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Some curions bases for ¢, and C [_0,1]
by

J. R. HOLUB and J. R. RETHERFORD (Baton Rouge, La)

§ 1. Introduction. In the fivst part of this note we exhibit two
interesting bases for ¢,, the Banach space of sequences tending to 0 with
the sup norm.

The first example unifies some recent results [28], [24], [16], [17],
concerning bases in this space. Our second example is actually an analysis of
a previous example of J. Lindenstrauss [15]. This second example is used
in the second part of the note to provide a particular basis “for C[0 1.

Indeed, if (z;) is Schauder basis for a Banach space X with coeffi-
cient functionals (f;), then [f;] is called the coefficient space of the basis
(2;). We show in part 2 that C[0, 1], the continuous functions on [0,1]
with the sup norm, has a basis (z;) with coefficient space [f;] isomorphic
to neither I* nor L[0, 1]. After presenting the example we make some
remarks concerning the infrinsic difficnlties in eonstructing such an
example. In the final section we raise some questions which appear to
be related to a classical problem of Banach.

§ 2. Notation and terminology. Let X be a Banach space. A sequence
(2;) in X is a (Schauder) basis for X provided for each xeX there is a unique
sequence of scalars (@;), such that

(=]
(2.1) oz = Za.;:ci,
i=1
with convergence in the norm topology of X . The linear forms given by
(22) fl(w) = &
are continuous and fi(w,;) = 0y, i.e. (o, f;) is a biorthogonal pair. A basis

(x;) is unconditional if each expansion (2.1) is unconditionally convergent,

i.e. each rearrangement of (2.1) converges to ». A basis (@) is shrinking

provided (f;) is a basis for X", where f; is given by (2.2) (there are many

equivalent ways to define shrinking; see, e.g. [231]); boundedly complete
n 00

if supll 3 el < ‘oo implies Y a;z; converges; fype.P  provided
n Q=1 =1 ) ’ [
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n
inf |, > 0 and sup|| > @] < +-oo; and type P* provided sup o, < +oo
n n F=1 n

and sup|l 3 fill < 4-oo.
7w 2=1

The notions of shrinking and boundedly complete are due to
R. C. James [13] (the terminology to Day [7]) and the notions of type
P and type P* are due to I. Singer [28].

ExampLe 1. A conditional, shrinking, type P basis for c¢,.

Before proceeding to the example we list some known facts to show
the pertinence of this example to the literature.

I. ([13], Lemma 2, p. 520). Every unconditional basis for ¢, is
shrinking.

II. ([28], p. 358; see also [24]). Every unconditional basis of type
P is equivalent to the unit vector basis (en) of ¢y (én = (8n;)).

III. ([16], Theorem 6.1, p. 295). Fvery wunconditional basis () for
¢, satisfying 0 <inf|lw,| < sup i@, < oo s of type P.
kg n

Of eourse, ¢, has conditional bases, e.g. (x,) where 2, = Ze, The

basis (@,) is non-shrinking ([f;], the closed linear span of (f;) in ¢ = I,
has co-dimension 1) and is of type P*.
We construet our example in two steps.

Let o, = el and &, = —@,_1+(m—1)e, for n =2, and f, = ¢;+¢,,
1
fn= Y] en—[— 0n+1 for n> 2.

1° (2) 95 @ basis for ¢,.
If a = (a;)ec,, then

_ = o - ] Byt By
a4 = i; 06 = G161+ i_gz a; (—E‘) .
_ ONs ), Ny,
(ot oot 3 (25 + %) PRICES

This expansion is unique since (@y,f,) is a biorthogonal pair.
2° (wn) s shrinking.

It suffices ([23], Theorem 3.1, p. 843) to show that [f,] = I'. Now

N
o 3 e=arm = =

and it follows that e, €[f,,]. From the definition of it now follows that
ene[fn] for all » and hence [f,] = I

'8° (@) is & conditional basis.
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If (2,) were unconditional, then by [13] (Theorem 3, p. 522) (fa)
would be an unconditional basis for I*

In the proof of 2° we showed that Z(~—1){f;,- converges. Thus if
=1

o
(f:) were unconditional, } f; would converge and so
=1

Zm(nl 1 ot 0n+1) .

would converge. Of course, in I* this is impossible.
Now (2,) is not of type P. To remedy this we do the following: Let

1
Yy ==y, Y == Ly and y, = a1 %, for n > 3. Then (y,) still obviously
satisfies 1°, 2° and 3°. Moreover,
4° (y,) is of type P.

