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On. a theorem of H. Goldstine
. by

C. L. DEVITO and R. WELLAXND (Tucson, Arizona)

The purpose of this paper is to generalize to locally convex spaces
the theorem of H. Goldstine [2] which states that a Banach space with
a separable dual is reflexive iff it is weakly sequentially complete. Our
locally convex spaces may be metrizable or not. In the non-metrizable
case nets will play the role which sequences play in the metrizable case.
We shall work with special nets which we call Mackey nets. In terms
of these we obtain a characterization of weak eompactness and from this
our generalization of Goldstine’s result.

1. We bDegin with a short discussion of the terminology and
notations which we will use. Throughout this paper the letter E will
denote a locally convex, topological vector space over the field of real
numbers. The dual of B will be denoted by E’, the weak topology on
E by o(E, B') and the weak* topology on E' by o(F', E). A subset U
of E iy said to be circled if aU = U for all real numbers o such that
la] <1. If U is circled we define U° to be: {f in E'} |f(z)] <1 for all »
in U}. If we want to call attention to a specific locally convex topology
t on B, we will write E[t]. A compact subset of B[] will be called i-compact.
Similarly, we will speak of i-eontinuous linear functions, i-convergent
nets, ete. A subset of B’ is said to be dotal if its linear hull is o (B, H)-dense
in E'. Recall that the Mackey topology on E is the topology of uniform
convergence on the convex ¢(E', E)-compact subsets of E'. This topology
will be denoted by (E,E’) or, when there is no possibility of misun-
dexstanding, by r. Unless explicitly stated otherwise we shall assume that =
is non-metrizable, i.e. E[r] does not have a countable, fundamental
system of neighborhoods of zcro.

DEFINITION 1. Let # be a fixed fundamental system of circled,
closed, convex, -neighborhoods of zero in . A net {z,| o in A} of points
of B (see [6], . 65, for a discussion of our notation and terminoclogy for
nets) will be ealled a Mackey net provided: (i) Cardinality of A =card 4
= card #; (ii) No countable subset of 4 is cofinal, i.e. no subnet of
{#.] @ in A} iy a sequence.
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Our characterization of weak compactness is motivated by a simple

observation of R.C. James ([4]; Theorem 2, (15), p. 107). He noticed

that a bounded, weakly closed subset K of a Banach space B is weakly

compact if for every sequence {z,} < K and any sequence {f,}c B’

satisfying limf; (z,) exists for every %, there iy a point x, in K such that:
n

limfy(2n) = fr(w,) for every k. This condition is very wealk, for there is
n

little connection hetween the sequence {w,} and the point a,. If, for
instance, K is countably weakly compact, then z, is in the weak clogure
of {z,}. However, if X gatisfies condition (3) of James’ theorem 1. ([4],
p. 103), then we can only say that , is in the closed, convex hull of {o,}.

DEFINITION 2. A bounded subset K of # iy said to be m-compaot
if for every Mackey net {z,| a in A} of points of X and any subset I' = B’
with eard I' = card %, there is a point #, in K ~ [closed, linear hull of
{r.] o in A}] such that f(w,) is an adherent point of {f(@a)] @ in 4}
for every f in I'.

The following theorems remain valid in the event that = is metrizable.
However, Mackey nets must be replaced by sequences and some slight
modifications must be made in the arguments,

TEROREM 1. An m-compact subset of a locally conven space is weakly
closed.

Proof. Let K be an m-compact subset of F and let 2, be a point in

the weak closure of K. Assume, for the moment, that card K < card #.
Let H be the closed, linear subspace of X generated by K. Let v
={U~H| Uin %} and, for V in 7, let Ny ={r in H| z is in 1V
for all 4 > 0}. It is well known that the gauge function of V ([3], p. 94)
is a norm for the space H/N,. The natural map, n,, from H onto H|N,
is continnous when H has v(E, B')|H and H |, has its norm topology.
Thus, n,(K) (i.e. {n,(®)] 2 in K}) generates the space H [Ny, It is easy
to construct a subset I, of (H/N,) which is total and has cardinality
less than or equal to that of #. Since n, is onto, its transpose, n., is a one-
-to-one map from (H/N,) into H’ ([3], p. 254). This map is continuous
when both spaces have their weak* topologies ({31, Corollary to Proposition
3, p. 2561 and 80 n, (7,) is total in u} [(H/N,)']. But B’ = U {ng [HN)])
Vin #}, hence I' = U {ny(I},)| V in ¥} is total in H'. We may agsume
that this last union, which hag cardinality less than or equal to that of
%, has cardinality equal to that of #.

