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p-integral operators commuting with group representationis
and examples of quasi-p-integral operators
which are not p-integral

by

A. PELCZYNSKI (Warszawa)

In this note we substantiate a conjecture of Persson and Pietsch
(cf. [5], remark after Satz 46) that for each p > 1 there exists a quasi
p-integral operator (resp. quasi p-nuclear operator) which is not p-in-
tegral (resp. p-nuclear). The case p = 1 is well known; as an example
it is enough to consider in a Hilbert space any operator of a Hilbert-
Schmidt type which is not nuclear. The examples for p > 1 will be con-
structed in the present note exploiting the fact that a p-integral oper-
ator which commutes with representations of a compact group @ has
a “@-invariant factorization”.

1. Preliminaries. The capital letters X, ¥ and Z will stand for Banach
spaces. An operator means bounded linear operator. C(K)-denotes the
space of continuons complex-valued funetions on a compact Hausdortf
space K. A measure on K means a non-negative Borel measure on K
with bounded total variation. If m is a measure on K, then L,(m, K)
denotes the space of complex-valued functions f on K such that m([fF)
< co. We use the notation m(f) = [ fdm.

4

We recall the bagic definitions from [5].
Let 1< p < co. An operator v: O(K) - Y is called p-majorable
if there is a measure m on K such thatb

(1.1) ofI” <m(1f")  for feO(EK).

An operator u: X — Y is called p-integral if there exists an iso-
metrically isomorphic embedding J: X — C(K) and a p-majorable oper-
ator v: O(K) — Y such that 4 = vJ.

An operator u: X — ¥ iy called quast p-integral if there is an iso-
metrically isomorphic embedding I: ¥ - Z such that Iu is a p-integral
operator.
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We shall need the following two facts. First of them is an obvious
consequence of [5], Satz 45, and [6], Theorem 2 (ef. also [3], Propo-
sition 3.1).

PropPOSITION 1.1. For every operator v: C(K) — Y the following con-
ditions are equivalent:

(1.2) v is p-majorable,

(1.3) v is p-integral,

(1.4) v is quasi p-integrol,

(L.B3) v is p-absolutely summing, i.e. there i8 & > O such that

D
S“nvf i < asup, Zlm f
for every finite sequence (f;) in O(K).

PROPOSITION 1.2. For every operator w: X —> Y the following conditions
are equivalent:

(1.6) u is a p-integral operator,

(L.7) for every isometrically isomorphic embedding J,: X — C(K,)
(K an m*lm}m?y compact Hausdorff space) there exists o p-majoradle oper-
ator vy: C(K,) — Y such that w = v,J;.

Proof. (1.7) = (1.6). Obvious.

(1.6) = (1.7). Let u=vJ, where J: X —( () is an isometrically iso-
morphic embedding. First observe that if o: ¢(I{) - Y ix a p-majorable
operator, then (1.1) implies that o is continuous in the L, (I, m) norm.
Hence (regarding O(K) as a subspace of L, (K, m)) there is (determined
in a unique way) an operator 9: L, (K, m)~ ¥ such that

1517 < m(|f1”)

and 91 = o where I:0(K)— Lyo(K,m) is the natural
isomorphic embedding. Since the space L., (I,
extension property ([1], p. 105), for any isom«trl(‘\lly isomorphic em-
bedding J,: X — C(K,) there exists an operator I: C(K) > Lo (I, m)
such that IJ, = IJ. We put v, = #1. Then

(1.8) for feL, (XK, m)

isometrieally
) has the Banach-TIahn

0, dJ, = =8I1J =0 = u.

Finally using (1.8) one ean easily check that o,
(1.5) of Proposition 1.1. This completes the proof.

satisfies condition

2, p-integral operators commuting with group representations. Let (
be a topological group and let X be a Banach space. By an X-represen-
tation of ¢ we mean a homomorphism g - 4, such that
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(2.1) For each g in @ the operator 4,: X — X is an isometric iso-
morphigm.
(2.2) For each # in X the function g - A, is continuons.

Let w: X — Y be an operator. Let g -4, and ¢ - B, be X and
Y-representations of a topological group & Let

(2.3) ud, = Byu

Then we say that v commutes with the representations g — A4 and g - B,.

Now we are ready for the main result of this note which is similar
to a result of Rudin [8].