Since [lz,l = lwofl = 1 and [lmp]] = p—1 for p>3 it follows that
llynll = 1 for all ¥. Also

N N—_1 - N
“Z%H = || @B+ By — (;%) ‘]‘;:2;37‘

=
6,— €5+ 265
3

oot

= |ley+ (é2— 1) — [82;61 +

-3 ey, &
+(—1>N+‘( = ]+

= 11 (—1)"?
28,'— {[1-——5 +—3—' — .t -—N_':‘l—“]61+

| &
1 1 (—1)N1
+ I:E -3 Foot —H‘]ea-l'

11 (=11
+2[-§“-Z —l—...—!—*ﬁ——]es-‘}—...—}—

1 - 1
+(N —2) [N—2 —ﬂ]ﬁl\r_z} Fey_1|i<

since the coefficient of each ¢; in the bracketed expression is less than 1.
This completes the first example.

We remark that it now follows immediately from the duality results
of [28] that I* has a conditional, boundedly complete type P* basts.

6
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BExaweir 2. A Lindenstrauss basis for c,.

A sequence (z,) in a Banach space X is a basic sequmce if () is
a basis for its closed linear span [m,].

In a remarkable paper [15] Lindenstrauss constructed a basm
sequence (f,) in I' with & number of unusual properties:

(a) [fs] has no unconditional basis;

(b) [f»] is not isomorphic to a conjugate space;

(¢) [fn] is complemented in no conjugate space;

(d) [f]" is isomorphic to I*.

If (%) is a basis for a Banach space X with coefficient functionals
(fi), then we will call () a Lindenstrauss basis if [f,] satisfies (a), (b),
and (c¢) above.

‘We now show that the sequence (f,) constructed by Lindenstrauss
i3 the sequence of coefficient functionals for a basis (@) for ¢4, i.e. ¢, hag
a Lindenstrauss basis.

For a real number A, [4] denotes the greatest integer < 4. For each

positive integer n let yo(n) = n and y,,,(n) = [2}7(’”2);1]

Let ¢; be the ith unit vector in ¢, (vesp. I') for 4 > 0 and ¢ = 0 for
< 0. Define #, and 7, by

n
1 . . 1 .
@, = Z—Z—;eyj(n) ine¢ and f,= Bn—5(62n+1+ onp2) In T
F=0 '

The sequence (f,) is precisely that constructed in [15]. We first
show that (w,,fu) is a biorthogonal pair. To see this we consider three
cases.

1° m < n: po(m) = m < n and thus

Forj=0,1,...,m,y(m) <

m
1
o 2 57 onem) =0

for k¥ =mn,2n+1 and 2n+2 and it follows that Tul®m) = 0.
2°m=mn: Now y,(m)=m=mn and y,(m)
1,2,...,m. Hence

Lm . ! . m
A 1 AR 1 \
ﬁn(zgievj(m)) =1 -and ey, (Z?eﬁ("‘)) =0 fori=1,2.
7=0 . =

It follows that f,(x,) = 1.

3% n <m: If n<m<2n41, then % < yy(m) < 2n-+1 and yi(m)
<mnfor j=1,...; m, by the definition of y,(m) Hence f, (#,) = 0. Now

m =mn for j='

icm
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suppose m > 2n+1. In this case yo(m) 5 » and by definition y,(m)< 0,
yi(m) =n if and only if y;_;(m)=2n-+1 or y;_;(m)=2n-42. With
these observations, it follows from the definition of f, and =, that
ful®y,) = 0. Thus (@,,f,) is a biorthogonal pair. We now claim that (w,)
is & hasis for ¢,.

