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On non-triangular sets in tensor algebras
by

S. W. DRURY (Orsay, France)

For an arbitrary regular symmetric Banach algebra R(K) of con-
tinuous functions on a compact Hausdorff space K and an arbitrary
closed subset F of K we denote

I(B) = {f; feR(K), f vanishes on B},
I,(E) = {f; feR(K), f vanishes on a neighbourhood of B}.

It is easy to see that I(H) is a closed ideal of R(K) and that I,(H) is
an ideal in R(K). The subset E is said to be of synthesis if I,(H)= I(F)
(closure in R(K)) and E is said to be a strong Dytkin set if there exists
a sequence {7,}>; such that z,eI,(E) (n =1, 2, ...) and for every feI(E)
we have 7,f —f a8 n — oo for the norm of R(K). Every strong Dytkin
set iy clearly a set of synthesis. Together the following conditions imply
that E is a strong Dytkin set:

1) F is of synthesis;

2) there exist open sets 2, containing E such that

Qp €0, for n=1,2,... and ()2, =25
=1

3) there exists a sequence {u,}n.; With 1—u;eIO(E’), n=1,2,...,
satisfying the two conditions

U () =0 for all x¢@2,,
Hu’n”R(K) < 1tep

where {e, ) is a sequence decreasing to zero. We observe that these
conditions tend to bear on the case K metrizable.

To see this we take 7, = 1—u,. Let feI(E) and & > 0 be arbitrary.
By 1) there exists gel,(#) such that

If—glr<e.
By 2) there exists N such that g vanishes on 0, for n>= N. We have

Twf—f = ta(f— ) —Ung— (f—9)
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Itaf—flz < (1+|zale)e (0> )

since, by 3), U, g is identically zero (n>1N). Our claim follows since |7,z
is bounded. Tt is for further aims that we stipulate (+) in 3).

The following are examples of regular symmetric algebras:

A) All continuous functions C(K) on a compact metrizable space K.

B) Absolutely convergent Fourier series .A(¢) on a compact abelian
metrizable group ¢. We denote by & the dual group of @ and by G, the
group G furnished with the discrete topology.

C) The tensor algebra V(K ,xK,) = 0(K1)®0(K2) where K,, K,
will always denote compact metrizable spaces. A theory of this algebra
can be found in Varopoulos [2].

In this paper we shall be concerned with the examples B) and C).
A closed subset E of K, XK, is said to be non-triangular if for all 4, < K;
such that card(4) =2 (j =1,2) we have card(E n (4,X4,)) # 3.
The set {0g} satisfies conditions 1),2) and 3) for the algebra A(G); it is
the main object of this paper to use this result to show that every non-
triangular set satisfies 1), 2) and 3) with respect to a tensor algebra and
hence is a strong Dytkin set.

I K is a compact Hausdorff space, we shall denote by M (K) the
space of bounded complex regular Borel measures on K and by M™*(K)
the subset of such positive measures.

The reader should observe that a non-triangular subset E of D; X Dy,
the product of discrete spaces D, D,, is the union of rectangles X, x ¥,
(X, Dy, Y, = D,) with pairwise disjoint sides (X, Xy= Y, ¥,
=@, a # f). We now prove the analogous result for compact metrizable
spaces.

LEMMA 1. Let B K, XK, be a non-triangular closed subset. Then
- there exist & compact metrizable space @ and continuous moppings o;: K; — @
(j =1, 2) such that

B = {(m, #); aa () = az(mz)}

Proof. We define an equivalence relation ~ on K, v K, (the disjoint
union of K, and K,) as follows:

If weK,,yeK,, then @ ~y if and only if (z,y)eD.

If %y, ®e Ky, then z, ~ x, if and only if either x, =, or there exists
yeK, such that (w,, ¥) and (@, y) <.

If 4y, yse Ko, then y; ~ vy, if and only if either y, = ¥, or there exigts
zeX, such that (z,y,) and (»,y,) E.