ProPOSITION 2.1. Let @ be a compact topological group. Let g — A,,
g—~>Byand g > Cybe X, Y and C(K) — representations of G. Let u: X - ¥
be a p-integral operator which commutes with the representations g — A,
and g — By and let J: X — C(K) be an isometrically isomorphic embedding
which commutes with the representations g — A, and g — C.

Then there exist a measure n on K and an operator w: C(K) - Y
such that

(2.4) wd = u,

(2.5) w commutes with the Mpresenmtwns g =0y and g — By,

(26 ) lefl? < n(1ff?) for feC(X

(2.7) n(1C,F1) = n(|f1) for ge@ and feC(K)

Pr oof. By [2], p. 442, the isometry Oy is of the form C,f = a,- fo Fy!
for feC(K), where a,<C(K) with |ag| = 1 and F,: K - K is a homeo-
morphism (ge@). Since Cgp, = C,00;, for g,k in G, we have

ay (an0 Fy 1) -foFy oF; !

for ge@.

= Oyp, ‘fOFg_hl.

Passing to the modulus we get foF5'oF;' = foFgz for f>= 0. Thus
Py = F,oF, for g, h in G. Next, by (2.2), we infer that Fy(-) is a con-
tinnous function on G X K.

Since #: X — Y is a p-integral operator, Proposition 1.2 implies
that there exist an operator v: 0(K) — Y and a measure m on K satis-
fying (1.1) and such that vJ = u. Define for each g in G (via the Riesz
Representation Theorem ([2], p. 265) the measure m, on K by

my(f) = m(foFy") for feO(K).
Let us set for feO(K)

(2.8) =GJ[‘ my(f)dy,

(2.9) wf =@f B;'w0,fdg,

where [ ... dg denotes the integral with respect to the normalized Haar
&

measure of G. Clearly, formulas (2.8) and (2.9) well define the measure
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n on K (observe that [n] = |m| because In] = n(1) and [jm] = |m,)|

= m(1) == m,y(1) for ge@) and the operator w: C(K) = Y. Using the

identity © = vJ and the fact that the operators » and J commutes with

the appropriate representations we get
B;'o0,J = By'od4, = Bj'udy=u for ge@.

Thus integrating with respect to the normalized Haar measure we
obtain (2.4). Next observe that for each g and h in ¢ we have the identity
BBy w0, = (By-1)" 0010

Thus integrating over the variable g and using the fact that the
Haar measure is translation invariant we get Byw = w0, for cach b in ¢.
This proves (2.5).

Using the fact that B;' is an isometry and (1.1) we get

I1B7 Cufl" = ICafIl’ < m(1Cf[")

= m([foF;*F) = me(Iff")  (g¢G,feC(K)).

Hence, integrating, we obtain

luf i = I JB; "0, fig|” < af 1B w0, S dg

< [ milif*)dg = n(IfP").
This proves (2.6).
Finally, we have

my(IOuf1) = my(Ifo Fy') = m(IfoFig|) = mu(Ifl) (g, he@; feC(K)).
Thus integrating with respect to the Haar measure we get

% (1Chf)) =¢fmgh(If|)dg =n(lf)) (he@;feC(K)).

This proves (2.7) and completes the proof of the Proposition.

3. Examples of quasi p-integral operators which are not p-integral.
Let T denote the unit circle on the complex plane. Clearly, 7' is a compact
abelian group. Denote by L, (T) the Ly-space with respect to the normal-
ized Haar measure of 7.

Let M be a non-empty subset of the set Z of the integers. Let Xy
(resp. Yur,5) denote the closed subspace of C(T) (resp. of Ly (7)) spanned
by such characters 2" that re< M. Let, furthermore, 4,: C(T) — Ly(T) be
the natural embedding (= the formal identity map, i,f = f). Clearly, if
fe Xy, then ipfe¥,, and the image 4,(X;) is dense in Yorp. Let us
define wuyp: Xy ~ ¥y, by the relation

(3.1) JM,p“M,iu = ipJM,
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where Jyp: Yary = Ly(T) and Jy: X — C(T) denote the natural
isometrically isomorphic embeddings.

LemMma 3.1. For every mon-empty subset M of the set Z the operator
Uarp: Xar = Yarp 18 quasi p-integral.