For, if & = (a;) ¢y, then

n n 1 1 i 1
Zfi(a)wl = 2 B 7 Gaiy1 — 5 Ogig 2 57 i)
i=1 i=1 =0
n 7 w i 1
]
— yaig. + {Z 41(2 by; u)) 2(“2i+1 F aiys) (Z'?gyj(i) )}
ZJ ’ 27 < im =0 2

d=1

?a e;,-+P(a, n),

i= l

where P{a,n) denotes the bracketed expression. To show that (w,) is
a basis it is enough to show that P(a,n) - 0 as n — co for each aec,.
Let > 3. Then n = 2k-+1 or 2k--2. We claim that in either case

1Pla, m)ll <

To see this, first observe that

7 sup la;).
2841

41 i kg1 i
1 1 1 l g ..
Pla,2k+1) = 2 a; Zg%jm —52 (Ba141 + Ogiyo) é? i)
f=1 F=1 1=1 J= .
9k+1
1
= — 5 tokya ) 27 VJ(’L) y (a"“'l* a%"—q) (2 o7 ev:'(t))
2 9'_ v, k+1 7=0

To see this, last equality we argue as follows. To prove the equality
it is clearly enough to show that

Z (@ai 171 Gozn) ( Sjﬁg :i)) —

T=0

2kl i

/
rayy e"f(‘))

N3

=1 j=1

k
1 11
—Eaﬂﬂ-l-l (2 ye,,j(k)) = 0.

=0
This is readily seen from the following lemma:
LeMA. For all n =1,2,...,

an--1 n an42

n
1 1 1 1 1
L —_§—. i Y e ————E——.e.
2 1 , 57 Greney = 5 £ 57 Oy O of Grjantn) = 5 £ of Oritn)

j =1

-Q.
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Proof. Clearly y,(2n41) = yo(n).
for ¢ =1,..., %k Then

Prsa(@n-+1) = [ y’“(z”';”—l ] _ [yk_l(‘;w)—l] .

Thus, by induetion, y;(2n+1)=y;_;(n) for all i>1. In exactly the
same way, v;(2n+2) = y;_;(n) for all 7> 1. Thus

Suppose y;(2n+1) = v;_;(n)

')n+1 zn+1
2 g7 Prin ey = 2 g 7 = g 2 27 fnm
sinee y;(k) <0 for j> k. Similarly for 2n4-2. This proves the lemma.

Now
i

1
Doyn =0 for i=1,2.
F=1

For ©> 3,4 = 2n-1 or 2n--2 for some = > 1. Suppose ¢ = 2n41.
Then by the lemma,

2n+1
@om 1 § 2, 712n+1) —tlzn+1( _S_ o y] n))

Similarly if 7 = 202, and thus

Z a’l( 27 yjm) 3 2 (@501 + Oyiqa) (2 37t 7.,)} 0.

Since
2k41 k
@ Y 1 1 Sw 1
Beri| o of Gitken) | = g Gyt 0700
I=1 7=0

by the lemma, we have the desired equality.
From the definition of y;(¢) it follows -that

2%4-1
2(221 "7(”')) for k=1,2,8,...,
T=k+1 \j=0
and
Sitymil <2 for any 4.
Thus,
1 .
1P(a, 2k+1)]| < — Zlazk+zl+—2— -2 max |a2i+1+an+2| 3 sup |ag.
=2

k<igak4l

)

icm
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Also
Pla, 2k+2)
2k4+2 1 2k1.2 1
— P(a, 25+ 1)+ as +92 S Oy — (a4k+5+ a4,k+5)2 Y
7=1 7=0
whence
[P(a, 26+2)1 < 8 sup |a]+ 2 |@oye] + @arysl + Garre] < T sUD ]
iz2k41 ikl

Thus P(a, n) =0 as n — oo.

By [1] (Theorem 1, p. 68) (f») is an w*-Schauder basis for 7' Thus
we have the following interesting corollary:

B has an w*-Schauder basis (f,) such that T[f.]
I'[o,11.

