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On Mikusinski operators *
by
T. K. BOEHME (Santa Barbara)

I. Introduction. We shall use the following standard notation.
* % is the space of complex-valued continuous functions on the half-line
0 <? < oco. F, the space of Mikusiniski operators, is the field of quotients
of the integral domain ¢ where the product operation is convolution.
Thus if fe# and ge¥, then

1
(f)(t) = [ Flt—u)g(udu

for all >0, and if zeF then z =flg for some fe%,ge%, g # 0. The

shift operator (the measure with unit mass concentrated at t = a > 0)

is denoted by ¢~ and ¢* — 1 /e=*. The symbol h stands for the constant
t

funetion k() = 1 for ¢ > 0. Thus R (1) = fdu =tfort>0, h3(t) = 12/2,
0
etc. The reciprocal of hin Fiss = 1 [k and this is a differentiation operator.

%, is the set {f|fe®, OeSuppor’o.f .
The space % has a topology defined by the semi-norms

Il = Max|f(z)].
10,5]

# is the space of (equivalence classes of) functions which are integ-
rable on each finite interval [0, T], T >0. % has the topology defined
by the semi-norms

T
lgle = [ lgl  for T >o0.

If a sequence f,¢% (or %) converges to f in % (or in %) we will write
@ 2
Jo = (or o = 1). i
Some other terminology has not become standard and we will make
some conventions. In the first place there are several types of topological

* The research for this paper was partially supported by National Science
Foundation Grant No. 6118. .
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spaces which are otherwise unrelated but go under the name of ]%‘réchet
spaces. A locally convex, metrisable, complete, topologltial vector spfji,;}]i
is commonly called a Fréchet space. Also, any topqlogwnl Sp.a‘nce wlu
the property that the sequential closure of every set is closed is usua y
called a Fréchet space. Unfortunately both of these types of sp‘aces Ocm}l
in this paper; thus on the hypothesis that the seguentlal closule: _of every
set being closed means that sequential closure is a Kur.a.towskl closu;?e
operator we will call this last type of space a Kuratowski space. We will
reserve the name Fréchet space to mean & locally convex, mgtmmble,
complete, topological vector space. Both # and % are Fréchet spzycesk.
The field of Mikusiniski operators does not have a topology defm.ed
for it. Mikusiniski initially defined a sequential convergence for F, which
we will call type I convergence, as follows: a sequence e converges
to meF it and only if there is an fe®, f # 0, such that fu,e¥ for em?h n
and fa, £ fx. It x, converges to & type I we will write o, — . This is
the convergence most commonly used in F. Another 1?y'pe of convergence
which we will call fype II convergence is as follo(;vs: if there exist f,e%,
In % f # 0 such that f,v, ¥ for each n and f,o,— fx, then @, converges
. type IT and we write @, — .
’fO mLz;P % be a class of sequences on a space X (with or without a topo-
logy); We say on it (@, By, Loy ...) 18 in %. The sequential closure
with respect to %, of a subset § = X, is the set

8 = {&|@,e8, @ z @},

Urbanik [1] calls a convergence class “topological in the sense of
Kuratowski” if sequential closure is a Kuratowski closure operator,

ie., if for every § « X, § = §. Since, even if # is the class.of conver-
gence sequences for a topology on X it may fail to have this property
we will nse the term “topological” differently. Namely, we call ﬂ]i/ topo-
Togical it and only if there exists a topology 7 for X such that @, — @ <
<> o

This paper is a discussion of the connection between type I con-
vergence and a topology for F. In [9] it is shown that sequential closure
is not a Kuratowski closure operator for either type I or type IL con-
vergence. Thus if type I or type II convergence IiIs topological and I~
is a topology such that @, — & <>, — @ (or @, — ), then (I',7) is
not a Kuratowski space. In [7] Norris imposes a topology on a subspace
of F'; however, the topology is strictly stronger than type I converge?ce
in that there are sequences of continuous functions g, <% such that ¢, — 0
but they fail to converge to zero in his topology.
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In section IT we review some of the facts about sequential convergence
and topologies. All of this material can be found in [4] or [5]. It is placed
here because it is the basis for what follows.

In section IIT a theorem is proved which answers a question raised
by [1]. In [1] it is shown that if f, % and 0 <Support f, for each n then
there are g, <% and a non-zero function % <% such that fnon =k for all n.
A natural question is “%uppose Jue®, 0cSupport f, each, and f, £ f+#0.
Can we pick ¢ne%, g, ~> @ # 0 such that f, on = fo for all n?” This qu-
estion is answered by Theorem. 4.

