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Continuity of seminorms and linear mappings
on a space with Schauder basis *

by

OSCAR T. JONES (Baton Rouge)

1. Imtroduction. In this paper we study conditions which ensure
continuity of seminorms or of linear mappings on a space with Schauder
basis. Interest in Schauder basis has been largely concentrated on Banach
and Fréchet spaces, although generalization of the concept to non-metriz-
able spaces is straightforward (see [2], for example) and examples exist
in abundance. The relationships of the conditions considered here,
however, are most clearly understood in the context of a general locally
convex linear topological: space. .

Throughout the paper (X,7), or simply X, will denote a locally
convex linear topological space with topology 7, X* = (X,7)" the
conjugate space of X, {#,} a Schauder basis of X, {f,} the coefficient
functionals biorthogonal to {#,}, and S, (n =1,2,...) the »™ partial
sum operator defined by

= D x@ex  (@eX).

k=1
Thus for each ze¢X we have
T = yfx(m)mx -—lu:nS ()
)

2. Seminorms and Schauder bases. -
THEOREM 1. Let X be a barrelled space with Schauder basis {x,}. Hach
seminorm p on X satisfying

1) 7 imp(sn(w))=?(ﬁ) (weX)

s continuous.

.

* Portions of the article are from the author’s doctoral disgertation at Florida
State University (1966), research for which was supported by National Science
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The above assertion follows from the fact that in any barralled
space the point-wise limit of a sequence of continuous seminorms is con-
tinnous, provided that this limit exists for all vectors in the given space
(see e.g. [6], Theorem 8.12).

Some implications of this theorem are discussed below. For the
present we observe that a partial converse is valid.

TasoREM 2. Let X be a space with Schauder basis {.}, and suppose
each seminorm on X satisfying (1) is continuous. Then X is quasi-barrelled.

Proof. Let U be a bound absorbing barrel in X, and let p be its
gauge. For each zeX, {S,(#):n =1,2,...} is bounded and is therefore
absorbed by U. Thus we may define a seminorm p' on X by

p'(w) = supp (Sm(@) (weX).
Since U is closed, we have p(#) < p'(¢) on X. Now for each z¢X,
im p’ (S, (2)) = lim supp (S0 Sx(2)) =lim sup p(8,.(#)
N<00 n—sc0 M N-s00 L<mgn
= supp (S (@)} = p' (w).

Thus p’ satisfies (1). It follows that p’' is continuous, whence p is
continuous, and U is a neighborhood of 0 in X.

3. Some related conditions on Schauder bases. Consider the following
assertions which may or may not hold for the space (X, ) with Schauder
basis {z,}. They are related to the condition of Theorem 1 and to each
other in the manmer subsequently described.

(A) ¥ T is a linear mapping of X into a locally convex space Y
such that

(2) Bm T (S, (2)) = T(w) (weX)

N—00
then T is continuous.
(A’) If a linear functional f on X satisfies
Imf(8,(n)) =f(m) (weX),
N—>00
then f is continuous.
(B) If p is a seminorm on X such that
(3) lmp(z—8u(n) =0 (weX),
N—00

then p is, continuous.

(C) There exists no locally convex topology 7 for X which is strietly
stronger than 7~ such that {®,} is a basis for (X, 7). .

icm
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THEOREM 3. (A), (B), and (C) ars equivalent assertions.

Proof. We show (A) = (C) = (B) = (A).

Assume (A), and let I be a locally convex topology for X which
is stronger than 7 and such that {x,} is a basis for (X, 7). The identity
map of (X,7) onto (X,7’) satisfies (2) and is therefore continuous.
Thus I =7

Given (C), let p be a seminorm on X satisfying (3). Let @ be a collec-
tion of seminorms on X such that 7 = o(X, @). Let @' be @ augmented
by p. Then {x,} is & basis for X rclative to the topology o(X, &'). Thus
o(X,d) = o(X, &'), whence p is F-continuous.