This result is immediate from our construction and the resnlt of
Lindenstrauss [15].

is isomorphic to

§ 3. We now use the Lindenstrauss basis for ¢, to construet a basis
for ([0, 1] whose coefficient space is isomorphic to neither I' nor o, 1]

Let us recall that the classical Schauder basis (s,) for C[0,1] is
given by so(t) =1, s,(2) =1, .

2j—2 2j—1

0 for te(—"z_—(_'i—", pk+1 )
s t) = 2§—1
2"+7’() 1 for t:»—g»k—ﬂ—,

linear for the other

(j=1,2,...,2% k=0,1,2,...).

If (1,) is the sequence of coefficient funetionals associated with (s,),
we let B =[l,] = (C[0,1])* = NBV[0,1], the normalized functions
of hounded variation (see, e.g., [9]).

I. F is isometrically isomorphic to I*

Now I has been shown by Foiag and Singer ([10], Theorem 3, p. 942).

We reproduce the proof here, for we need the explicit form of the
isomorphism.

Proof. Z. Ciesielski [3] has observed that the sequence (I,,) is given
by ly() = 2(0), L (z) = 2(1)—(0),

o .
2j—1 1 [2j—2 1 29
(%) Lk (@) = "”( pLzs! ) =5 ( o | 5 g

(#e0[0,1];5 =1,2, ..

L2k =0,1,2,...).
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Let ty=0,8,=1 and iy, = (25—1)/2%*? (j=1,2, Er=0,1, ),
and Etn(m) = (t,) for w0 [0, 1]. It is clear from (*) thmt [ft ] =[I, ] =

If ag, a1y ..., ¢y are scalars, then
(%) “gaift,iH = MS;%‘PI 'Zalft (m)’ = 2 [aQ]
Izt

(< is obvious; for > choose < ([0, 1] such that [#] = L and #(t;) = sgn o
(1=0,1, ,n)) Thus (&,) is equivalent to wunit vector basis (e;) of I
and the map &, — 6; IS an isometry by (wx).

Now let (¢;) be any orthogonal basis for ([0, 1] (e.g. the Franklin
basis obtained by applying the Gram-Schmidt process to (s,), see [4])
with coefficient functionals (y;). Let @ = [y;]. The following is surely
well-known but does not seem to appear in the literature.

II. @ is isometrically isomorphic to L'[0,1].
Proof. Sinee (@) is orthogonal, i.e. f(pdt)tp,-(t)dt: Oy, - 1t 18 cleai“
that each ¢, is given by , '

= Jeas.

For any sealars ap, ..., dy,

n
” Z [ZX' |
iz

where V denotes the variation norm. Thus the mapping w; — ¢; is the
desired isometry, since it is well known that (¢;) is a basis for L*[0, 1]
(see e.g. [9], p. 358). (For another example of a basis with [;] isomorphic
to L'[0, 1], ses [101.)

Let us recall that, for Banach spaces X and ¥, X ® Y denotes the
completion of the algebraic tensor product X ® ¥ in the norm gwon by

HZ%@% 2 Slz)g
and X®Y denotes the completion of X® Y in the norm

I Zwyi[{ — int { )Jnmlnnymu Z’Dz@h ELZE

Our next result is a trivial consequence of the work of Grothen-
dieck [12]. :

f | alzpl f(lt,

I = sup

7S, fEX‘
Ig<1, 5T

icm°

Some curious bases for cy and ¢ [0, 11 235
IIL. If X and Y are Banach spaces and X* has a basis, then
(XQT)* = X*6 T*.

Proof. Since X* has a basis, it certainly satisfies Grothendieck’s
condition of approximation (via the Banach-Steinhaus theorem) and
henee ([12], Equlvalence (B4), p. 165) the canonical map from X™*@X* —
- £ (X*, X* is one-to-one. Thus by [12], p. 123, the canonical map
from X*® Y* — B(X, Y) is one-to-one (£ (X*, X*) denotes the continuous
linear operators from X* into X* and B(X, Y) denotes the continuous
bilinear forms on X x ¥). Now IIT follows from [12], Theorem 8, p. 122.