Proof. Obviously the operator i,: C(T) — L,(T) is p-majorable.
Hence the operator ipJys is p-integral. The desired conclusion follows
now from (3.1) and the definition of quasi p-integral operators.

Let R(T) denote the set of rational funetions on T, i.e.

R(T) = {f<C(T):f(&) = D) @’ ar = 0 for almost all r}.
reZ

Define Py: B(T) — R(T) by
ZSMf = Za,z' for

reM

f= Na2 <R(T).
)

PROPOSITION 3.2. The following conditions are equivalent:

(8.2) uprp s a p-integral operator,

(3.8) Py is bounded in Ly(T) norm,

(8.4) Yyp 98 a complemented subspace of Ly(T).

Proof. (3.2) = (3.3) First we define the action of the group T on
XM; YM,p and C(T) by '
(3.5) f—>Ja
where fg(2) = f(az) (aeT, 2eT).

Since (2"), = a’2" for each a in T and for each r in Z, we easily check
that (3.5) defines Xjr, Y3, and C(T)-representations. Clearly, wa»
and J commutes with this representations. Hence, by Proposition 2.1
there is an operator w: C(T) > X7, satisfying conditions (2.4)-(2.7)
WlthG:.K——‘T,’M =’M,M’p,J’——JM,X=XM and Y = YMJ”. Let us
put for conveniency w(¢') =fr (reZ). By (2.4) and (3.1), we have

fr="¢
On the other hand, (2.5) implies that
(fr)a = w((&)a) = w((ac)) = d'f:

for aeT,

(3.6) for re M.

(ael;reZ).
Hence
(fa(l) = fa(@) = a"f(1).
Thus, taking into aceount that fre ¥y, and & ¢ ¥y forré M, we
infer that
(3.7)

fr=0 forr¢M.
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COlearly, (3.6), (3.7) and theﬂ linearity of w imply that wf = Pyf for
f in R(T). Hence, by (2.6), [Pacfl” <n(If") for feC(T) and for some
measure n on T. By (2.7) and the definition of the action of I on O(T)
we infer that the measure 7 is translation-invariant and therefore = is
o Haar measure on T (in general n is not the normalized Haar measure
of T1). Thus Py is bounded in L, (T) norm. )

(3.3) = (3.4). Since R(T) is dense in L,(T) and Py (B(T) = Yarn,
(3.3) implies that there is the unique extension of Py to an operator,
say P, from Ly(T) into Yy ,. Cleaxly, P iy a projection (== a bounded
linear idempotent) from L,(T) onto Yasp.

(3.4) = (3.2). Let Q: Lyp(T) o X bea projection. We put w = @iy,
Then clearly uu, = wJy and leof|P < QP #y(|fF), where m; denotes
the normalized Haar measure of T. This shows that wumy, is a p-integral
operator and completes the proof of the Proposition.

In view of Proposition 3.2 and Lemma 3.1 the existence for every
p>1 of quasi p-integral operators which are not p-integral is a simple
consequence of the following known faet (c¢f. [7], p. 36):

LeMMA 3.3. Let 1<p < +oo. If ﬁM is bounded in Ly(T) norm for
every subset M of Z, then p = 2.

Proof. We consider first the case where 1< p < 2. By a standard
“glinding hump” procedure we conclude that the assumption of the Lemma
implies that there is ¢ > 0 such that for every subset M of Z

1Paeflls < ¢l|fllo

Here |flp = (n,(|fI")}" denotes the Ly(T) norm of f. Hence for
f= é’ a2 «R(T) and for every sequence (s,) such that s, = 41 for reZ

H%’ arsi?

Therefore (remembering that 1 < p < 2), by a theorem. of Orlicz [4],
Wflle = { 3 12}/ < (14 26) by |flhy < (14-20) Dy [1fla
1eZ

for feR(T),

where b, is a constant depending only on p. Thus on R (T) the Ly(Z)-norm
and L,(T)-norm. are equivalent. Since R(T) is dense in every L, (T) for
1< ¢ < o0, (3.8) implies that L,(T) and L,(T) coincide as the classes
of functions. Hence p = 2.

