icm

STUDIA MATHEMATICA, T. XXXV. (1970)

Singular invariant measures on the line
by

V. MANDREKAR (Bast Lansing), M. NADKARNI* (Calcutta)
and D. PATIL (Milwaukee, Wisc.)

INTRODUCTION

In this paper we give a method of obtaining a large class of s-finite
measures on the real line which are invariant under translation by every
real number. These measures are defined on sub-o-rings of rings of Borel
subsets of R, the real line. Most of these measures are non-atomic and
attach positive finite mass to some Lebesgue null set. The object of this
paper is to study such measures with special reference to some problems
in Harmonic Analysis. We feel that the study of such measures is not
only interesting in itself but it has also strong bearing on some unresolved
problems raised by Helson and Lowdenslager [7].

Tn Section 1 ‘we recall the definition of sets of translation and obtain
some of their properties. Large part of this section derives from Kahane
and Salem [9], Chapter 1. In Section 2 we get a method of obtaining
invariant measures as described above and obtain a result regarding
the ergodicity of such measures. In Section 3 we define functions called
cocycles and coboundaries introduced by Helson and Lowdenslager in
[8] and give an example of a cocycle taking values +1 or —1 and which
is not a coboundary (*). In Section 4 we derive certain elementary conse-
quences of Beurling’s well known diseription of invariant subspaces of
H*[1, 8] and in Section 5 we apply these results to obtain the multiplicity
of the spectral measure associated with a unitary group of translations
on the I? of an invariant measure. In Section 6 we give some results
about “dual” measures. The results of Sections 5 and 6 are rather special
but we feel that they are interesting.

Trgodicity plays a special role in our diseussions. The work has
conneetions with the previous work of de Leeuw and Glicksberg [2] on

Minnesota, Minneapolis, where he held ax intment during 1967-68. )
(*) Tirst such example was j,%\ [5] for compact groups with
ordered duals.
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analytic measures on compact abelian groups and its generalization by
Forelli [4] to arbitrary locally compact spaces where ergodicity was
first explicitly considered in connection with analytic measures.

1. SETS OF TRANSLATION

In this section we shall deseribe the construction and properties of
sets of translation (or translation sets). This discription will follow Kahane
and Salem [9] with only slight modification which ghall result in some
technical advantage for our purpose.

L.1. Construction. Let o be an integer > 2 and let 5y, 7, ..., 7, be v
distinet numbers satistying 0 <y <m<...< <1 Let £€>0 satisfy
E<tp—ny E<p—1gy ..., € < 1—1p. Let [a, b] denote the closed interval
a<x<b of length A. By dissection of [a, d] of type (v, 7, Nay ooy Ny &)
we mean the subset of [a, 5] consisting of union of v intervaly [a+ Mgy
a+dm+ €], ¢ =1,2,...,v. Bach of these intervals is called a white
interval and each component interval of the complement (with respect
to [a, b]) of this union is called a black imterval. A dissection of type
{0371y 2y« oy M0y £) 13 called equally spaced if u, = 0 and e = {b—1)1,,
k=1,2,3,...,0

Let I denote the interval 0 < o << 1. Let E, be the dissection of I
of type (v, 71y, :..,y Nw,1, 61). Let B, be obtained from B, by performing
on each white interval of B, a dissection of type (Vg M2y « ey Mug2y Ea)s
thus B, = B, and consists of v,v, white intervals. Generally, let I, denote
the set obtained from Fj_, by performing on each white subinterval of
By, a dissection of type (O%y Mty Moty +«v1 Nogres En)-

0
Definition 1.1. Let B = (B, where B, > E,5 ...> B, > ... are
k=1

sets as deseribed above. Then F is ealled a set of translation. A translation
set B is called equally spaced if each dissection (V) M1 coes Mo kb) 18
equally spaced.

Each left end-point of the white interval in By is of the type

7(j1, 1)+ Em(in 2)+.. .+ E1bae Eoan (G o),
‘where we have written 7(j, u) for #;, and where 1 < ji < o3 These left
end-points and group and semi-group generated by them will play a special

role in our discussions. Since every point of @ is a limib point of guch left
end-points, every weH has a representation of the type

(1.2) @ = 0y 1)+ 690y 2)+. ..+ £,8,.. &1 (jry B) ...