The final two results we need are well known. Before stating them
we make the following definition: Let X and ¥ be Banach spaces with
Schauder bases (2;) and (y;) respectively. By the tensor produet, (@) ®(¥s)»

of (z;) and (y;) we mean the set {z; ®1;} ordered as a sequence in the follow-
ing fashion:

x1®y1{, T @Y1y ---
L1 ®Ysy Ta®Yay| -

IV. (TEEOREM OF GELBAUM-DELAMADRID [11]) Let X and T be
Banach spaces with Schauder bases (x;) and (y;) respectively. Then (5;) @ (y;)
is a Schauder basis for X® Y, where ~ denotes A or a. Moreover, the set
of coefficient functionals for (w:)® (ys) is precisely the tensor product of the
coefficient functionals of (w;) and (ys).

Finally, we need the profound theorem of Milutin.

V. (TEEOREM OF MILUTIN [18]) Let S and T be uncountable, compact
melric spaces. Then C(8) is linearly homeomorphic to C(T).

For a penetrating study of the work of Milutin see [20] and [8].

§4. The Example. If K denotes the one-point compactification
of the positive integers, then C(K) is isometrically isomorphic to ¢, the
space of convergent sequences. By [1], p. 181, ¢ is isomorphic to ¢,
and so

010, 11&0, = C[0, 11@¢ = C[0, 116 0(K) = 0([0, 1]xK) = ([0, 1].

Here we are using “=" to mean “is isomorphic t0”. The third
“equality” is the result of [12], p. 90, and the last is from V.

Thus, to obtain the desired example we need only find a basis for

aoé»O [0,1] whose coefficient functionals in (¢,®C[0, 1])* span a space
isomorphic to neither I' mor I*[0,1].
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Let (s;, 1) denote the classical Schauder basis for €0, 1] and let
(@ry fa) be the Lindenstrauss bagis for o, construeted in §2. We let

= [f,]. By IV, (2)®(s;) is a basis for 00®C’ [0,1] with coefflcwnt
functlonals (f)®(L). We wish to compute the space spanned by (f:) @ (I;) in

(6,&0[0, 11)* = P&NBV[0, 1],

the above equality coming from ITL

(a) The closed linear span of (f;)®(1;) in l‘éNBV(O,l] 8 isometric-
ally isomorphic fo 2N

Since, by I, [L]=F < NBV[0,1] is 1sometrxca,11y isomorphic to
!, we have Z®PF is isometrically isomorphic to 3@19‘ We claim there

is an isometric isomorphism @ from #@7F into 21®NBV[0 1] such that
Q(f;®h) = f;®]; for each ¢ and j. Since (f;)®(L) is a basic sequence in
Z‘éNBV[O, 1] and, by IV, a basis for Z@F, we will have the desired
regult.
Consider the following diagram:
207’ 2oP 5 roP
SXTL ) Isz
A(Z) S AW
Here A(%) and A(l') denote the absolutely summable sequences in &
and I respectively, J the identity map £ —%. T is the isometry of T,

1 the injection map and ¢ the indieated composition. §; and 8, denote
the well-known isometries which extend the mappings

n
Zyi®6i = Y1y o0y Yny 0,0, .00),
t=]

where ()i, are in . or I and e; denotes the ith unit vector in I'. Since
the proof of I shows that T(l ) is a finite linear combination of the wnit

vectors in I, say Tl = Z‘a De., we have
’b(fq,@Tl]) = Sioioﬂl(f@®1’l,) =f@®Tl7

Now clearly P®P is isometric to B ®F under the mapping J, T,
where J, is the identity map I* —1*. Moreover

Ji@ T 0iod @T(fiol) = /T (L@ Tl) = f01;.
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Now consider the following diagram:

rer " 1er L 1eNBVIO,1]
Rl:g . IRz
A(F) > A(NBV[0,1])

where B; and E, are defined as for §; and 8,, f is injection and j is the
indicated composition. Again, since each f; is a finite linear combination
of the unit vectors in ', we obtain j(f;®%L) = f;®1; and j is an isometry
of '®F into ll®N‘BV[O, 1].

Letting @ = jod,®T 'oioJ®T we obtain (a).