In section IV it is shown that type I convergence is not topological,
and it is demonstrated what is the smallest topological eonvergence
class which contains the type I convergence class. F is endowed with
a topology whose convergent sequences are exactly the convergent sequ-
ences of this last convergence class. It is shown that F with this topology
is a sort of inductive limit of Fréchet spaces (but it is not locally convex).
Theorem 9 shows exactly what sequences convergent to z in. F have
the property that 1/w, — 1/.

In section V the space F is exhibited as the quotient of a metric
space.

II. Sequential Convergence. A convergence class % on a set X is
any collection of sequences (#, #,, @,, ...) from the set X. If (x, Doy By «00)

L % s e s .
Lies in % we say @, — ®. % is said to be an L-convergence class if it satisfies
the two conditions :

. « @
(i) @, — @ = each subsequence of (w,) converges — to .

s 2
(ii) each constant sequence (w, @,...) converges — to .

% is said to be an L*-convergence class if in addition to (i) and (i)
it satisfies the criterion for convergence

(iii) if a sequence (x,) is such that each subsequence has a subse-
quence which converges — to =, then in fact w, Z .

Of course, every topology on X gives rise in a natural way to a con-
vergence class; namely, the class of all (», ;, @,, ...) where z, - as
7 — oo with convergence in the given topology. This convergence class
will be called the convergence class of the topology.

The convergence class of a topology is always an L*-convergence
class.

Conversely, we would like if possible to associate a topology with
a convergence class #. We say % is topological if there exists a topology
for X such that # is exactly the convergence class of that topology.

A topological convergence class is an L*-convergence class. Also,
the convergence classes in which we are interested have unique sequential

Studia Mathematica XXXTIL2 9
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limits (i.e., @ — @ and G y <o =y). In this case Kisyiski [6] has
shown

TEEOREM 1. A convergence class which has unsque sequentiol limits
is topological if and only if it is an L*-conwergence class. .

If % is topological, there are ordinarily many topologies with the
property that @, — 2 <& Z 5. We will pick one of t-hese? topologies~
namely, the largest one. In fact, start with any % which is an IL-con-
vergence class. We define 7 by Y

(1) Oe7 if and only if each sequence &, — xze0 iy eventually in O
(i.e., there exists an N such that n >N = 2, e0).

Or equivalently

(1') € is closed in.7 if and only if € is sequentially closed with respect
to % (ie., 0 =0C).

7 will be called the Zopology of the comvergence class %. I has the
following properties: " ,

(a) 7 is weaker than # in the sense that @, — 2 = & — .

(b) 7 is the largest topology weaker than %.

If # has unique sequential limits, then

(¢) a sequence @,eX i convergent to x in the topology 7 if
and only if every subsequence contains a subsequence which conver-
ges =z to .

If # is also an L*-convergence class, then

(d) 7 is the strongest topology on X which has # for its convergence
class.

In this last case J is a topology which can be used to prove
Theorem. 1.

Now start with a topology 7, on X. Consider the convergence class
of 7, and let 7 Dbe the largest topology which has this same convergence
class for its convergence class. We have I o7, and if 7 =7, we say
that 7, is a sequential topology for X. Thus, a topology with unique se-
quential limits is a sequential topology if and only if every sequentially
closed set is closed.

Franklin [5] has characterized the sequential topologies by

THEOREM 2. 4 necessary and sufficient condition that 7~ be a sequen-
tial topology for X is that (X ,J) be the quotient of a meiric space.

II. The main theorem in [1] states:

THeOREM 3. If there ewists a T >0 such that none of the fumctions
fac€, n =1,2,..., vanish identically on [0, 1], then there ewist functions
one? and a k # 0 in € such that fuon =5k for all n=1,2,...
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In view of this theorem if f, Z f#0,thereisa o = 0 anda sequence
0n €% such that fn 0n = fo for all n sufficiently large. One can now ask,
“Can the functions g, and ¢ be chosen so that on ad 0”? That the answer
to this question can be negative is seen by taking a sequence f, <%, con-
verging in € to an f such that f(t) = 0 for t¢[0, 1]. Basically the answer
to the question seems to be

THEOREM 4. If f, £ fe%, as n — oo, then each sufficiently rapidly
NCreasing <fsaguence of integers has o subsequence (ny) such that there exist
oxe?, o — 0 #*=0 and

f ng, Ok == f 4
for all b =1,2,...