The relation ~ is clearly reflexive and symmetric. We show that ~
is tramsitive. There are essentially 3 cases.

icm
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JA) @y, By, T3¢ K, (identical argument for K,) and z; ~ o,, 2, ~ 5.
There exist yy,y.cK, such that (z1, y), (@a, Y1), (%2, ¥a), (€5, Yo) e B. If
Y=Yz then @, ~a;. If y, #y, then (z,,y,)<F since already (2., 1),
(@2 Y2), (%3, Yo) e B and B is non-triangular. Hence z, ~ ;.

B) yeK,, @, 2,¢ K, (or vice-versa) and y ~ xy, &, ~ 2,. There exists
Yok, such that (1, ¥o), (@, Yo)eE. I y =y,, then clearly y ~z,. If
Y # Yo then (v, y)eE since already (2.,Y), (#1,¥), (21, ¥o) e B. Hence
By ~ Y.

C) yeKs, @y, deK, (or vice-versa) and o, ~y,y ~ &,.
(#1,9), (e, y) cB. Hence z; ~ .

Next we show that the ~-saturation of any closed subset of &K, u K,
is closed. Let =; denote the projection of KX K, onto K; for j = 1,2
For L < K, we define

01(L) = @ (LXK,) ~ B) € K,

and o, is defined similarly. If L is closed in K,, then we observe that o (L)
is cloged in K,. Let M be an arbitrary closed subset of K, v K,. Then
M=M, o M, where M;< K; (j =1,2) is closed. We observe that
saturation (M) = M, v M, w o1(M,) v 0,(M;) w 0,00,(M;) w0005 (M)
is closed. Let g: K; v K, - @ be the canonical projection associated
with ~. Since ~-saturation preserves closedness and K, v K, is a normal
space, we see that the projection g is Hausdorff and that @ is a compact
metrizable space in the quotient topology. It is an immediate consequence
of the definition of ~ that

Clearly

B = {(#1, %); 01 (21) = an(®s)}, Where oy = glzj (=1,2).

It we write Q; = o;(Ky) (§ =1,2),@ = Q1w @2, P = Q1 ~ @, then
we have F = (a; X a,)"(4), where 4 denotes the diagonal of PXP con-
gidered as a subset of @, X@,.

Now let us explain how a non-triangular set F satisfies conditions
2) and 3). Since @ is a compact metrizable space, it can be embedded in
T, — the torus of countable infinite dimension. We consider the mapping
o: K, xK, T, given by

0(@1, #s) = g (1) — aa(3)

where the subtraction takes place relative to the group structure of T,.
There exist open sets =, S T such that 0eXy, 2, € Zpforn=1, 2,...
and ﬂ %, = {0} and also functions v,c4(Tw) such that 1—v,eI,({0})

(n_l 2,...), 0(x) =0 for all #¢X, (n=1,2,...) and |Joa]lu <L1+ep
where ¢, is a sequence of positive numbers deereasing to zero. We define
Q,=0%Z) m=1,2,...) open sets in K;xK, satisfying condition
2) with respect to F. We also set u,=v,0p (eC (KX K,)) functions
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taking the value 1 in a neighbourhood of ¥ and vanishing outside @,
(n =1,2,...). To show that 3) is satisfied it remains to show that the

mapping

Y ->00p

is norm decreasing between the spaces 4 (T

)and V(E, X K;). Let yed.,.
‘We observe. that ’

%00 = (y0a)®(x0as),

where yoo, and y0a, arve functions of unit modulus on K, K, respec-
tively. Extending by linearity and continuity we have the resgult.

THEOREM 1. Ewvery non-triangular set satisfies conditions 2) and 3)
of the introduction with respect to the temsor algebra.

Suppose now that G is a compact abelian group and that K, K, are
two disjoint compact metrizable subsets of G such that K, o I, is a
Kronecker set. It is. well known (Varopoulos [2], 4, § 2) that the restric-
tion algebra A(K,--K,) can be identified isometrically with V (K, X K,)
by means of the dual of the multiplication mapping o: Ky XK,

— K, +K,. Let B be a closed subset of K, XK, and let B = o(B) be the’

corresponding set in K,+K,.

THEOREM 2. The set B is non-triangular if and only if b=
~ (g-+-H) for some ge@ and some algebraic subgroup H of G.