Now. #, is in the o(H, B')-closure of K and henee is in H. Recall
that o(H, H') = o(E, B')|H ([3], Proposition 1, p. 261). Let {w;|2 in A}
be a net in K which is weakly convergent to z,. Since K ig bounded, the
set 8(f) = {f(#}| # in K} is a bounded set of real numbers for every
fin I It e18(f) denotes the closure of & (f) for the usual topology of the
reals, then I7{cl8(f)| fin I'} is a compact space. For each 1in A let Pa
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be the point {f(22)| f in I'} and, for 4, in 4, let F;, be the set {p;| i > 4}
Since 4 is a directed set, any finite number of the sets F, has a point
in common. If ¢l #; denotes the closure of F; for the product space topology,
then there is a point p in (M) {elFy|4 in A}. Let X = {A;f1,fay+es fu)l 4
in A;fi, foy ooy o in I'; » finite}. Clearly card X = card . We partially
order X by defining (A¢; /1, ..., fi) <(41; g15 -ov) Gm) to mean: A< Ay
and {fi] 1<i<k} = {g;] 1<j< m}. Note that = becomes a directed
get and if it had a countable cofinal set, then so would {(fi, fos-+-sfn)l
fisfay ooy fn in I'; 0 finite} which is impossible because I' is uncountable.
Define a map ¢ from X into 4 as follows: i o= (4;fi,fay ---,fx) choose
1 in Fy) sueh that |p.(fi)—p(fi)| <1/k for 1 <4<k, and then let p(o)
be this 2. Clearly {z,,| o in X} is a Mackey net which is a subnet of
{2 in A}. Since the latter net is weakly convergent to z,, so is the former.
Now K is m-compaet so there is & point y in K such that f(y) is an adherent
point of {f(#,q| o in X} for every f in I It follows that f(z,) = f(y)
for every fin I'. But z, and y aré in H and I' is total in H’, hence 2y = ¥
and K is weakly closed.
‘We began with an m-compact set K and a point , in its weak closure.
To complete the proof of our theorem we need only show that K has
a subset, IV say, such that: #, is in the weak closure of I and card N
< ecard %. Let # = {U°| U in %}. The family & is a covering of F’
by sets which are circled, convex and weak™ compact ([3], Proposition 1 (e),
p. 190, Proposition 6, p. 200, and Theorem 1, p. 201). Recall that each
2 in B can be regarded as a continuous function £ on E'[o(E’, H)]; here
&(f) =f(z) for all f in B'. If X is in &#, let ('(X) be the family of_ all real-
valued, continuous functions on X, and let ¢x be the map which takels
each @ in B to £|X. It is clear that ¢x is linear and, if F has (&, E')
and C(X) the topology of pointwise convergence, eon-hinuous. Hence
@x(%,) is in the closure of gx(K) for the topology of point/mse convergence.
‘We ghall prove that there is a countable set Ny < qu‘(K) whose
closure, for the topology of pointwise convergence, contains ex(®,).
Choose two positive integers m and «. Let P denote the produ.ct‘ space
constructed from m copies of the space X. We shall find a finite seb
M(m,n) < px(K) such that: Given y = (¥1,¥ss - ¥m) iu' P we can
find f in M (m, n) for which |f(:)—@x(%) ¥l < 1/n for 1 <i< m. Once
we have done this it is easy to see that Nz can be taken to be | J{M (m, n)|
m, n positive integers}. Since gx(z,) is in the Pointwise closure of gx(K),
we can, given ¥y = (Y1, ¥z, .-, Um) in P, ﬁndf.m ?oX(K) such that |f(y:)—
— px(®o)ys| < 1/n for 1 <4< m. By the continuity of f and.@x(x,) there
is a neighborhood V; of ¥, 1< i< m, such that |f($)"¢x(?7o)m1 <_1 [n
for all # in V,; and for 1< i< m. Clearly VX sz....me i a nelgh-
borhood of y in P. By varying the point y we obtalnl an open.covering
of P which, since P is eompact, has a finite subcovering. Let this finite
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subcovering be {VIXVix...xVh| 1<j<k}. To each set in this cov-
ering there is associated a fu.uctlon fin ¢x(K) and it is clear that we
may take M (m,n) to be {f'| L<j< k).

