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On the zeroes of some random functions
by
R. KAUFMAN (Urbana, Il.)

Let F(f) be a Fourier geries with random coefficients and phases,

F(t) = ) anXncos(ni+B,).
=1 .
Here (X,) is a sequence of mutually independent Gaussian variables
of type N (0, 1); (@ (n))y it a sequence of mutually independent variables,
uniformly distributed upon [0, 2w]; and the X’s and &’s are mutually
independent. (The basic probability space will be denoted (2, P):) About
the numbers a, we suppose

a, >0, loga, = —plogn+to(logn), withi<pg<1.

Our goal is an estimation of the zero-set of F, Z (v) = {t: F(t, w) = 0}
TepoREM. Let B be a closed set in [0, 2] of Hausdorff dimension d.
Then :

P{dim(Z ~ B)<d—p-+4 =1, d>p—1,

PZAB=0}=1, d<p—4%,
P{dim(Z ~ B)>d} >0, 0<dy<d—p+3.

In § 1 we prove a general prineiple for the lower bound, whose appli-
cation in dependent upon specific estimates, derived later about F. In
§2 we review some conclusions from [2] about the uniform convergence
of I and its modulus of continuity, and we also obtain a technical lemma
about the local character of the trajectories of . In §3 we obtain an
upper bound. for the dimension, and in § 4 & lower bound is obtained by

combining the work of §§1 and 2.

§1. Let B be a compach set of real numbers and g a probability

measure in B such that: -
(i) u([a, a--h]) < O.h% for constants Cy,d >0 and all intervals

[a, a-+R]. .
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Let Y(f, ©) be a stochastic process, for t¢ B, and suppose that:
(ii) Bach path ¢— Y (I, w) is continuous.
(iii) P{w: |¥(t, 0)| <y}=C,y, for teB, 0 <y <1, and 0, > 0.
(iv) For some constant « in (0, d) and 03 >0

Plo: |T(t, o) <y, X (s, 0)] <y} < Opy?ft—s™°

for 0 <y <1, teB,seB.
TEEOREM. P{dim(Z ~ B) > d—a} > 0, where Z(w) is the zero-set of
Y(-, o).
Proof. Let f(u) be defined for u > 0:
uaﬂdlog—Z(u—l)’ 0< %< 0—1-
fle™),

Define a (random) measure o, in B for 0 <y <1:

a{¥lZ29} =0, o@ =y u@ i Gc{¥ <y}

flw) =

et <.

Then .
Bloy(B) =y~ [P{X () < y}u(dt)> 0,
B( [ [ £t~ s1) oy (@) o (ds))
=y [[Hit—sDP{TW)] <y, |V ()| < y}pu(@) p(ds)
< Os [ [ F(lt—sl) [t—s]7"u(ds) (@) < Oy < o0

for all y.

by (i), (iv) and the definition of f. Because f is bounded away from 0,
E((ay(B)V) < 0; and so ([2], p. 8) there is a constant K such that

Ploy(B)>E} > K >0,
and then

P{fff(u—s]) oy (1) 0y (ds) < 21{-104} >1-—3K.
Thus if we set, for 0 <y <1,
Ay ={o: B> K, [[f(li—s))o,(dt)0,(ds) < 2E7C,),
then P(4,) > 1K, and so P(limsupAl,m) # 0. Now let o elim sup 4 m,

50 that wsAl,mj for a sequence m; - co. Let o be a. weak™ limit-point
of the meagures Oym;- We have |lo|| = o(Z ~ B) = K > 0,

fff(}t—-s[)o(dt)a(ds) <2K-'¢,
and so ([3], III) dim(Z ~ B) > d—a.
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I < v be integers and
k

8,u(t) = Z ay X, 008 (nt -+ @y).
@

§2. Let 1< p<

Let B, denote conditional expectation for the Borel field of
(X“ ([)1, eey .X]“ (Dh)» Then

B8, 5(1) = Spp (D),
By Jensen's inequality, for any real y
B expy [8,,6(8)]) = expy 18,51 ()]s

b

B ([ expy 8,00 )