12 Lebesgue function. Let I, denote the Lebesgue meagure on B
nongahsed to 1 and regard 7, as defined on I by making I, zero for sety
outside Ey. Let L; denote the distribution function of 7, i.e., Ly(x)

(11)
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= ([0, k]). It is easy to see that the value of I on the left end-point
(1.1) is
Lk(’? (G, V4 & (fey 2) 4. . - Eibae & (s k))
jh,—1 ja—1
_ + Je + 4+

vy V10,

Ji—1
Ve g

L, increases linearly on each white interval of By and Ij is constant
on each subinterval of the complement of Ej. The functions I converge
uniformly to a continuous function L which has all its points of increase
in B and is constant on subintervals of complement of .

For any zeH with representation x = 7(fi, 1)+ &% (jay 2)+...+
+ & v By (fuy B) - -
bt

Vg D10y

a1 1
EL il U ST

1.3
(1.8) DUy ol Vg

L(x) =
The restriction of L to F is not one-one but very nearly so. More
precisely, if we delete from E all points & with representation of the type

2 = 9(j, 1)+ & (jay 2)+.. .+ kz’,; &1 & (v K)

for n = 1, 2, ... and call the new set &, then the restriction of the function
L to E is one-one and inereasing on E. Tt maps E onto 0 < # < 1. Hence-
forth we shall regard L as a function from EF onto [ = {z: 0 <o < 1}
and also write E for E and I for I.

1.3. Measure induced by L. Let g denote the measure on ¥ induced
by the function L. If W is the 2 white interval of By counting from left,
then

1
uwnm=(

PR

A—1 A
Vper Vg . Drea Vg

) 'a.nd g(W A~ E) =

Since any function in I' or I? of I with Lebesgue measure is approx-
imable by linear combinations of indicator functions of the interval

A—1 y)
Do O Dy, Vs

), A1=1,2,...a0d 1<k < oo,

we conclude that any function of L'(E, g) or I*(E, g) is approximable
in the respective norms by linear combinations of the indieator functions
of the sets of the type W ~ F, where W is a white interval in B for some k.
Another property of the measure ¢ which we shall use is the following
((6], p. 19):

(%) If A is a measurable subset of F and t is a real number such that
A+t < B, then g(A) = g(A-+1), i.e., measurable subseis of E congruent
by translation have the same measure g.

|
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Let @ be the group of real numbers generated by the left end-points
of the intervals in By, k = 1,2, ... Let K be the group of real numbers
in 0z <1 of type

ji—1 jo— 1 ir—1
EENNE I | RO

0y 0,0, Vy. Vg

k= 0 <ji<<w,
where the addition in K is defined modulo 1. It is clear that K i§ a dense
subgroup of the group C of real numbers (modulo 1) and hence any meas-
urable subset of ¢ invariant under translation by K has Haar measure
zero or one (?). The next lemma transfers this fact to X.

LemyA 1.1. Let A < B be a measurable set such that (A4-q)~ B A
for every qeQ. Then either g(d) =0 or g(E—A) = 0.

Proof. It is enough to show that L(A) is invariant under tranglation
by K. Now let yeL(A) and let it have the representation

Let

) K, 1<pi<w.
& o v

We shall show that y+weL(4). Now ¥4 has a representation of
type o

o Ji—1
’

yro— B4

= v L v

8o that the terms in the representation of y+» and y agree from (n+1)™
term on. Hence we have

LI (y+a) = 2 b bin(gn )+ ) EuEaniy 1),
= V=M
I (y) =«:§ &by 4) = i;: Exe i (fay 1)+ f & Em Gy 1)

=1

Consequently, by (1.3),

n

Ly +)= L7 ) = (3 bu forlay 1= 3 ... Een(isy ) Q-

=1 =1
Let g denote this element in Q; then L (y+a) = L (y)+q belongs

T;o .(/l-i» 9) ~ B < A Hence L' (y+x)ed, so that Y+wxeL(A). Thus L(A)
is invariant under K, q.e.d. :

) (2 O is .the circ}e group and Haar measure on O is the linear measare on 0.
This measure is ergodic with respect to translation by members of a dense subgroup,
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Remark. Lemma 1.1 permits us to classity the sets of franslation
in the following manner. Let F; and E, be two sets of translation with
¢, and g, the associated measures supported on X, and E, respectively.
Then either g2(E2 ~ (E'l—l-t)) = 0 for all ¢ or there exist f;, 4, ... such
that

gz(Ez_ U (El'i'tn)) =0.