Agsume (B). Let T be a linear mapping of X info a locally convex
space Y, and suppose T satisfies (2). Let U be a closed convex circled
neighborhood of 0in Y. If ¢ is the gauge of U, then p = qoT is a seminorm
on X. We define a seminorm p’ on X by

P (x) = sgpp(Sm(w)) (weX).

Since limp(S,(x)) = p(x), we see that p'(w)>p(z) for all weX.
n—o0
Let weX. Given ¢ > 0, there exists N such that for n,m> N,

D(Sm(2)— 8n(w) = q[T(Sm (@) — T(Sa(@))] < e.
Now if = N,

P[5 Sn(®)) = SuDP (S () — S0 S8n() = SUPP(Sm(®)— Sa(@)) <.

m>n
Thus limp’(z— Sx(2)) == 0. for X, so p’ is continuous, whence
N—00

9 is continuous. Then ¥ = {z: p(x) <1} is a neighborhood of 0 in X.
But V = T-![U]. It follows that T is continuous. This completes the
proof of the theorem.

Remark. It is clear that (A) implies (A’). On the other hand, if the
topology 7 of X is Mackey and (A') is satisfied, then (A) holds. For if 7
is a locally convex topology for X such that {z,} is a basis for (X,77),
then (X,7°)* < (X,7)* so 7’ cannot be strictly stronger than J.
This verifies (C), henee (A). It follows from the seminorm inequality

lp(@)—2H) <pla—y)

that the condition of Theorem 1 implies (B).

The following example suggested by J. R. Retherford shows that
they are not equivalent. It is an example of a basis of a non-barrelled
space with basis satisfying condition (A). The space is not even guasi-
barrelled, which in view of Theorem 2 shows that (A) and the condition

" of Theorem 1 are not equivalent.
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Example 1. With the usual norms, I and m are Banach spaces,
and (I)* = m. Let X be the space m with the Mackey topology derived
from the natural pairing of I* and m. X is not quasi-barrelled, henece
neither barrelled nor bound ([6], Problem 20A). In the terminology of
Kothe [8], Section 30, I* is the a-dual of m. It follows ([8], p. 417 (10))
that the unit vectors of m form a basis for X. Tt is easy to see that the
basis satisfies (A’'), hence (A).

4. Equicontinuity of partial sum operators. Bases with the property
that the sequence of partial sum operators {§,} is equicontinuous have
been studied in [9]. We obgerve that this property is implied by condition
(A), but the converse does not hold.

Let {@,} be a Schauder basis for X, and let  be a base for the
neighborhood system of 0 in X consisting of closed convex circled sets.
For Ue% define

U = {weX: 8y(x)eU for all n}.

%' = {U'": Ue¥} is a local base for a locally convex topology I~
for X; 7 is stronger than the original topology 7 of X, and {s,} is a Schau-
der basis for (X,7”). These assertions are verified in a somewhat more
general setting in [10].

Since

AST =T (Tew),
n=1

we see that {S,} is equicontinuous relative to 7. In view of Theorem 3
(A = 0) we have the following result:

THEEOREM 4. If a basis satisfies condition (A), then the partial sum
operators are equicontinuous.

Example 2. Let X be I, and let 7 be the topology induced on X
by the norm of ¢,. (X,7) is a normed space with closed unit sphere
U = {a = (&) el*: supla;] < 1}, -and the unit vectors form a Schauder

bagis. The sequence of partial sum operators 1is equicontinuous, since
N 83 [U] = M {ael': 8,(a) e T}
N=1 N==]
= M {ael': supla| <1}
N=1 1<ign
= {ael': sup |o;| <1} = T.

This basis does not satisfy (A), since it is a basis for I* with its natural
topology, which is strictly stronger than 7.
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5. Applications. Let B(X, Y) be the space of continuous linear
mappings of X into a linear topological space ¥. If X ix bound, this is
precisely the space of bounded linear mappings of X into Y. In this case,
if ¥ i3 complete, then B(X, Y) is complete relative to the topology of
uniform convergence on bounded subsets of X ([6], Theorem 8.15). The
following completeness theorem is somewhat more general in the case
of spaces X satisfying a basis requirement. The proof uses a version of
the classical Moore theorem on interchange of limits. Usually stated
for nets in a complete metric space ([3], I. 7.6, for example), it is also
valid for nets in a complete locally convex space. Only technical changes
in the standard proof are required.