(b) L@V is not isomorphic to L*[0,1].

I 2@ were isomorphie to L'[0, 1], then since s’él‘ ean be iso-
metrically embedded in '®7 (shown in (a)) and, as is well known, PR
is isometrically isomorphic to ', we would have I'[0, 1] embedded in
a space with an unconditional basis, contradicting [21].

(c) Z®U is not isomorphic to I\

Representing & él‘ as A (%), we see that there is a continuous linear
projection onto a spa.ee isomorphic to Z (e.g. {(z:)eA(PL): 2, e L, x; = 0,
=2},

Thus if Z@F = A(%) were isomorphic to I}, we could infer that &
is complemented in a conjugate space, contradieting [15], p. 540.

Thus we have the ‘desired example.

§5. Remarks and umsolved problems.

Remark 1. ¥ H and F are closed subspaces of Banach spaces X and ¥
respectively, it is not true in general that F ®F is a closed subspace of
X®Y. For a discussion of this phenomenon see [25].

It is obvious that we have relied heavily on the structure of both
% and ' to achieve our result.

In conclusion we raise the following problems.

ProOBLEM 1. How many Lindenstrauss bases with mutually non-iso-
morphic (i.e. not linearly homeomorphic) coefficient spaces does ¢, admit?

PROBLEM 2. Let W = {(fa) = I*: (fa) be an o*-Schauder basis for T*
and T'[[f;] be womorphw to I'[0,11}. Define an equivalence relation ~
on W by (fn) ~ (gn) tf and only if [f,] is isomorphic to [g,]. Into how many
equivalence classes does ~ partition W¢

From the remarks above if (f,)e W and has coefficient functionals
(@), then (#,) is a Lindenstrauss basis for ¢,. We conjecture that the answer
to Problem 2 and hence to Problem 1 is ¢, the power of continuum.
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ProzrEM 3. How many hon-isomorphic coefficient spaces does C [0, 1]
admit?

Problem 3 is closely related to Problém 1. We conjecture that the
angwer to Problem 3 is ¢. Of course, our example shows the intrinsic
difficulties in constructing such examples. Moreover (and roughly
speaking), one usually constructs examples of bases with certain desired

properties by perturbing in some manner a “standard” basis. However, .

bases for [0, 1] can be extremely pathological and still have coefficient
spaces isomorphic to T' In fact,

Remark 2. Pelezyniski’s [22] universal basis for O[0, 1] has coeffi-
cient space isomorphic to I'. This is easily seen from I and the proof of
the Zippin extension lemma [29].

A problem. related to Problem 3 is the following:

Let # denote the clags of all Banach spaces with Schauder bases
and let € be the subset of # consisting of those spaces X ¢# admitting
non-isomorphic coefficient spaces.

ProBLEM 4. Classify the elements of €.

We conjecture that % consists precisely of the non- qua.srreflexwe
Banach spaces [5] with bases. Now by a theorem of R. C. James [13]
no reflexive space with a basis can be in ¥ (all coefficient spaces coincide
with the conjugate space). Moreover,

Remark 3. For each positive integer n, there is a Banach space
X, with basis such that X, is quasi-reflexive of order »n and X, ¢%.

To see this, let J denote the space of James [13]. Since J has codi-
mension 1in J** and is also isometrically isomorphic to J** [13], it follows
from a remark of Bessaga and Pelozynski [2] that J is isomorphic to each
of its subspaces of co-dimension 1. (This fact has been observed in [26],
p. 345.) By a result of Y. Cuttle [6] and I. Singer [26] (Theorem 3, p. 205)
if (#,) is & basis for J with. coefficient functionals (f;), then either [f;]=J*
cor eodim [f;] = 1. Thus J % but J¢%. (Since by [26] ((C), p. 343) J*
is isomorphic to each of its subspaces of codimension 1.) Now let X,
= J XJ X...xJ be the n-fold product of J. Then [3] X, is quasi-reflexive
of order » and the result of Singer above together with a simple induection
argument shows that X,¢% for any n.