0

<k,

27
> [ expy |8, (®)dt.
bl .

i

Hence the integrals, say Ii(y), form a submartingale for u4<k<»;
therefore ([1], p. 302) for A >0

P{n%oaxlk(y) > <1 B (L)

To estimate H(I,(y) we fix t and (P,,..., §,) and find an integral
<exp[3y® > an], whence
Y £
B(L,(y)) < 2mexp[by’ Y @]

Using S. Bernstein’s inequality as in [2] we find that for any z > 0,

y>0
P{maxmax |8, :(f)] > #} < P{m’?.xlk(y) > vty
i /]

< 2nvexp[%y22a3,,—%zy]
= 2nvexp[—%z2(2 aﬁ,)_l],
for an optimal choice of y > 0. Finally, if ¢ = 41log"y (>} @)
(1) l’{maxmla.xls,‘,k(t)l > a2t
t ok
This is substantially inequality (9) of (2], p. 7. Two useful conse-
quences of (1) are these:
(a) F is almost surely uniformly convergent ([2], p. 8).

(b) F belongs almost surely to each class Lip (), @ < f—% ([2], p-13).
The remainder of this paragraph is concerned with the covariance

S @t cos (nt-+ Dn) cos (ns+ @) = g(t, 5)-

N=1
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LuyuA. (i) For almost all & = (Du)°, infg(t,?) >0, and g(t,#)+
11
g(s, 8) > 2g(s,1) for 0 <<s <t < 2m.
(ii) For each ¢ >0 and almost all @,
lg(t, ) —g(s, )| = O(jt—s*~'") as |t—s| >0,
gt D) +g(s,5)—29(s, 1) > {t— st for small |t—s|.

Proof. (i) Because g(t,?) > a3 cog” (14 @,) -+ af cos® (26--By), infg(t,1)
> 0 if @, = 20, (modulo{ ), and so infg(t, t) > 0 almost surely. A. slightly
more elaborate argument yields the second assertion of (i).

To prove (ii) we begin with the formula

008 (15 -+ By) 608 (nt+By) = 308 (18— 1)+ 3o (ns - nit4-2B,).

In the inequalities

% %
Za;i]l——cos(%s~nt)| < ft—s)? 2%2 @ = [t——s]20(k3‘”+“);

n=1 Ne=1

S‘ a, = O (F=2+)

n=lk+1

we choose % so that 1< k|t—s| <2 and obtain

Zaill—cos(ns——nt)] = O(jt— 8211,

=1

We have also the inequality

i &
Zailcosmer b+ 20y} — cos (2nt+2P,,)| < |t —s| ZM; = [t— s|O(F—+%).

=1 Ne=1

Exactly as we proved (1), we can prove that

2k A 5]
max| 2 aﬁcos(m—i—nt—l@@,.)‘ < 0110g1’270( 2 a%)l/ﬂ

S N=Jo+1 M= o1
except on a set of probability P << ¢'k~% Hence

2k

Z a2cos (ns -+ nt -+ Zcbn)‘ = 0(751/2—2ﬂ+E)
n=k+1

almost surely. !

max

icm
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o0
As $—28+e< 0 for small & Y dapcos(ns+ni20,) can be
n=fe+1

estimated by 2 geometric series, and then

max Z aﬁcos(ns+nt+2¢n)l = O (K%,

A=l
Tn the inequalities for 1 <n< % and k< n < co we choose k ~ [t—g|~*
and find
> Lilhs .
" a2 (e0s (ns -+ mi-- 28,) — cos (2mt+20,)) = O(lt—s] O

N=1

But f < 1 implies 26—1 < 3f—3, and the first inequality in (ii) follows.
) To prove the second inequality we use the fact that all the addends
in the series g(t, 1)+ g(s, s)—2g(s, ?) are positive. We estimate the sum
upon the interval &y < < k,, where |ky[t—s|—1] < [t—s|, |kalt—s|—2|
< [t—s|. We have already proved that
ky
Zaﬁ(cos2%t+2¢%)+ cos (2ns + 26,) — 2 cos (ns -+ nt+-2Py)
ey — 0(k§’2_2ﬂ+g).
But
kg . ko
2 a3, (1 — cos (ns —nt)) > 0 [t—sf* Z'nf‘ &> Olt—sP I = Olt—sP 1"
2 Ty
The last two inequalities complete the proof of the lemma.