Proof. Suppose the latter statement holds. Let @, @y K, ¥y, ¥y K,
such that @y 5= ®oy Y1 F Yo A0A (By, Y1), (B1, Ys), (22, Y1) e B. Since @, -+,
1+ Ya, B-+y, belong to = (Ey+K,) ~ (g+H), we can write @, --y;
= g+hyy @1+Ys = g+ hoy B+ Yy, = g+ hy  Where hy, hy, hyeH. Hence
Byt = g+ (hathy—h,y) and it follows that w,+y,e(Hy+K,) ~ (g4H)
and that (z,, ¥,) ¢ H. This shows that B is non-triangular.

Suppose now that ¥ is non-triangular and that {u,}s..; is the sequence
constructed in Theorem 1. Regarding u, as elements of 4 (K,--I,) we
choos_e extensions @, to A(G) such that

(Kl‘l‘Kz)f\

Hwnl A(@) = < 14-2ey,. (B]L\Kl-i-]fz = Uy

On account of the fact that there exists ge@ such that &, (g) =1
the Fourier coefficients of &, are very well aligned ; we shall perturb the o,
very slightly so as to make the alignment perfect. Towards this let med (&
be such that |lw]l4e<14-2¢ and w(0) = 1. We have

200 =1 ad o0 <142

PLC ye
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Let A{x) = |&(z)| and define 0, = arg[é>(z)]. Then
h—ollae = 2" 3 2(x)(1—cos 6"
76
<2 (21 ) 2(22(1)(1_0050x))1/2 < 9 (L 22)R.
pr3 por

Let wy, (%) = @n(z+g) and define 1, by the method indicated above.
We ean regard A, as belonging to M+ ([G4]") with [,z < 14 2¢, which
bound decreases to 1 as m — oo, By the weak compactness of the unit
ball of M ([G,z]“ the sequence {1,}n; has a weak limit point 2e M+([G4]")
such that |4l < 1. Since Nlon— Aull g < 2657 (L+ 2¢,)"* tends to zero
a8 1 — 0o, we see that 1 is also a weak limit point of the sequence {@,}3,.
The Fourier transform 1 of 1 can be identified with a bounded function
on G4. We claim that H = {h; he@, (k) = 1} is an algebraic subgroup
of G on account of the implications

Ah) =1« Gf Chy @) =1, 3) =1
@)™
But A(k) is a limit point of {w,(k)}n; and hence also of {u,(g-+ %)}
Given that g+ keK,+ K, we shall have g+ ke® if and only if keH.
Hence F = (K,+K,) ~ (g+H). This completes the proof.

CoROLLARY. Conditions 2) and 3) characterize non-triangular sets.

This follows from the proof of Theorem 2.

In the remainder of the paper we discuss condition 1) that is the syn-
thesis of non-triangular sets. We denote by BM(K, X K,) = [V (KX K,)]
the dual space of V(K,xK, whose elements are called bimeasures.
For B a closed subset of K, X K, we define the space BM(E) of bimeasures
supported on Z as the annihilator [I,(E)]° of the ideal I,(E). The set H
has the wunit bounded syntheszs property it for every S<BM(E)there
exists a sequence {un}ne:

tneM(E), |palau<iSex (®=1)

with p, — § for the weak topology o(BM, V). Such a set is evidently
a set of synthesis. We aim to show that non-triangular sets have the unit
bounded synthesis property. We shall need the following standard lemmas:

LeMMA 2. Let L, be closed in K1 and B be closed in Ly X K,. The two
spaces BMy, A,‘(E) and BMg ., (B) of bimeasures supported on E defined
with reference to the two tensor algebras V (L, x K,) and V (K, X K,) are isomet-
rically identified and the two corresponding weak topologies on them coincide.

We start by considering those non-triangular sets for which the
projection as: K, — @, is identical. This is the case in which each ordinate
{ky} X K, (ke XKy) cuts the set E in at most one pomt Such anon-triangular
set will be called a graph.

iae.

Studia Mathematica XXXIV.3 w
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TEEOREM 3. For every graph B the inclusion M (E) ¢ BM(E) is an
isometric identification.