n=1

2. INVARIANT MEASURES

A o-finite measure » defined on the Borel o-ring # of B is called
locally invariant if there exists a support B of v such that any two meas-
urable subsets of B congruent by translation have the same measure ».
B is then called an admissible support of ». If » is locally invariant with
admissible support B, then »; is locally invariant with adnissible support

- B4-t, where v is defined by »(4) = »(4—7), Ae%. Further » and #

agree on Borel subsets of B ~ (B+1). Let & be a subgroup of R. For

each te@, let S; be the o-ring of Borel measurable subsets of B—¢ and

let S be the o-ring generated by (JS8:. S consists of measurable subsets
&

of R which can be covered by courtably many translates of B by members
of G. ‘

THEOREM 2.1. Let v, B and S be as above. Then there exists a unique
measure u on the o-ring S such that

(i) p(A) = u(A+1) for all 48 and teG;

(ii) restriction ulp of u to B is ».

Proof! Let A = (J 4y, Ai ~ 4; =@ it i # j and 4, is a Borel subset
i=1

of B-1; for some i. Define p for this A as
u(d) = g,;vti(Ai>~

Since » and »; agree on Borel subsets of (B-+1) ~ B, u is unambigu-
ously defined. It is easy to prove that x is invariant under & and ulz = v
and that g is unique, q.e.d.

Now if in Theorem 2.1 we take G = R, we get a measure invariant
under translation by every real mumber. We can take » to be the meagure g
associated with a translation set Z, ¥ being an admissible support of ».
We can also take u to be any non-atomic finite measure supported on
an independent set (3) B and E then becomes an admissible support of u.

(8) Observe that an independent set and its non-zero translate can intersect
in at most one point. ’
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We thus see that there are many measures on R, other than the Lebesgue
measure and the cardinality- measure which are invariant under trans-
lation. A o-finite measure space (X, S, 4) is called fotally o-finite if there
exists an A 8 such that x(B) = 0 for every set BeS disjoint from A.

2.3. Ergodicity. Henceforth we shall deal wifh totally o-finite meas-
ures on Borel subsets of B which are invariant under a countable dense
subgroup of R. A totally o-finite measure u defined on a sub-o-ring of #
will be regarded as a measure on # simply by setting u(4) =0 for those
subsets of # which do not intersect a measurable support of u.

Definition 2.1. Let u be a o-finite measure on # which i invariant
under translation by a countable dense subgroup Q. We say that u is
ergodic with respect to @ if for every measurable set 4 such that A-4-¢
= 4 for all ¢e@Q, either u(d) =10 or u(R—4) = 0.

Now let E be a set of translation and @ the group generated by the
left end-points as in Lemma 1.1. Let g be the locally invariant measure
on F given by the Lebesgue function on . Let x be the measure obtained
by setting in Theorem 2.1 » =g, B = # and G = Q.

TaEOREM 2.2. p4 is ergodic under Q.

Proof. Let 4 be a measurable set which is invariant under @, i.e.,
A+q=A4 for all geQ. Let 4 =171 ~ A. Then (A4+g)~ B <= A for all
qeQ. Hence by Lemma 1.1 either »(A4) =0 or »(E—4) = 0. Now u is

. invariant under ¢ and supported on U (B4 gq), with » the restriction

of u to the Borel subsets of . It follows tha.t either u(4) = 0 or u(R—A4)
= 0. This proves the ergodicity of 4, q.e.d.

On the other hand, if a non-atomic o-finite measure p is invariant
under & subgroup ¢ and attaches positive mass to a perfect independent
set ), then x4 can never be ergodic under any subgroup. Thus in terms

of their ergodic behaviour perfect independent sets are quite opposite
of sets of translation.

3. COCYCLES AND COBOUNDARIES
3.1. Let u be a measure defined on # which is invariant under & coun-
table semi-group P of R.

Definition 3.1. A non-vanishing complex-valued function 4 on

P X R is called a cocycle it A(q, ) is & measurable in z for every q and 4
satisties, for all ¢, and g,

(3.1) A(i+ g0 @) = Aqy, @) Agy 0+q)  ae. [u].

