--h, where a<C and hedl.
Let :

@ 8=+ 3k go, heedy, Il = ol = 1,

A and 2;¢0, 1A+ 341 <1, and F is finite).
. el

=MU (n8), and since 4, is a complete metric space, at lea,%t

one of the sets 8 has non-void interior. Since § is convex and symmemc,
8 must contain a neighborhood of zero, say of radius ¢

Now 4,
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Let geA, and |lgll < 1. Then g—g(g)ed, and (¢/2){g—9(g)) 8. Let

hel, say h = :1]‘—]—2,‘&1]‘1_(}z as in (2), and let g, pse M(A4). Then

lpx () — @2 ()] < Iga () — 2 ()]
+ LEZI; o1 (F) @1 (9:)— 02090 1+ 92 (92) [%(fi)—%(ﬂ)]i

S92 (H) =@ (N4 lps—@all lipa — gll + lloe—

Approximating (¢/2)(g—@(g)) by elements of 8, and taking the sup
over {g: [lgll <1}, we obtain

(3)  (e/2)llpr—@all < 11 (F)— @ DI+ lps— @all Llpr— @l -+ lpa— ol 1.
Let N = {yp: pe M(A) and [lpy—qll < ¢/8}. For ¢, pyeN,

(/) lps—@all < o) — @ (D] < I llpa— sl

so that with K, = ¢/4 and K, = |/f]|, we obtain (1).
Now suppose D, is a bounded point derivation at a point yeN. Then

[ID,ll = sup{D,(g): ged and |ig] —1}\9sup{l7v(g)= ged, and [g] =1}
< (2/e)sup{|D,(9)|: geS}.

Let heS, and let & have the representation b = Af+ leftg, as in (2).
Then

. Dy()= lDw(f)+§liw(gi) Dy (ki) + ézlzw(hi)l)w(gi),

so that
[Dy(B) < 1Dy (NI 421D llp—oll
and
1Dyll < (2/6) Dy (N + (/) 1Dy ]} lp—oll -

Therefore, if |[p— ¢l < ¢/8, i.e. if peN, then

(1/2)ID,] < (2/0)Dy(f)], and  Dy(f) #0.

It now follows that the linear span of 4% and f—y(f) is dense in 4,,.
For otherwise, there exists a bounded linear functional L on 4 which
ig zero on this span, and L(e) = 0, where ¢ is the unit of 4. But then L is
a point derivation at ¢ since L]|A% = 0, and by the above argiment we
Would have IL(f) # 0, which is not true. Thus D,*(0) = Ay, and

A, =0 (f—yp(f))+4}. Q.B.D. :

In the following discussion, we shall also use the weak-* topology
on M (A). This, of course, is the same as the Gelfand topology introduced
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on the collection of maximal ideals {p~(0): ype M(A)}. A fundamental
result which we shall employ is the local maximum modulus theorem
of Rossi [6], which holds for any ecommutative semisimple Banach algebra
with identity, as well as for the sup-norm algebras considered in [6].
Tf " denotes the Silov boundary of M (A4), and U is any weak-* open
subset of M(A4)—1TI, then, for any ge4,

“sup [y(g)| = sup lp(9)l.
peU wed U

Also, following the customary notation, we shall define g: M(4) = ¢
by (y) = v(9)- . )

A subset B of M(A) will be called an-analytic disk if there is a one-
to-one continuous mapping r from an open disk in the plane onto ¥
(with the norm topology), such that for each geAd, gor is analytie. Tt
should be noted that if in this definition, F is given the weak-* topology,
then 7 is also continuous in the norm topology. In fact, the two topologies
agree on an analytic disk.

Tor a subset B of M (4), let A(F) denote the sup-norm closure of the
algebra {§ | B: geA}. Let M (E) be the set of multiplicative linear functionals
on A(E), and let I'(F) be the Silov boundary of 4 (B).

THEOREM 2.2. Let N be the norm neighborhood of ¢ described in Theo-
rem 2.1, and let B, = {y: |lp—oll <7}. A sufficient condition for ¢ to lie
in an analytic disk is that ¢ ¢I'(H,) for some B, < N.