In order to prove the theorem we will use the theory of summable
series as exposited in Schwartz [8], Chapter 1. Theorem 4 then results
from a series of six lemmas.

Some of the basic facts concerning summable series are given below
before we begin the proof of the lemmas.

Definition 1. Let 8§ be an index set for a collection of complex
numbers {a,|aeS}. Then 4 = g,'aa is summable to the number A if for

every ¢ > 0 there is a finite set ' = § with the property that for each
finite subset U, F' = U < &, we have |[4— Y a,| < «.
T

Definition 2. Let {fi]a<S} be a collection of continuous functions
on an interval I. The series }f, is uniformly summable to f if for each
& >0 there iy a finite set F < § with the property that for each finite
subset U, F = U < 8, we have |f(t)— Y f.(1)] < ¢ for all tel.

T

Definition 3. Let {f.|aeS} be a collection of continuous functions
on I. The series }f, is said to be norm summable it ' |f,] is summable,
s

where ||f]] = SI;P VAVIE

A norm summanble series of continuous functions is uniformly summable
to a continuouns function.
If A =} a, is summable and 8’ = §, then 4’ = } a, is summapble,
s &

and i called a partiol sum of J'a,. A sequence 4, of partial sums of 4
is called eofinal if A, = Z‘ 6, and for every finite set # there is an #,
8,

such that F < §, for all n > n,.

Any cofinal sequence of partial sums 4, of a summable series
A = Ya, is convergent to 4. A series of non-negative terms is summable
if the partial sums over finite subsets of § are bounded. Thus a series
of non-negative terms is summable if any cofinal sequence of partial
sums is bounded.


GUEST


132 T. K. Boehme

If Yf. is norm summable, every partial sum is norm summable and
thus uniformly summable, and a cofinal sequence of partial sums, say
fo = X'f, converges uniformly on I to f= g‘ fa-

S’Il» .
We have for norm summable series

If1< ) el
E]

Tn the remainder of this section we will use the notation

§ = {F|F is a finite, non-empty, set of positive integers}

= 1 sinh 7
B =”(1+‘7'£;) =—

k=1

and

LevmmA 1. We have :
) 13=1+%’(]F]k-2).

Proof. The partial products
N
1
=[] 0+3]
k=1

form a cofinal collection of partial sums of the non-negative series on
the right (1). Since the partial sums fy converge to f, equation (1) is
established.

Recall that for feC[0, k]

[flle = Max {£(2)].
0.4

LeMMA 2. Let ¢, and 1y, be in €, for each bk =1,2, ... Suppose that

. 1 1
(1) lleall < " E

1+;’ ll7ill
for each k. =1,2,... Define, for T any positive integer,
(i) A(T) = Max k*|lex|lr,

k<T

(iil) B(T) = Max[4A(T), 1],
(iv}) O(T) = Max {{rilr|¢ < T,

(we suppose C(T) =1 for all T > 0),

(v) |F| = number of elements in F,

o) up = rim ([ ] o).
F
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Then
U = ZuF
5
is norm sumimable and
llullz < ¢ BY (1) 0/(T) (B—1).

Proof. For any finite sequence of functions in %, say a,, a,, ..., ay
we have the inequalities

H n

-1

N N
o<y [l <" [T e

Izl < € Iyl n llexllz -
¥

Thus

We will show that in fact
P 1
(2) sl < "B Dy0() | [ 35
F

for every FeS, T >0. The proof of (2) will be divided into two parts.
First, the ease |F| > T and second |F| < T.

|F| = T. Since the |F| elements of F are all distinet at most T of
the functions e, keF, have subscripts & < I'. These satisfy the inequal-
ity

B(T
(3) iy < 25

T
by (ii) and (iii). At least one keF is such that & > |F| > T and for this k&

lealiz iz < el e < %

by (i). Also by (i) the remaining keF are such that
1
(4) flerlle < =
Thus when |F| > T we have
1
uple < "B [ [ =5
F

and since C(T) > 1, inequality (2) is established for |F| >T.

|F| < T. Since |F| < T, we have from (iv) the inequality |z llr
< C(T) and the elements of F' are divided again into two groups. For
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those k < T we have inequality (3) again by (ii) and (iii) and for & >T
inequality (4). Thus

1
lupllz < 67 0(T)B" (T) ” e
F

hold also when |F| < T, and (2) is established for all eS8 and T >0.
The statement of the Lemma now immediately follows from °

2, lusle < B0 T>Z H =

We will now pick the functions r, once and for all. Let fn z fe%,.
By Theorem 3 there is a sequence rne®y and an 7%, such that » = f’”q "
(k=1,2,...). Then

LEMMA 3 If the functions e = fn,—f satisfy condition (i
the partials products

=" BY(T)0(T)(p—1)

) of Lemma 2,

N

el

1

converge in € to a function R which we denote by

R=7‘ﬁ(l—|—~;:i).