It is called a wnitary cocydle if |4 (g, ») =1 a.e. [u] for all geP.
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Let B be a non-vanishing #-measurable function and write

B(z+q)
B(x)

Then A is easily verified to be a cocycle. A coeycle of this type is
called a coboundary. A cocycle defined on P X R can be uniquely extended
to @ X R, where @ is the group generated by P, so that (3. 1) holds on @ X R.
For this we need only write 4(—p,s) = (A(p, m—i—p)) , peP. In view
of this we shall assume henceforth that a cocycle is defined with respect
to Q.

3.2. We now give an example of a cocycle which is not a coboundary.
Tt will also serve to show that some results of later sections are not vacuous.
First example of a cocyele which is not a coboundary was constructed by
Helson and Lowdenslager [8] in connection with invariant subspaces in
the space of square integrable functions on the Bohr group, where the
terminology of coeycles and coboundaries was introduced. Subsequent
examples and new results were given by Gamelin [5]. Our example differs
from those of above authors in that we are dealing on the real line rather
than finite- or infinite-dimensional tori.

Example. Let G be a dense subgroup of R such that ¢ = U G,

Nn=0
where each G, is a cyelic group and G, = Gpyy. Let 2,>0 be the generator
of @, and let 2,/A,.1 = @, Define

Alg, @) =

By(o) = (—1),
B, (2) = (—1),

and extend B, outside [0, A;) by making it periodic with period i, Gen-
erally, define

B,(z) = (—1),

and extend B, outside [0, 4,_,) by making it periodic with period A,_;.

Fohy < 2 < (k+1)Ag, —o0 < k < o0,

T < @< (b+1)Ag, k=0, ..., ay—1,

<<+, 0<b< a,—1,

Tet @, = ByB,... By, and define 4 (g, #) = @, (2-+9)/Dn(), g <Gyr. Suppose
m >n; then
LI_[O By(z4-9)
m,(m"l"g) m ( ) = - T
” By ()
k=0
Now Byy1, ..., B are periodic with period 2, and so if ge@,, then
O (@4 g) [P () = Dy (@4 g)|Dn () Which shows that 4 is unambiguously
defined.
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Now if gy, g.@, then g, g,¢@, for some # so that

D, (54 g1+ gs) Do (4 91+ ¢.) Du(z+9,)
-A : o = . bl
(g1+ 92, 2) @, (7) D, (z4g,) Dy, (w) :

= A(gy, #) 4(g2, 2+ g,),

which proves that 4 is a cocycle. We now prove that 4 is not a coboun-
dary. Suppose that for some measurable function B we have
Blatyg)

Algta) = = O

a.e. with respect to the Lebesgue measure for all g. Then

B(atg)  @ulatg)

Blz) Dz

3

for a.e. & [Lebesgue], ge@,. Hence B|®, = C, is periodic with period A,.
Now @, is constant on the intervals i, <z < (k--1)4,, the constant
value being +1 or —1, hence restriction of B to the interval ki, < «
< (k+1)4, is equal in absolute value to the restriction of B to the interval
0 <& < 4. Now it is easy to see from the way D, is defined that

) A
[ B@)ds = [ &,(2)C,(2)de
0 0
is either zero or equal to
B
= [ B(o)da.
Ao §
Letting n — oo, it follows that
Y
f B(z)dz = 0.
[
" Bame argument shows that for every m,

.
[ Bz)de =0
0
and hence
(F+1) A, 2
0Kk < htr< =2,

N

B =
o (z)dx = 0,

_ This holds for all m so that B = 0. But this is imposgible. Hence .4,
i ot & coboundary, g.e.d.
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4., SOME CONSEQUENCES OF BEURLING’S DISCRIPTION
OF INVARIANT SUBSPACES OF H?®

4.1. L,(R*, #,, p) and shifts on it. Let R* denote the set of non-
negative real numbers. Let 0 <1< oo, and let %, denote the o-ring
of sets generated by the intervals ni<<a<(n+1)i, n=0,12,...
Let u be a measure defined on 4, which is invariant under translation
by A We shall assume that 0 < u (I;) < oo, where I; is the interval
0 < z< A It is easy to see that L,(R*, &, ) is not much different from
1%, the space of square summable sequences. Every function in I,(R™,
%, u) is congtant on i< # < (n+1)4 and if O, be this value, then