Proof. First, we have M (E,) = F,, as follows essentially from
Theorem 6.1 of Rossi’'s work [6]. Also, the weak-* topology of M(ZH,)
as a subset of A (F,)" is the same as the weak-* topology of F, as a subseb
of A*. Since it is assumed that x¢I'(B,), we have by (1) in Theorem 2.1

o =inf{|f(2)]: teI'(E,)} > 0.

By Theorem 3.3.23 of Rickart’s treatise [5], the set f(Z,) containg
W ={2: |g| < o}. Let V = (f|B,) (W) and let 7 = (f|V)"'. Denote
by A, the algebra {joz: ged}. It follows from the local maximum
modulus principle, as applied to the algebra. A(H,), that each Joved,
assumes its maximum absolute value om 9W. Since f is one-to-one on
B,, A, contains z (i.e. the function ¢ defined by g(z) = 2). Rudin [7]
has proved that every function in an algebra with these last two prop-
erties is analytic at interior points of the disk, and thus the coneclusion
of the theorem follows. Q.E.D.

For another sufficient condition to have » lie in an analytic disk,
we consider a removable singularity problem. Let N be the norm neigh-
borhood of p described in Theorem 2.1, and let fed,— A2, and |f|| = 1.
Then. f is one-to-one in ¥ and for each geA, there exists an he AL and
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a constant a such that g = af-+h. Now % has the form 2 4:f:9;, where
fis 9ie Ay, 2,60 and T is finite. Therefore F

(A (p) < (g]lfl Ifilllgd) lp—ol%,  we M(4),
so that, for some constant K > 0,
(4) ) <Elp—glt, peU(4).

By the inequality on the left-hand side of 1)
@)= E7 lp—gl?,  ped.

It follows that (A/f)(y) >0 as |y—g| >0, and hence that §/f can
be regarded as a contimious function on N. ’

Let {y,> be a sequence in ¥ such that [l —@ll - 0. We call (y,>

. & removable singularity sequence, or simply an RSB-sequence, if for each

ged, there exists an hed such that (§/f)(y,) = h(w,) for each positive
integer n. The significance of having an RS-sequence in N is that if I
denotes the ideal in A of elements whose transforms are zero on <{y,>
then the Banach algebra A/I has the property that the maximal ideal
M = {g+1I: g(p) =0} is the same as the principal ideal (4/I) (f+1I).
The results of [2] are applicable, but in order to use them we need the
following lemma which answer a question left open in [2]:

Levma 2.1. Suppose A is a commutative semisimple Bamach algebra
with identity, and that @ is o multiplicative linear functional on A. If the
mazimal ideal A, =@ (0) is a principal ideal Af, then ¢ is not in the
Silov boundary T' of M (A), unless @ 1is weak-* isolated in M (A).

Proof. As observed in [2], the operator T: A — 4, defined by
T(g) = gf is one-to-one, and has bounded inverse 7~*. Let

(3) E =|T7 = sup{lgl: lofl <1}.

Suppose @ eI'. Then there is a weak-* neighborhood U of ¢ such that
I ()] < 1/2K for all peU, since f(p) = 0. There exists a ged such that
9(w) =1 = |g|lo for some w,eU and |j| <1 in M(4)— U. For some

positive integer n, |[§"f ], < 1/2K. Let H = 2g”, so that [Hf|l, < 1/K.
Let ¢ be chosen so that [|Hfl, < ¢ < 1/K. By the spectral radius formula,

~ a mo
1Hflloo = HmV||H™f|, so that for sufficiently large m, [H™f™ < o™.
By repeated application of (8), [|H™| < ¢"K™, and V|H™| < oK <1

for large values of m. Since |Hl, = ImV|H™, |H|,<1. But [|Hl,
= 2|g"| = 2, which is impossible.

With the aid of this lemma, the main result of [2] now becomes the
following:
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he principal ideal Af is the mamimal .ideal gvfl(()),.the%. m =

min {{{fftp)]:ﬁy)eff> 0, and {y: Jf(«p)[ <m} is an analytic disk in
M (A), unless @ is weak-* isolated in M (4). ' .