THEOREM 5. Let X have a basis {x,} satisfying condition (A), and let ¥
be a complete locally convex space. Then B(X, Y) is complete relative to the
topology of wuniform convergence on bounded subsets of X.

Proof. Let {T,} be a Cauchy net in B(X, Y) relative to the topology
of uniform convergence on bounded subsets of X. For each zeX, {T.(x)}
is a Cauchy net in ¥, and therefore converges to a limit in ¥ which we
denote by T'(z). T is linear on X to Y, and a standard argument shows
that convergence of {T,} to T is uniform on bounded subsets of X. For
each zeX we have

Lm T (8, () = Hmlim T, (8, («))
Ti—aco n—sco @
= limlim T, (S, (2))

= lim7T,(z) = T(z).

The interchange of limits is justified by the convergence of {T.(S8,(x))}
to T(Sn(w)) uniformly with respeet to n, sinece {S, ()} is bounded in X.
Tt follows that T is continuous, and the proof is complete.

Theorem 5 implies that if a space X has a basis satisfying (A), then
X* with the strong topology is complete. A slightly stronger resulf is
given in Theorem 6 below. In particular, the strong dual of a barrelled
space with Schauder basis is complete. This is not true of barrelled spaces
in general [T7].

THEOREM 6. Let X have o basis satisfying (A'); i.e., every linear
functional f on X such that :

limf(Su(2)) =f(@) (2eX)

is continuous. Then X* is complete relative to the strong topology.
Proof. The proof is similar to that of Theorem 5, with obvious
modifications.

f
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Les nombres de Pisot et 'analyse harmonique
par

Y. MEYER (Paris)

Le but de ce travail était de démontrer qu’un ensemble de nombres
réels, du type Cantor, construit & I’aide d*un rapport de dissection (cons-
tant) £ est un ensemble de synthése dés que &' est un nombre de Pisot(").
Le résultat que nous avons en fait prouvé est plus général et moins préeis
(th. X) mais, chemin faisant, nous avons eu ’occasion de relier les nombres
de Pisot et aussi les nombres de Salem & divers points de ’analyse
harmonique.

Dans la partie I sont étudiés les ensembles harmonteus de nombres
réels: nous appelons ainsi toute partie A de R telle gque les restrictions
4 A des caractéres du groupe R, muni de la topologie discréte, soient
uniformément approchables, sur 4, par des caractéres du groupe R muni
de la topologie usuelle. Ces ensembles 4 sont, s’ils ne sont pas trop dis-
persés, caractérisés par le théordme IV.

Dans la partie II, une catégorie plus vaste d’ensembles A de nombres
réels est étudiée: on dit que A a un compact associé 8’il existe un nombre
réel & positif, non nul, et un ensemble compact K de la droite réelle tels
que, pour tout polyndéme trigonométrique & spectre dans 4, P(x), on ait

sup|P(x)| = esup | P(z)]-
weK xeR

Ces derniers ensembles jouent, pour le probléme de la synthése, un
role analogue & celui des progressions arithmétiques intervenant dans
un théoréme de C. Herz ([3], th. VII, p. 124) et c’est, grice & ce fait, que

nous obtenons le théoréme X dans le partie ITT.
1. LES ENSEMBLES HARMONIEUX

1. Propriétés générales des ensembles harmonieux

1.1. Le groupe additif des nombres réels est noté R et le groupe
multiplicatif des nombres complexes de module 1 est noté T. Sauf avis
contraire, les topologies considérées sur R et T' sont les topologies usuelles.

() Léauteur vient de prouver ce résultat quand, en outre, 0 < < 1/8.
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