D10, < co.
N=0

By shifi on L,(R*, %, u) we mean the operator § defined by

s [0 if 0< <4,
(8) () = fla—a) it > A

S is an isometry from L,(R*, #,, p) into L.(R*, %, u). Let a be
a funetion which is #%; - measurable and of absolute value 1. Let U De
the unitary operator Uf = af, where feL,(R™, %, u). Write T for the
isometric operator U'8U. Now since U is unitary, the subspace spanned
by f, Tf, T*f, ... is whole of L,(R¥, #;, p) if and only if the subspace
spanned by Uf, SUf, 82Uf, ... is the whole of L;(R*, %, u). Let a, and
f. stand for values of @ and f on the interval ni <z < (n+1)4. The next
theorem will be useful in Section 5:

TrEOREM 4.1. (i) Uf, 8Tf, S TT, ...

o0

. ) S

if 3 anfod” is an outeér function in H.
N=0

(ii) Suppose f; = 0 for i >n. Then Uf, 8* Uf, ... spans Ly(B*, &, n)

spans Ly(R*, %, p) if and only

if and only if 3 a;fie’ has no zeros in |o| < L.
55

(iil) Suppose that a;f; = (—1) for i = 0,1,2,...,n and f; = O other-
wise. Then Uf, SUf, S U, ... spans Ly(R*, B, u).

Proof. (i) follows from Beurling’s well known diseription of invariant
subspaces of H”. ‘

(ii) follows because a polynomial in 2 is outer if and only if it has

no zeros ingide the unit dise.

(iii) this follows from (ii) because > ( —1)%" has no zeros in |2] < 1.
0
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5. UNITARY GROUP OF TRANSLATIONS

5.1. Unitary group of translations (*). Let ¥ = (") By be an equally
=1

spaced set of translation, where B, is a dissection of [0, 1] of the type
{0141, 0, 974 274, +ony V17, 61} and By 8 obtained from Fj_, by performing
on each subinterval of Hj_, a dissection of the type {vp+1, 0, 7ty 298, . .,
vovy UeTy &1} Let g be the locally invariant measure on B induced by
the Lebesgue function L, B being an admissible support of 4. Let 0
denote the group generated by the left end-points of subintervals of
B, k=1,2,..., e, by the real numbers of the type
Aamit Edane e En_1Erae o BNy 0<< A<

Q* shall denote the semi-group of non-negative real numbers of Q.

We shall denote by Wy, the ™ gubinterval of ) counting from left.

Let 4 De the measure obtained as in theorem 2.1 by taking G =@, » =g
and B = E. Let 4 Dbe a unitary cocycle on @ X B satisfying

A(g+ oy @) = A1, ©) Algay @+ 1)

a.e. [u]. Considerthe group of unitary operators on Ly(R, %, u) defined
by
(5.1) (Uef) () = 4(q, o) fle+0), q<@.
It can De verified using the functional equation of the cocycle that
U, qeQ, is indeed a group of unitary operators.

THEOREM 5.1. Assume that

(i) for all nom-negative integers n and %, A(n& &y ... Ep_y i, x) 08
constant on W’”l n B and let 0,’; be this constant value;

Uk

(ii) 121 Ok has no zeros in |2| < 1 for all k.

Then )

(&) Ugly, qeQ™, spans the closed subspace of functions in L.(R, B, u)
which vanish for negative real numbers;

; E(b) Uglz, q€Q, spans L, (R, 4, m. Here 15 denotes the indicator function
of B.

Proof. Let %, be the c¢-algebra generated by Wy ~ Bk, on
0 < 2 < co. Bincefor all n, 4 (n1,, %) is constant on Wy, ~ B,

By (x4 nm,)

A(nny, 3) = Bi(a)

(*) Actually our unitary groups are translations times a cocyol i
forane. B0 ocyele ag given by
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for function B, defined by Bi(@w+nny) = 4 (nyy, a), 0 <z < 7, We see
now that in Ly(R*, By, ), Unyyn = 0,1,2, ..., is Bi' 8" B,, where B,
also stands for the operator consisting of multiplication by B;. Now
B(a+nmqy) = A(ng, @) for 0 <@ < u;. Because of (ii) therefore