THEOREM 2.3. Suppose that the point derivation space at ¢ is one-
dimensional and that ¢ is the limit of an RS-sequence. Then there is an

ic disk passing through .

amlylfz:o of. Ygfge a,ppiy the theorem above to .the algebra described before
the lemma, and obtain that an analytic digk in M (A4/I) passes Fh;oug}it%
The space M(A[I) can be identified with the set Al = {y: g(wé_—
for all geI} by letting y(g+I) =4 () for all ge{eL T{.‘he correspondence
is a weak-* homeomorphism, and thus the analytic disk in M(A[I) also
lies in M(4).

3. Banach algebras of power series. We begin this section by consider-
ing properties of the ideal A7, where Ag is deflged to be the linear span
of all products of # elements in 4,. In an ‘a.rblt.ra,ry Banach a%gebm- A,
the ideals A" need not be closed. For the sﬁsuat.non under cons1de:.ca.t10n,
however, we have the following theorem, which shows the existence
of “higher order” bounded point derivations at ¢: .

THEOREM 3.1. Suppose that the poimt derivation space at ¢ 8 one-
dimensional and that-p is not isolated in the norm topology of M (4). Then
each A" is closed amd, moreover, dm A3/ A3+ =1. -

Proof. Consider the case n = 1. Since 4, = qa“‘(O),_ 4, i-s clos(?d.
Let f and N be as in Theorem 2.1. Let D, be a linear functional (i.e. point
derivation) sach that D,(f) =1 and D,(43) = {0}. Ea.ch. geA,{, can be
expressed as g = D;(g)f+ h, Where heA}. Following the discussion after
inequality (4), we have (h/f)(y) >0 as |p—g| — 0. Therefore

Dy(g) = lim (§/f)(w)

o= gl->0
and

Do) < =L = i,

proving that D, is bounded and. its kernel A is closed.

Now suppose that 4, 4%, ..., A" are closed, and that dimA%/4F"
=1, k=1,2,...,n—1. Given ged}, then, by a simple calculation,
g can be expressed in the form af”-+h, where aeC and heA}**. More-
over, there is a constant K >0 such that |h(yp)| < E,llp—e|*™* for
ve M(4). Since (§/f")(y) = 6+ (B[f")(y) for yeN and y ¢, and since
I7"()| > Bl lp—gl* for yeXN, we have

(6) @I @) >a  as y—g| 0.
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Since ¢ is not norm isolated, o is uniquely determined by g, and we
let D,(g9) = a, so that g = D,(g)f*+ k. Thus ARt iy the kernel of the
non-trivial linear functional D" on 4%, and hence dimAT/AM =1,

We see that A7 is closed, and by an argument analogous to the proof
of Theorem 2.1, there is a constant K, such that if gedy and fg<1
then g can be approximated by elements of the form

Kn(}vfn—f'kZF Aifiafiz o Finsa),

where ||+ %’ A <1, fizll = 1,fired,, and F is finite. It follows from
e

this and (6) that |D,(g)| < K,,, so that D, i3 a bounded linear functional
on A7, Thus A3 = D;(0) is closed. Q.E.D. )

As an immediate consequence of Theorem 3.1, we obtain the fol-
lowing result. We think of equation (7) as an abstract Taylor formula.

CoROLLARY 3.1. Suppose the point derivation space at ¢ is one-dimen-
sional and that ¢ is not norm isolated in M(A). Let f and N be as in Theo-
rem 2.1. For each ged there is a uniquely defined sequence of complex
constants {a,> and sequence. of fumctions <h,>, where h,e Ay, such that
(7 g = a/o+a'1f+---+anfn+hn+1-

Moreover, each of the linear mappings g — a, is bounded.

Let K ({) be the class of all formal power series in the indeterminant
{ with complex coefficients. The operations on K (£) are the usual addition.
and multiplication by scalars, with product defined by the Cauchy product
formula. By a Banach algebra of power series we mean a subalgebra of
K ({) which. is a Banach algebra under some norm and such that the
norm convergence of a sequence in the algebra implies convergence of the
coefficients in the power series.

It should be remarked that the definition of a normed power series
ring given by Lorch [4] ealls in addition for the algebra to be generated
by { and the identity. We omit this requirement for purposes of the

following theorem, and comment on the role of this requirement after-
‘wards.

THEOREM 3.2. Let AY ='  () Ay. Suppose the derivation space at ¢

n=1

s one-dimensional and that ¢ is not norm-isolated in' M (4). Then A3 is
a closed ideal, and A|AY is isomorphic to a Banach algebra of power series.