1

R=r+ Zup
8

(using the notation of Lemma 2.) Thus

IRl < |l’[|T+ZIWFHT < |pllz+ 6" BT (1) C(T)(B—1).

We have

Proof. The finite products Ry form a cofinal sequence of partial
sums for the series r-+u = r-+ 3 up, where uy is given in Lemma 2.
S

By Lemma 2 the sequence Ry must converge uniformly on [0, 7] to
R = r+w and |R|r < |llz+ e BT (T)C(T)(f—1) for each 7.
LevMA 4. With the notation and hypothesis of Lemma 3

Ry % R
14 eglf = 1+ eff (each k=1,2,... as N - o0)
and
H—R—H < rlle+ 6" BT (T)0(T) (f—1)
1+ &ff |z
for each k.

icm°®
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Proof. The products
Ry

1+ e ff

are in @ for N =k and form a cofinal sequence of partial sums for series
obtained from H—Z up by striking out those FeS which contain .

Let 8 = {F|Fe8, /cqél‘} Then 2 up 18 & partial sum of Z up and is
thus norm convergent, and

Ry “
1+-ep /f

— 4 E tp, a8 N —»oo.
S

. %
Since Ry — R, we have

1—|—z-:,c/f rt Z”F’

which is the first staterment in the lemma. Since

e+ ) sl < o+ Zuupn,

St

R
1+ Eklf
the proof of the lemma is complete.
LemMA 5. If fnﬁ fe%,, there is a subsequence f,, such that, for

& = f”%'—f7

(i) R =?"ﬁ(l+%—)e(€

1

R
(i) — " is a bounded sequence in €, k=1,2,...,

1+-exff
(iii) R #0.

Proof. (i) and (ii) are satisfied by taking =y increasing sufficiently
rapidly so that (i) of Lemma 2 is satistied. To see that, we can assume
R +# 05 we note that smce re%,, |Irly >0. In fact, we can assume Il
> 1/ fJ— , since 7 = fr;, implies (ar) = f*(ary) for any real number a.
By discarding the first few terms of the sequence fm, @ NeW sequence can
be obtained with eB(1)C(1) < 1. Then

IRl = [rll—eB(1)C(1)(F—1) > 0.

LEMMA 6. If ge% and my 48 @ bounded sequence in €, then there is
o subsequence of gmy which is convergent in .
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Proof. This is a well-known result. The proof consists of noting
that if the sequence my is uniformly bounded on each finite interval,
then the sequence gmy is uniformly bounded and uniformly equicontinuous
on each finite interval. By Arzela’s theorem gm; has compact closure
in %. Since ¥ is metrizable gm; must have a convergent subsequence.

Proof of Theorem 4. By Theorem 3 there exist g,e¢%, g 0,
such that fg = fags for all n sufficiently large. Pick a subsequence f,,
such that the conditions of Lemma 5 are satisfied. Now

_f_ B9
I = g T e dted
Thus
R
Bgw, = 9777 Talf
hag, by Lemma 6, a subsequence conver;gent in €. In order to simplify
the notation we will suppose the entire sequence Rgn, is convergent
in #. Then since fy, (Rgnk) = f(Rg) and f, £ f and Rg,, convergent in €,
it follows that Rg,, — Rg. Thus we can take gr = Rgu,, 0 = Rg #0
and the theorem is proved.

IV. A topology for F. Type I convergence is an L-convergence and
it provides unique sequential limits. Thus by Theorem 1 it is topological
if and only if it satisfies condition (iii) of section IT. We shall show that
it does not satisfy this condition.

THEOREM 5. Type I convergence is not topological.

Proof. It was shown by Mikusiigki that the sequence

o=1)(s—n) ={"} (n=1,2,..)
fails to converge type I. We will show that every subsequence possesses
a subsequence which converges type I to zero and this will prove the
theorem.

Let f, and f be given by

1h B
f,.=;—£;;=;—h” (m=1,2,...),
f=

Then f, — fin ¢ and by Theorem 4 given any subsequence of integers
it has a subsequence such that there exist functions Onyy @ # 0,

Ty, 0m, = fo (k=1’277")
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and g, — ¢ in %. Thus
B2
f@mﬂk = ;k- Ony, -0

in % as k —co and the theorem is proved.