1 v
3 Che = 3 B(in)d
i=1 d=1 )
has no zeros in |2| < 1. By theorem 4.1 (b) it follows that Uk, ls, k> 0,
spans L,(R*, #,, ) and hence indicator functions of Wi ~ B kny,
% > 0, all belong to the span of Uyls, ¢e@*. Ag%in let %, be the s-algebra
2

generated by Wy ~ B+ k&, k> 0. Since Y 05" has mo zeros in
A=1

|2 < 1, by argument same as before we conclude that Uy, IwyynE s
% > 0, spans L,(R,, #,, n) and hence the indicator funetions of Wy, ~ F--
4 ks &y, k= 0, all belong to the span of Uy 1wy .z- I we note that
Ak, ») is constant on each Wy~ B, 2 =1,2,..., 7, it can be seen
that Uiy, qinee, 1z (5 4> 0) has a span which contains the indicator func-
tions of each of the set Wy ~ B4kg,+2An € (%, A= 0). Proceeding
thus we see that the closed linear subspace spanned by {Ulz}eso, 1€@,
contains the indicator functions of each of the sets

Wi~ B+ k1771+ kzﬂzsl‘l‘-- . '+”§1- o E‘n—‘l’km:‘ﬁny'
0<k<oo, i=1,2,...,m, n=1,2;...

But every function in L,(R*, &, ) is approximable by linear com.-
Dbinations of indicator functions of such sets. Consequently, U,ls, <@,
spans the subspace of functions in L,(R, &, u) which vanigh for negative
real numbers.

(b) this is now obvious, g.e.d. .

COROLLARY. Translates of lg by members of @+ span L*(E*, &, p).

o

Proof. In this case each CF = 1, so that > 2" has no zero in l2| < 1.
A=0

Hence theorem 5.1 is applicable, q.e.d.

The cocyele constructed in 3.2 together with theorem 4.1 (iii) can
be used to show that our theorem is non-vacuous in a non-trivial way, ie.,
A can really be chosen to be a cocyele which is not a coboundary and
for which the hypothesis of theorem 5.1 are satistied. We leave the details
of this verification to the reader. ‘

Remark. In contrast with theorem 5.1 there exist measures u
invariant under a group @ such that for every group U, qeQ, of unitary
operators on L, (R, &; u) of type (5.1) no funection f exigts in Ly(R, #, )
so that U,f, geQ, spans Ey(R, %, p) [31].
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6. DUAL MEASURES AND THEIR PROPERTIES

6.1. Dual measures. Let 4 be a o-finite measure on # which is
invariant under a countable dense subgroup @ and let A(-, ;) be a unitary
cocyele on @ X R, which satisfies functional equation (3.1) a.e. with respect
to u. Let Uy (¢<Q) and V; (t<R) be groups of unitary operators on L, (R, &, u)
defined by

(Ugf) (@) = A{g, ») f(@+q),
(Vi) () = ¢ f(x).

It is easy to check that U, and V; together satisfy the following

important equation:

(6.1) V.U, = €U, Vi.

Now consider ¢ as an abelian group with discrete topology and let B
denote its compact dual. There is a continuous isomorphism @ of the
real line with usual topology into B given by (®(t), g) = D(f) (¢) = ¢™.
It can further be shown that @ (R) is dense in B. Now by Stone’s theorem
for groups we can write

U, :“Jg‘(q’ r) Bldr),

where f i3 a spectral measure on the Borel subsets of B, whose values
are projections in L,(R, %, u). It follows as a consequence of (6.1) that
(6.2) Vip(4) Vi = B4+ (1)),

where A is a measurable gsubset of B. See [9].

We assume now that L, (R, %, u) hag a single generator f with respect
to Uy qe@. Then g is of multiplicity 1 and T: U,f— (g, *) is an invertible
isometry from IL,(R, #, u) onto L,(B,v), where v is the measure v(d)
= (ﬁ(z]) 1, f). Because of (6.2) the measure v is quasi-invariant under
D(R), ie., v(4) = 0 if and only if @(A—I—(l)(t)) = 0, f{eR. Further one can
prove

THEOREM 6.1. If u is ergodic under ¢, then v is ergodic under ¢ (R).

Remark. Our method shows a way of getting on the dual B of
a subgroup of R a measure which is quasi-invariant and ergodic under
@ (E) but which is neither equivalent to the Haar measure on B mnor
equivalent; to the linear measure on a coset of @(R). Heve equivalont
measures means meagures mutually absolutely continuous.
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