" Proof. Since each A" is closed by Theorem 3.1, then their infer-
section A3 is also closed, and is certainly an ideal. Let f and N be as in
Theorem 2.1. Let geA and let <a,> be the sequence of Taylor coefficients,
i.e. the sequence occurring in the Taylor formula (7). If <a,> is the zero
sequence, then, by Corollary 3.1, geAy. On the other hand, if gedAP,
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then <a,> is the zero sequence. For if not, let a bgkthe first nonzero fcerm.
Then g = af*-+h, where heA®+ and hence h () [FE(p) = 0 as [lp—ol —0.
Therefore for peN and [ly— gl sufficiently small,
7 7 3 %
i @) = 1P @) lap+h ) [FE () = (1/2) 0] F¥ @) = hlly—ell
for some 1, > 0. But ged%™, and there is a constant A, < oo sut?h. that
1§ ()] < Aalp—elftt for pe M(A). Therefore, for ‘H’lp——tpn. sufficiently
small, Z,fy— gl = Jullp— o[, which is impossible since ¢ 18 not norm
isolated. Thus A% can also be described a8 the set of all ¢ ;A whose asso-
ciated Taylor coefficients (relative to & given fed,— fl,,,) are a»li Zero.
Consider the quotient algebra 4/A7. For ged,let g =g+ 47 It g
has Taylor coefficients (a;> (relative to f), then so does g-h, where

hed?. Let a: AJAY —K() be defined by a(g) =k§ a,*. Then « is

a well-defined, one-to-one, linear mapping into K (£). Moreover, a8 fo%lows
from the Taylor formula (7), a preserves multiplication, so that a is an
oo

algebra isomorphism into K(Z). For a(d) =]20 a,C*, let us write

'llé; a2 =11

Under this norm, the image of A/Ay under a is & Banach algepra,.
Now suppose - |ja(f,)—a(d)ll = 0. Then Il ,—gll =0 and there exists
a sequence <h,> in AP such that ||g,—g-+h,l — 0. If g, has Tayl_or
coefficients <a,;> and ¢ has Taylor coefficients <(a;y, then g,— g—l—. h,
has Taylor coefficients <a,;— >, and by the boundedness assertion
in Corollary 3.1, |a,,— @z — 0 as m — co. Thus norm convergence of
a sequence of power series implies convergence of the coefficients, so that
AJA? is isomorphic to a Banach algebra of power series. Q.E.D.. )

As remarked before Theorem 3.2, Lorch imposed the additional
requirement that the algebra of power series be generated by ¢ and 1.
In owr case, thiy amounts to the requirement that A/A7 be generated
by f and 1. The space M (A JAT) of multiplicative linear functionals on
A[AT corresponds to the set hAY = {y: ye M(4) and §{w) = 0 for all
ge AT} by letting y: A[A5 — ( be defined by »(7) = p(g) for geA. Thus
the Gelfand transform of § is the restriction of § to hAZ. Since 4 is semi-
simple, then {§: geA} separates points in M(A4) and the rgstrictions
of these finctions to kAj separate points in hA7. Since f and 1 generate
A[A?, we infer that f is one-to-one on hAY. Let X =f (hdAy) and let
P(X) be the uniform limits of polynomials on X. Then {j: geA/[AJ}
is & subalgebra (not necessarily sup-norm closed) of P(X), In particular,
if zero is an interior point of X, then, in some neighborhood of zero, each
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function in P(X) is analytic. It follows that an analytic disk exists in
M (4) passing through the point .

Example. A well-known example from the theory of Dirichlet
algebras [10] applies to the situation at hand. Let X — {{t, 2): t is veal,
2 is complex, ¢[0, 1] and |2| = 1}. Let A be the sup-norm algebra on X
generated by the coordinate functions ¢ and z. Then M (4) can be identified
with the solid eylinder {(z, 2): t¢[0, 1], |2} < 1}. Bach geA, when restricted
to a disk Sy = {(t,2): ¢ =1, and |2| < 1}, is analytic in z.

Let ¢ be the functional p(g) = g(0, 0) for ged. Then A, ={g: ged

and ¢(0, 0) = 0}. It is not difficult to show that the only point derivation
at ¢ is the usual derivative at the origin, i.e.