.The proof in the case where 2 < p < +-oo reduces by a standard
duality argument to the previous case. This completes the proof.

for feR(T).

we have

p < (1+20) (|l -

(3.8)
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4. The existence of quasi p-nuclear operators which are not p-nuclear.
We recall (cf. [5], [9]) that an operator u: X — ¥ is said to be p-nuclear
if there exist a sequence (z;) of linear functionals on X and a sequence
(yg) of elements of ¥ such that

o
ux = Zw;(a’)yq for # in X,
=1

(i’ uw;‘u*’)””< too and

g=1

00

w (5
<l ‘g=1

5" (o))" < +oo,

where p* = p(p—1)""

An operator u: X — Y is called guasi p-nuclear if there exist a Banach
space Z and an isometrically isomorphic embedding 7: ¥ — Z such that
the operator Iu is p-nuclear.

Following [5] let the symbols I,{X, Y), IZ(X, Y), Np(X, ¥), and
N2(X, Y) denote the Banach spaces (under the appropriate norms defined
in [5]) of p-integral, quasi p-integral, p-nuclear and quasi p-nuclear
operators from X into Y, respectively. Let 1 <p < +-o0. According
to the Persson-Pietsch duality theory (cf. [5], Satz 52 and Satz 53) if

(4.1) ¥ is a reflexive Banach space,
(4.2) X and Y have the metric approximation property (cf. e.g. [51]
for the definition),

. then there are mnatural isomefric isoﬁlorphisms (onto!)

@: (¥p(Y, X)) > I5.(X, ¥),
do: (NF(X, X)" > Ine(X, ¥),
where p* = p(p—1)"" and Z* denotes the dual space of & Banach space Z.

Furthermore if jy: Np(¥, X) - NF(¥, X) and jr: Ipe (X, X) ~I%(X, Y)
denotes the natural embeddings, then

(4.3) dfy = jrde,

where §% denotes the adjoint operator of jx. Since an operator % is an
isomorphism (= a linear homeomorphism) if and only if the adjoint
operator %" has the same property, (4.3) implies the following fact:
COROLLARY 4.1. If the spaces X and Y satisfy conditions (4.1) and
(4.2), then N,(¥Y,X) = NE(Y, X) (d.e jy is an isomorphism) if and only
if Ipe(X, ¥Y)= I5.(X, Y) (de jp 98 an isomorphism).
" We shall apply this Corollary in the case where X = Xy and
Y = Yape. Clearly, Yarpe is reflexive as a closed linear subspace of
Ly (T). To verify (4.2) observe that the Cesaro means form in the spaces
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Xy and Yy a sequence of finite-dimensional operators (each of norm
one) which tends pointwise to the identity operators of the spaces.
Combining Corollary 4.1 with Proposition 3.2 we obtain

PrOPOSITION 4.2. If Py is unbounded in Ly (T)-norm, then
Np(Tagpws Xag) # N3 Tagpe, X) (1 <p < +00)
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Multipliers and tensor products
of I”-spaces of locally compact groups*

by

MARC A. RIEFFEL (Berkeley)

In an earlier paper concermed with induced representations [12]
we introduced a definition of tensor product for Banach modules. Section 1
of the present paper contains general remarks on the relationship between
multipliers of Banach modules and this definition of tensor product.
Tn the following sections, motivated by theorems of Figa-Talamanca,
Gaudry, Hoérmander, and Bymard [3,6,10,4] concerning multipliers
of the IP-spaces of locally compact groups, we give conerete represen-
tations as function spaces for the tensor products of these IP-spaces,
and we indicate how the theorems of the above-named authors can be
reformulated in terms of these representations.

We would like to thank F. Greenleaf and L. Maté for several sbi-
mulating conversations about multipliers.

1. Multipliers and tensor products. Let 4 be a Banach algebra. By
a left (right) Banach A-module we mean [12] a Banach space, V, which
is a left (right) 4-module in the algebraic sense, and for which

llav]| < llalw]l  for all acd and veV.

If ¥V and W are left (right) Banach A-modules, then Hom,(V, W)
will denote the Banach space of all continuous A-module homomorphisms
from V to W with the operator norm. The elements of Hom4(V, W)
are traditionally called multipliers from ¥V to W. If V is & left (right)
Banach A-module, then V*, the dual of ¥, is a right (left) Banach A-mod-
ule under the adjoint action of 4.

For completeness we include the definition of the tensor product
of Banach modules which was introduced in [12]. Let ¥ and W be
respectively a left and right Banach A-module. Let V®,W denote the

* This research was partially supported by National Science Foundation grant
GP-5585.
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