We take for the topology on F the sequential topology for type I
convergence. In the remainder of the paper when we speak of convergence
in I we mean convergence in this topology. Since type I convergence is
an L-convergence, we have

(i) O is open in F < for each sequence m,,~£> 2e0, implies #, is
eventually in O.

(ii) € is closed in F <> ( is sequentially closed under type I con-
vergence.

Since type I convergence is mnot topological, there are sequences
@, — in F but @, does not converge to z type I. The new sequences,
however, are found from the type I convergent sequences in a simple
manner:

(iii) @, — @ in F' < every subsequence of #, has a subsequence which
converges to x type I.

The space F is thus a sequential space in the terminology of section
II, and by Theorem 2 it is the quotient of a metric space. The metric
space utilized by Franklin in the proof of Theorem 2 is the disjoint union
of a large number of spaces each of which consists of one convergent
sequence. We can do somewhat better for our particular space. First,
however, we shall see that F is in the nature of an inductive limit of
Fréchet spaces (of course, however, it is not locally convex). To obtain
this view of ¥, we express F' as the union of a partially ordered collection
of Fréchet spaces.

For each f # 0, feZ define B; = {&|zeF, af ¥} and give B; the
semi-norms ||zllsy = [j&flly for N =1,2,... The collection {B;|feZ,
f # 0} has a natural ordering, B; > B, if and only if B; > B,. We use
this partial ordering to partially order #— {0} by f>g¢ if and only if
.Bf > Bg.

THEOREM 6. f = ¢ #f and only if there is a finite measure u on [0, oo]
such that f = gu. f ~ g (i.e., By = By) if and only if p assigns non-zero
mass to the origin.

Proof. This is essentially Theorem 3.2 in [2].

COROLLARY. If f = g, the natural injection of By into By is continuous.

Since F = {J By, the topology on F can now be described in terms of
the spaces Bj. 7*°

THEOREM 7. I has the strongest topology so that all the comonical
injections B; — f are continuous.
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Proof. All the injections are continuous for a topology on ¥ if and
only if every type I convergent sequence in F is convergent in this topology.
The sequential topology for type I convergence is the strongest topology
with this property.

" COROLLARY. A set O is open in F if and only if O ~ By is open in By
for each f # 0.
Some properties of the topology on ¥ follow directly from the definition.

Thus

TrROREM 8. (i) The topology on T is tramslation inveriant.

(ii) The mapping (a, ®) — ab ON OxF —~F is continuous.

Proof. Property (i) follows from the above corollary.

Property (i) follows from the fact (proved in [3]) that the product
topology on the product of a locally compact sequential space with a se-
quential space is sequential. Thus the topology on O xF is sequential
and sinee the map (a, @) - aw is sequentially continuous on O X F — T,
it is continuous.

On the other hand, it is difficult to tell if the topology on FxF
is a sequential topology. In particular, it is not known if F'is a topological
vector space. .

The map # — 1/z is not continuous at any point z<F. However,
in the case of reciprocals we can find out exactly what happens by the
uge of support numbers. We will follow Norris by defining a finite number «
for each © 7 0 in F, as that unique real number « such that

I oo

& = E [4 ,
where f and ¢ are in #,. This number is independent of the particular
representation of @ which is chosen, and if # = y/e, where y, z<F', then
a(#) = a(y)— a(#). The number a(z) is called the support number of z.
Then
LEMMA. If @, > weF, 2 5 0, then

lima(e,) < a(@).

Proof. If f,e%,f # 0 isin %, and fo — f in %, then lima(f,) < «(f).

The lemma follows.

There is a slight generalization of Theorem 4 which can be stated
utilizing support numbers.

THEOREM 4'. Let f,e¥ converge in € to a non-zero function f. If a(f,)
— a(f), then each subsequence of the imiegers has a subsequence (nz) and
there is a corresponding sequence ope% such that o — o # 0 in € and
Juyon=fo for every k =1,2,...

icm°®

Mikusifiski operators 139

Proof. Define functions f, and f by f, = f,e~*™* and f = feo,
Then f, — f in €, fe%, and by Theorem 4 there exist ¢, —~¢ in %, § 0
such that f, oz =fo. Let 4 = Supa(f,); then the sequence

o = oe A—othls, —[4—a(f))s

e =6
satisfies the conditions of the theorem.