D(g) =limz[g(0, 2)—g(0, 0)],
z—0 )
and similarly for the “higher” derivatives.

Then norm topology of M (4) agrees on each disk 8§y, with the usual
plane topology for a disk. Each disk 8,, is open and closed in the norm
topology. The ideal A7’ is seen to be {g: ged and 9|8, = 0}. The algebra
A A7 is isomorphic and isometric to the disk algebra defined in the intro-
duction. Of course, this algebra is isomorphic to a Banach algebra of
power series.

If X is a compact Hausdorff space, and 4 is a sup-morm closed
algebra of functions on X (4 is assumed to separate points in X and
contain the constant functions), it may happen that an element ¢ of
M(A) has exactly one (positive Baire) representing measure on X. This
happens in the case of Dirichlet algebras [10] and logmodular algebras [3].
An extensive theory is developed for such algebras, and it is known,
for ingtance, that. if P, = {y: ye M(4) and ||y —¢|| < 2} contains more
than the point ¢, then P, is an analytic disk in M (4). In addition, as
shown by Sidney [8], dim(4}) /(4%™)~ =1. For n =1 this says that
there exists exactly one bounded point derivation at ¢. Combining this
result with Theorem 3.2, we obtain the following corollary:

COROLLARY 3.2. Let A be a sup-norm algebra on the compact Hausdorff
space X. Suppose that pe M(A), that the representing measure for ¢ on
X is unique, and that P, contains more than one poini. If there are no un-
bounded point derivations at ¢, then each Ay is closed amd dim A7/A% = 1.

4. Riemann surfaces in M (A4). In the previous sections, information
on the point derivation space at a point ge M (A) was used to gain in-
formation on the behavior of the transforms § of elements ge A in a norm
neighborhood of ¢. Another type of problem is to consider the point
derivation spaces at all points in some subset of M (4). The next result
is a theorem of this type: : ' ‘
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THEOREM 4.1. Suppose 4 is a 2-manifold embedded in M (A) wilk
the norm topology end that the point derivation space ot each point in M
is one-dimensional. Then there is an analytic structure in A makmg M
into a Riemann surface. Moreover, for each ged, the vestriction of § to M
is analytic.

Proof. Let ge J{ and let feA,— A2. By Theorem 2.1, there i§ a norm
neighborhood N of ¢ in which f is one-to-one. We may assume N < ..
Tt follows from standard arguments (employing the Brouwer invariance
of domain theorem) that the restriction of f to N is a homeomorphism
and that f () is open in the plane.

Also by Theorem 2.1, we know that if D, is a bounded pgint deri-
vation at peN, then D,(f) # 0, and that 4, = C[f—F(y)]-+ 4}, Since
we are assuming that the point derivation space at each e 4 is one-
dimensional, we infer by Theorem 3.1 that A‘ is closed, so that A,
= O(f—F )+ 43- |

Let v = F |V and let ge A be given. We show that § o ™" is an analytie
function on the plane open set v(N). Let 7(y) = 2 and 7(ypo) =2, for
1, poeN. By the above argument, there is a function he 4}, ] and a constant
aeC such that §—§(w) = a[f —Hwo)l+h. Thus §or (e)—F ov™(z)
== q(z—2,)+h ot (2), and

1

. éor—l(z)—gof“l(zo) _ a‘ =1 hor
2—2

1 fly) —f(wo

Now since = is a homeomorphism, v(y) - v(y,) a8 # —2,. By the
argument following inequa.lity (4),

2— 2,

=0 as [ly—ypoll =0,

l m

and we conclude that
d .
—(§0v7Y)(z) = a.
dz

Let us now denote the dependence of v and N on ¢ by writing 7,
instead of * and N, instead of V. We observe that the collection of ordered
pairs {(z,, N,): ge#} constitutes an analytic structure on .#. For if
N,nN, 1s non-empty, then. f ]lV has the property that f o7, is a.na:lytlc
on 7,(N ,,) In particular, f oz, is analytic on v,(N, NN, ), or rq,or
is ana.lytlc on 7,(N, NN,). Thus # becomes a Riemann surfa,ce ‘when
given this structure.

Moreover, we have already seen that for each geAd, the restriction
of § to A is analyt1c, sinee each ¢ o7, is analytic on 7,(N,). Q.E.D.
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