Proof. We embed K, into a compact abelian metrizable group 6.
We write K, = o7 (Q, ~ Q,). Hence Ec K;xK, and by Lemma 2
it suffices to prove the result with respeet to the algebra V(K;x&). The
set F is given by

B = graph(a) = {(ky, a(ky)); k< Ky},

where a: K; — G is the restriction of a, to K;. We shall need the following
mappings:

@ Ky x@ — K, 7k, g) =k,
i: K, B, (k) = (k, a(R)),
o: K1 xX@ @, a(k, 9) = g—a(k),

where — is taken in the group @ The significance of o is that the dual
mapping :

o A@) > V(B X6)
is norm decreasing. By extension by linearity and continuity it suffices
to check this on an arbitrary character xeér:

[*(0)1(k, g) = (g~ a(k)) = z(g) “xoa(k) = [xoa®y](k, g).

For an arbitrary §eBM () we have 7(8)e M (K;) and u = i0x(8)e M (E)
where # and ¢ are the norm decreasing bidual mappings of 7 and i:

7: BM(E,X@) - M(K;), i: M(K}) —~ M(H).
It suffices to show that § = pu. We observe first that %(8) = @ (u) since
mwoi = 1g;. Let feC(K,) and yeG -be arbitrary elements. We have
[for—(f(xo 0 ®1e)] (%, 9) = £() [2(9)— 20 a (k)]
: = f(k) - zoa(k): [x(g—a(k)—1]
= [(f-(xo @) ®1a) (o* (1 —14))] (, 9)-

Now y—1g vanishes on {8} a set of synthesis for 4(&). Hence we
can find functions g, 4 (¢) vanishing on a neighbourhood of 0g and with
¢n > 2—1g in A(@). The funetions o*(p,) vanish on a neighbourhood
of ¥ and tend to o¢*(y—1g) in V(K;xG). Hence

B—u, [(f(xo @)@ 1g)- (" (x—1a)]p = 0.
Algo we have
8—p, (f-(x0 @) ®1e)) = (H(8—p), f+(y0a)> = 0.

Therefore (S—u,f®y) = 0. Extending by linearity and continuity and
using the fact that trigonometric polynomials are uniformly dense
in 0(6) we see that § = .
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Let K be a compact metrizable space. We shall denote by K the space
of continuous mappings of K into 7. X is a group under pointwise multipli-
cation on K and with the discrete topology. The dual group of K is denoted
by K. There is a natural topological embedding iz of K in K. A continuous
surjection a: K — ) between compact metrizable spaces K and Q defines
a dual mapping o é K a group monomorphism (an embedding)

and a bidual mapping o’: K’ - @' a continuous surjective group homo-

morphism with the property o oix = igoa.

Levma 3. Let a: K —Q be a continuous surjection belween compact
metrizable spaces K and Q. There exists m: G — H a continuous surjective
group homomorphism between compact abelian metrizable groups G and
H and embeddings ex: K — @G, eg: Q — H such that moeg = ggoa.

Proof. There exists a countable subset B of K which separates the
points of I. To see this we embed K in T, and project T, onto its coordinate
spaces. Let A be a similar subset of é.-Wev define the countable groups
H and G to be the groups generated by A4 and «*(4) v B in Q and Zg
respectively. Since «* identifies H to o*(H), the inclusions HcQ,6cK
and a*(ﬁ') < G dualize o continuous surjective group homomorphisms
ot @' > H,px: B -6 and a: G - H respectively such that mopx
= pood, where G and H are compact abelian metrizable groups. The
continuous mappings ex = Proix: K =G and eg = pooig: @ — H are .
embeddings since G and H separate the points of K and @ respectively.
Evidently, moeg = ggoa. This completes the proof.

Tn the situation of Lemma 3 we define 4 = a7'(0g) a closed subgroup
of ¢ and I = z1(Q) = E+A a closed subset of G. When we come to
apply Lemma 3 we shall regularize on K by the action of A. To compensate

“for the fact that K is not A-stable we shall need a well behaved Borel

mapping f: L - K.

Since @ is compact metrizable, we may choose a translation invariant
metric d on G of total distance 1 giving the topology of G.

Tet I = [0,1] be the unit interval and let X be a closed subspace .
of I %I such that the coordinate projection X — L is onto. We define
the mapping 6: I -1 by

() = i]_nif{t; 1, t)eX}.
‘We denote
X' = graph(0) = {{I, 0(1); LeL}

the unique subset of X with the properties:
B) (I,1,)eX = Hiyel such that (I, 1) eX's
) (@,%), 0, tp)e X' =1y =1y
D) (I, i) eX', (I, t5) e X =1 < 1.
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Levwva 4. In addition we have:

A) X' is a G, (intersection of a sequence of open sets).