The classical problem of Banach as to whether an infinite-dimensional
Banach space is isomorphic to each of its subspaces of codimension 1 is
still unsolved. If the answer to Banach’s problem is affirmative, then we
see from [26] (Theorem 3, p. 205) that no quasi-reflexive space in &
can be in .

We conclude by remarking that it is easy to show that ¢, and I* are
in %. Indeed, the Lindenstrauss basis (z,) for ¢, constructed in § 2 and the
unit vector basis for ¢, show that ¢,¢%. Also the basis (1,,) for [1,] described
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in I ig easily seen to have its coefficient space isomorphic to C[0,1].
Hence the unit vector basis for I* and the basis for I* determined by (Z,)
under the isometry described in I show that I'<%.
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Cmvme'rpnsyeme OXepaTopbl, HE YNOBJIECTBOPHIOIME YCJIOBHIM TOJIORATETEHOH
ONpele/ICHHOCTH ¥ HX UPHJIOKCHHA

O. ®. XAPA3O0B (Jemunrpan)

1. Bgememwe. B paloTe moIydyaroT JalbHeillliee pPasBUTHE DPE3YIlb-
TATH, VCTAHOBIEHHHE B cTaThax [1], [2] Ilyers X —runnGeproBo mpoc-
TPAHCTBO HAT NMOTEM KOMIIEKCHHX (M BEIeCTBeHHHX) umcer, B < X —
JmHEliHOe MHOMKecTBO, mirotHoe B X, A u H nurefinsie (BooGINe rosops,
HEOTPAaHWYEHHLIE) OHEpATOpHI, OIpefeleHHHe Ha £, H cuMMeTpaueH
B R u cmmMerpmsyer A.

B patarax [1], [2] usydanuch CHMMeTpU3yeMble OIepaTopel A ¢ Amc-
KPETHBIM CIIEKTPOM, JJIf HKOTODHIX BHIIOIHAJNOCH ONHO U3 CHENYIOIUX
nByx yemosuit: (Hw, ) >0 uman (HAxz, ) >0 naa moboro xek.

B aToit pabore cHMMETpU3yeMble ONEpaTophl A UCCIeNyIoTCA B Hpen-
IMONIOMEHHUN, 9T0 HX OXHO M3 YKA3aHHHX YCIOBHIl IOIOMUTENBHON ompe-
memeHHOCTH He BhHTodHSeTcA. IlomydeHnnle pesyIbTarhl IPHUIATAOTCHA
K M3YYCHTIO 3a7a4 O COGCTBEHHHX 3HAYEHHAX OOLIRHOBEHHHX Auddepes-
LUAILHEIX ONEPATOPOB ILIMPOKONO KIacca, CONEP:HAIINX, KAK YaCTHBIE
cIryuan, KiaccH, msydapmmecs panee d. Hawmke [3] m JI. Rommarmem [4].

2. CHMeTpH3yeMbIE OUEPaTOpsl, He Y/OBJIETBOPSIONINC YCIOBHSM ONpeNeIeH-
nocra. ITyers X — ruas0eproBo IIPOCTPAaHCTBO HAN I[OIEM KOMIIIEH-
cHHIX umcel, R — numHeiiHoe MHOMecTBo, mimotHoe B X, R = X. Pac-
CMOTPHM AaJANTHBHEIE ¥ OJHOPONHEE (BOOOUIE TOBODA, HEOTDAHH-
uyennsie) omeparopsl A u H, onpemenenunie Ha B (A(R)c R; H(R) c X),
YIOBIETBOPAIIINE CIETYIOIHM YCIOBHAM:

1) ypapuenne Hz = (0 HMeeT TOIbKO HYJEBOe peleHme z = 0;

9) H — cuMMeTpudecKdit omepatop na R, cmMMerpusylommii ore-
paTop 4: .

(1) (Hz,y) = (v, Hy), (HAz, y) = (z, H4y), z, yek;

3) cmexTp omeparopa A MOMKET CONEpIKATH TOIBKO COGCTBEHHBIE
3HAUEHHA KOHEYHOH KPATHOCTH YPABHEHHS

2 r—Adr =0, 2R,
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