We can now clarify the relationship between convergent sequences
and their reciprocals.

THEOREM 9. Suppose that z, —ax # 0 in F. Then 1w, — 1z if and
only if a(ms) - a(z).

Proof. The only if part follows from the above lemma and the fact
that a(l/z) = —a(2).

Now for the if part. Suppose that #, -2z %0 and a(z,) — a(2).
By Theorem 4' every subsequence of «, has a subsequence such that
1z, 21 = and this proves the theorem.

V. F as a quotient of a metric space. Let X = {(z, f)|w ¢B;, fe.Z, f+ 0}.
Since each B, is a metric space, we can make X metric with the metric

ol ), 0,1 = T

ol(@ ), (v, )1 =1, J+#g.
Sinee (@, f) e X implies xeB; = F, the relation (z,f) ~(¥,9) <& =y
is an equivalence relation on X. Let B be this equivalence relation. Then
TesorEM 10. X/F = F.
Proof. Each element of X/ is identified in a natural way with

a unique element in ¥. We claim the identity map on X/E onto F is
a homeomorphism. Let I be this map, p the natural projection, p (v, )]

X

X/E

p/

=a' of X to X/F and w the map u((‘w,f)) =g on X to F. First to see
that I is continuous. The map w is continuous and if 4 <« F is open,
then %~ *(4) is an open collection of cosets in X since p is the quotient
map, I~*(4) = p(u'(4)) is open in X/H.
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To gee that I~* is continuous, let B be open X/H. Then
I(B) = u(p~*(B)). Now p~'(B) =[B] is a collection of cosets in X
and is open; we want to show I(B) = «([B]} is open. Suppose x,cF,
2y, A weu([B]). Because @, — # type I, there is an f = 0 in % such that
o [(@, 1), (@, )] >0 and since weu([B]), (¢,f)e[B], thus (m.,f) is
eventually in [B] and @, is eventually in %([B]). Thus u([Bl) = I(B)
is open in F.

Conclusion. Some of the unresolved questions with respect to the
sequential topology for type I convergence are as follows. First what
is the connection between convergence in the topology and type II con-
vergence. If @, L 2 and the regularizing sequence f, , such that f, £ f#0
and fn@, £ fm, can be chosen so that fe%,, then Theorem 4 gshows that
in fact @, — @ in the topology. If a regularizing sequence with fe%, can
be chosen, then, in particular, lima(2,) < a(#). A reasonable conjecture
is that if x, g z 0, then , - o if and only if iﬁa(mn) < a(?).

If O is such that O ~ By is open in By for each feZ— {0}, then O
is open in F. An unresolved question is: if ¥ is such that ¥V ~ By contains
an open neighborhood of the origin in B; for each fe.— {0} does V neces-
sarily contain an open neighborhood of the origin in ¢

Is ¥ Hausdortf?
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Reflexivity and summability: the Nakano I(p;) spaces
by

D. WATERMAN*, T. ITO, F. BARBER, and J. RATTI (Detroit)

1. A classical theorem of Banach and Saks asserts that every bounded
sequence in L,, p >1, has a subsequence whose (C, 1) means converge.
Nighiura and Waterman [4] showed that a Banach space is reflexive if
and only if, for every bounded sequence, there is a summability method T'
of a particular kind and a subsequence whose 7-means converge (either
weakly or strongly). This has been discussed further by Singer [7], Pel-
czytski [5], and Waterman [8].

In his review [6] of the paper of Nishiura and Waterman, Sakai
raised the following question: Is there a reflexive spaee for which (C, 1)
is not the suitable method? Klee [1] attempted to answer this and showed
that certain I(p;)-spaces of Nakano contained bounded sequences with
no (€, 1) summable subsequences. In section 2 we will show that these
spaces exhibit a more striking property, namely that, for any regular
method T or any regular* method 7™ of Zygmund [10], p. 202-205, there
exists a bounded sequence without 7 (Z*)-summable subsequences.
However, as we will show in section 3, it is precisely these I(p;)-spaces
which are not reflexive. Thus the question of Sakai remains unanswered.
The result in section 3 was stated in our review [9] of [1].

2. Let {p;} be a sequence of real numbers, 1 < p; < co. Then I(p:)
denotes the set of all real sequences % = {f;} such that

0

1
D)t < oo
Pi

i=1

for some « >0 depending on z. We adopt the convention that, for a func-
tion f of a finite real variable, the value at oo is given by

f(o0) = limf(w).

U—>00
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