Proof. The mapping ¢ is lower semicontinuous and therefore has
a G5 graph. We leave the details to the reader.

LEMMA 5. There exists a Borel mapping f: L — K such that:

E) aof(l) = =(l), VieL;

F) keK, leL, a(k) = =(l) =a(l, p(D) < d(1, k).

Proof. We consider the continuous mapping

y: LXK - LXI
given by y(f, k) = (I, d(k, 1)) and the closed subset ¥ = {(I, k); I<L,
keK, a(k) = n(l)} of LxK. We set X = y(¥) a closed subset of LxI
and denote by X’ the subset of X in Lemma 4. The subset ¥ = ¥ ~
~y HX'} of LXK has the following properties:

AN Y is 6. ‘ ,

B') For all leL HkeX such that (I, k)e¥’.

D) (4, k) e X', (ke ¥ = d(l, k) < d(l, y).

E) U BeY =al) = a(k).

Let pr: ¥ ~ Land pr: ¥ - K be the continuous mappings defined
by the inclusion of ¥ into L x K followed by projection on the coordinate
spaces. On account of B') py is onto. On aecount of A’) and Bourbaki [1]
Y is'an “espace polonais”. The projection py: ¥’ — L satisties the con-
ditions of the Borel section theorem (Bourbaki [1]). It follows there exists
a Borel mapping f: L — ¥ which is injective and satisfies pzof = 1.
We set f = prof: L — K a Borel mapping which satisfies E) on account
of B') and F) on aecount of D’). This completes the proof.

Levma 6. Let f: L — K, be Borel. Then the bidual mapping

1z, XB)V: M(E,XL) - M(K,;x K,
is norm decreasing for the bimeasure norm.

Proof. Tet ue M(K,x L) with |lullpu < 1 and feC(K,) with [f], <1
be fixed. The mapping

g =><p fop '

is norm decreasing and linear from € (L) to C. Hence there exists a measure
ve M(L) with |pllzz <1 such thab
(%) o fep =G, 0, Vgl(I).

It follows that () is true for every bounded Borel function g. Let
heC(K,) with [k, < 1. Then

K(Le, X B)Y (), f®RY| = [<ps, f@MOBY| = v, hofy < 1.
This gives the result.
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Lot {en}m1 be a sequence of positive redls decreasing to zero fixed
for the remainder of the paper. In the situation of Lemma 5 we define

Up = {4; 4(0g, 1) < ey Aed}

and also L, = K+ U, = G. We denote by g, the Borel mapping f,: L, - K
obtained by restricting the g of Lemma 5. On account of F) we have

d(l7 ﬂn(l)) < &, VZELn-
LeMMA 7. Let u, be a sequence of measures with pi,e M (Ly), [|palar <1
and p, — u weakly, where pe M(K). Then Bn(us) — pu weakly also.
Proof. Let feC(L) with ||f]l, < 1 and ¢ > 0. There exists » such that
Q) < omy | < 2/2, ¥ > m,
(i) (s, b) < &0 = |F () — T ()] < o/2.
For m=n

[Kppm— B ()3 FO| = |ppmy f—fO Bud| < €[2.

Hence |(u—Bmlum), fY| < & a8 required.

THEOREM 4. Every mnon-iriangular closed subset B = K, xK, (K;
melrizable) has the unit bounded synthesis property. In particular, for tensor
algebras conditions 2) and 3) of the imtroduction imply condition 1).

Proof. The mappings o;: K; - @y (j = 1, 2) are given by Lemma 1.
We apply Lemma 3 to the mapping a,: K, @, and define G, H, L,-
Ln, By Bny Un and A with respect to a, as in Lemmas 3-7. By Lemma 2
it suffices to prove the result with respect to the tensor algebra ¥V (K, X@)-
We define the closed subset B* of K,XG:

B = {(k,9); (k) = m(g)}.
For feV (K, X6) and AeA we define the translate fi by
Jalk, g) = f(ky g—2).