We have found a countable set Nx ¢ gx(K) whose closure contains
ox(x). For each X in # let Nx be a countable subset of K such that
¢x(Nx) = N%, and let N = U{Nx| X inF}. Clearly N <« K and
card NV < card #. We shall now show that z, is in the o(H, B’)-closure
of N. Let fi, fz, weeyfoin B’ and ¢ > 0 be given. Choose U in % such that
fiis in U° for 1 < ¢ < n. For notational convenience let U°, which is in &,
be denoted by X. If V = {z in E| |fiz—fiz] <e for 1< i< n}, then
ex(V) = {g in C(X)| |g(fi)—ox(x)fil <& for L < i< n} ~ px(H). Since
¢x(Nx) < ox(B), px(V) must meet px(Nx). Thus, there is a point y in ¥
and a point 2 in Nx such that ¢x(y) = ¢x(2). It follows that fiy =f;z for
1<4<n But y isin V so ]fm-g/——-fimo] < e for 1<i<n. We conclude
that zis in V also, and hence that zisin ¥V ~ Nx = V ~ N.

Remark 1. In the second paragraph of the proof of Theorem 1 we
have proved the following: If {w;| 8 in B} is any bounded net.in B and I"
is any subset of E' with card I' = card %, then there is a subnet of
{zg| # in B}, say {#,| ¢ in Z}, which satisfies: (a) {#,| ¢in 27} is a Mackey
net; (b) limf(x,) exists for every f in I

Remark 2. The proof of Theorem 1 ean be modified to prove the
following: If ¢ is metrizable, then a countably weakly compact subset
of F is weakly closed iff it is weakly scquentially closed.

2. The second dual of H, B is the space of all linear functionals
on B’ which are §(F', H)-continuous. Recall that 5(&', B) is the topology
of uniform convergence on the convex, o(Z#, E')-bounded subsets of B.
There iy a natural algebraic isomorphism from F into E"’. One maps each
2 in K to the linear functional ¢ on B’ defined by: £(f) = f(z) for all
Ffin E'. We shall often identify F with its image in B’ under this map.

THEOREM 2. An m-compact subset of a complete locally conves space
4§ weakly compact.

Proof. Let K be an m-compact subset of the complete space
E[v(E, E')], and let I' be any subset of B’ having cardinality equal to
that of #. By Theorem 1, K is weakly closed. Hence, by a deep result
of R.C. James ([5], Theorem 6, p. 139), it suffices to show that every
element of B’ attains its supremum over K at some point of K. Let f,
be in E'. Since the closure of K for B [o(E", B')] is eompact ([3], Theo-
rem 1, p. 201), there is a point 2 in this' closure at which f, attains its
supremum. over K. Let {#:] 1 in A} be & net in K which is o(#", B')-con-
vergent to z. Since I' v {f,} has cardinality equal to that of %, we can,
by Remark 1, construct a Mackey net {#,] o in X} which is a subnet
of {x;]| 2 in’ A} and for which limf(2,) exists for all f in I'w {fo}. Since
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K is m-compact, it contains a point y such tha.t limf(x,)
fin I'v {fo}. In particular, fy(y) = lmf,(x,) = f,(2).
fo attains its supremum over K at the point y of K.

We are now prepared to prove our generalization of Goldstine’s
theorem:

THEOREM 3. Let E be a complete locally convexr space. Assume that B’
contains a f(H', B)-dense subset I' with card I' = card #%. Then F is semi-
reflexive iff every bounded, weakly Cauchy, Mackey net in E is weakly
convergent to a point of E.

Proof. Recall: F is said to be semi-reflexive ift ¥ = B’'. It is well
known that F is semi-reflexive iff every bounded, weakly closed subset
of B is weakly compact ([3], Proposition 1, p. 227). Thus, the necessity
of our condition is obvious.

Let K be any bounded, weakly closed subset of F and let {z,| a¢in A}
be any Mackey net in K. By Remark 1 we can find a Mackey net
{#,| ¢ in X} which is a subnet of {z.| « in A4} and for which limf(x.)
exigts for every f in I'. Let f in B’ but not in I', and ¢ > 0 be given. Since
{#,| ¢ in Z} is bounded and I' is (&', E)-dense in B, we can find f, in
I such that |(f—f,)o,] < e for every o in XZ. Combining this with the
fact that limfy(xz,) exists, we see that limf(x,) exists; i.e. we see that
{#;] ¢ in X} is weakly ‘Cauchy. Thus, by hypothesis, this net converges
weakly to a point of K. Clearly, K is m-compact. Hence by Theorem 2
and [3], Proposition 1, p. 227, E i3 semi-reflexive.

THEOREM 4. Let K be an m-compact subset of E. A subset of B' having
cardinality less than or equal to that of % is uniformly bowunded on K iff
3 is bounded at each point of K.

Proof. This follows easily from Remark 1 and a recent result of
Brace and Nielsen ([1], Theorem 1, p. 625).

== f(y) for every
But this says that
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