§3. Here we give an upper bound to the stochastic closed set
Z(w) ~ B. By a small effort we obtain a variant of the bound proposed
in the introduction. Let @ be a function in every class Lip(a), e < f—1%,
and let Z*(w) be the zero-set of

H{t, 0) = F(t, 0)+G ().
THEOREM.

dimB =d > pf—4%.
d<p—%.

P{dim(Z* ~ By <d—p-+4 =1 provided

P ~AnB=@0}=1 provided

Proof. For each @, H(t, ») is conditionally Gaussian, with variance

8

V' 02 cos? (nt++ By) = 0" >0

n

1
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for almost all @. Thus for numbers 5 < & and any ¢
PPy <H(t) < & =P*{—G() < F(5) <& —GFU}<o(é—n) = O(£—y).

Here the symbol O depends upon @ but not upon i,  or 1.

Let us choose numbers s, s, so that s, >d—B+4,s, <p—4,
s;+8, > d. For each r >0 we can find intervals (ay,by), ..., (ay, by)
so that

N . .
Be U(apb), D (b—a)f™<r, and 0<b—ag<r
1

for each j. Define
‘ Ty(w) = D) (b—ay)*

summed for all j such that |H(b;, w)| < (b— a))™.

Because H is almost surely in some class Lip(a) with a > s,, there
is a number 7,(w) > 0 so that, if b;—a; <7 < 7(w) and H has a zero
in [a;, b;], then

[H (b, @) < (bj—ay).

Hence (for these values of 7) the set Z* (o)
(a7, b;) for which
0 <bj—a; <v,

~ B can be enclosed in intervals

N (5 ap < Io(o).
Therefore we can establish that
P{dim(Z* ~ B) < s} =1

by showing that T, — 0 in P-measure as r — 0. The latter follows from
the fact that for almost all @ BE*(T,) = o(1) as 7 — 0. In fact,
N o
B(T,) = > (b— ) P*{|H (b;)] < (b— a;)*2}

J=1

=

0 (b =)'+ = o(1),

1
-

as required. !
]?sy choosing & sequence of pairs (sy, 8;) With s, — d— f+ 4§, we obtain
the first part of the lemma.
In the case that d < f—3% we can always choose 8, == 0, so that
T:(0) <1 implies Z*(w) ~ B =@. This completes the proof.

§ 4. Tn this paragraph we assemble results already obtained, to
prove the lower bound asserted in the introduction. First, if 0 < d, < d,B
carries a probability measure u such that

p([a, a+R]) < Ok
(131, 10). '
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We apply the theorem to the process F(f) with P evaluated at @.
Because ), a5, < oo we have ~
PU{F(®) <y} = Oy
for a constant ¢y and 0 < y < 1. The joint distribution of F'(¢) and F(s)
can be determined as follows. We have F(s) = A (s, t)F()+V, where V
is Gaussian, ¥ has variance g(s, s)—g*(t, 5)/g(%, 1), and Visindependent
of F(i).
Let us show that
g8, 0 g(s, 8)— s, 1) > Calt— s+
‘ In fact,
g{t, ) g(s, 8) = g2(s; 1) +g(s, t){g(t, 1)+ g(s, s)—29(s, t))‘l" )
+(g(t7 t)v”“g(sy i)}(g(&‘, S)—g(si t)):

for |t—s| small

or
gty Dg(s, §)—g2(s, 1) = O(lt—sI* =)+ g (s, 1) [t—s[¥7**

for |¢—s| small
TFrom the last estimation it easily follows that

PP{F@)| <y, |F(s) <y} = O(yl"ly| [t—s]
Thus for almost all ® we can apply the Theorem of § 2 with

a = f—3%+e, and find
P*{Aim(Z ~ B) 2z d'+%—f—e > 0.

This completes the proof.

I[Z—ﬁ-e) A
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