Bvidently, fo—~f in 7 mnorm as 1->04. For S<BM(K,;x&) we

define the translate S; by
<S1,f> = (‘Syfl>~

Sinee [fallr = Ifllv, we have [Silsym = [|Sllexr and since f; —f as
A ->0,4 we see that §; —8 in o(BM, V) as A0, We say that
SeBM(E, X @) is tnvariant it §,=48 for all 1eA. Suppose that 8 is invariant
and is supported on E*. We act on 8 by the norm decreasing mapping

(1xa@)V: BM(K,XG) >BM(K, X H)
and observe that ’
SUPP((1XW)V (S)) = {(kh a1(7‘71))§ ke Ky, a;(k) 592};
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where the right-hand side is a graph in K, xH. By Theorem 3 we have
A xm)V(8)e M (K, X H) and

1L x )Y (8)lar < 1Sl
Let fe V(K,x@). Then
8,15 =8, [ frina(i),

where 7, is the Haar measure of 4. The function [ frdna(3) respects
(Lx=) and can be written

[ frdna(d) = Fo (1 ),

where Fe( (K, xH) by virtue of the fact that (1X=) is a closed mapping.
Hence '

K8, 1 = Kl x1)V(8), I < 8llen 1 ¥l < [18]lma 1 l]co -

Since V(KX @) is dense in O(K,X @), we see that § is a measure
and that [I8]la < [|8llea-
Let Z<BM(E). We aim to synthesize Z. Let ye[A]A. We choose an

extension X of x to G with X G We observe that the bimeasure
8 = (1x,®7) [ T (2) dra(2) < BM ()

(the product of the function (1x, ®X) with the bimeasure [ Xz (2)dna(4)
is invariant. For ped we have

{8y Iy = <8, 1o

= [ Zu ) ana @), (g, ® X)f,)

= [<Z, (L, ® X)fp> 4(2) dna(A)

= [<Z, (U, ® Xaforrd 2 (W) dpa()

= [(Z, (Ux, ®X 1) forsd £ (A+ @) dnalA)
(since X;(#)x(A) = X(@—2)2(A) = X(2) = Xs0(@) (A4 0))

= [<Z, (g, @Xa)fed 2 (X) dna()

(by the substitution A" = i+ and by the translation invariance of ,).
We write
0 = [ Zip(A)dna(d) for @e0(4).
We see that Z™ is a measure and || ¥z < || Z)lsy. Hence for geA (4)
the two inequalities
. 1Z%lkexe < lipllzia)i s,
129 ar < figllacay|Elien

©
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hold. Let ¢, be a sequence of functions in A (A4) whieh are positive, such
that [en(A)dna(d) =1 and with supp(p.) < U,. It is easy to see that
1) 12 ey < [ Zear,
(ii) Z®= is a measure,
(iii) 2 - X in o(BM, V),
(iv) supp(Z®)) < (K, x Ly) ~ B
We define », = (1, X B.)¥ (Z®W) e M (K, X K,). By Lemma 6 we have

(%) [valen < 1 Zen

and by condition E) on § we see that
supp(va) < E.

‘We aim to show that », -2 in o(BM, V) and by virtue of (+x) it
suffices to check the convergence on an arbitrary atom y;®ys, p,:<C(K,),
v, €0 (@) with |lpsll, <1 (j =1, 2). We regard y, as fixed and let y, vary.
Arguing as in Lemma 6 we have measures g, {tin}n.: and {o.}5.; in M (G}
bounded in the measure norm by llﬁjm& and such that

{Z, 11®99) = B, P2,
(Z0), 9, @y = {piny P2,
(s P1@Y2) = {On;y P22
where supp(u,) € L,. By virtue of (iii) p, - u weakly and evidently
0n = Pulun). We conclude from Lemmsa 7 that o, - p weakly. Hence
Cny P1@Ys> <2, Y1892

This completes the proof. :

T should like to end by extending my thanks to Dr. Varopoulos fo
his guidance and suggesting Theorem 3, to Mr. J. D. Stegeman for helpful
suggestions, to the Faculté des Sciences 4’Orsay and University of Warwick
for their hospitality and to the S.R. C. for finaneial support.
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